1
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
2
|
Chen J, Huang Y, Bian X, He Y. Berberine Ameliorates Inflammation in Acute Lung Injury via NF-κB/Nlrp3 Signaling Pathway. Front Nutr 2022; 9:851255. [PMID: 35284463 PMCID: PMC8916032 DOI: 10.3389/fnut.2022.851255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
The inflammatory response is the key pathophysiological character of acute lung injury (ALI). Berberine (BBR), a natural quaternary ammonium alkaloid, plays a functional role in anti-inflammation both in vitro and in vivo. However, the underlying mechanism between BBR and ALI has not been expounded. Here, we found that BBR improved the permeability of pulmonary and repressed the inflammatory factors in the lipopolysaccharides (LPSs)-induced ALI model. We demonstrated that BBR could suppress the expression of phosphorylated nuclear factor-kappa B (NF-κB) and further restrain the downstream gene nucleotide-binding domain and leucine-rich repeat protein-3 (Nlrp3). Moreover, we also revealed that BBR could directly interact with Nlrp3 protein. After knocked down of Nlrp3 by using siRNA, the protective role of BBR was abrogated in vitro. The expression of IL-1β and IL-18 was downregulated by BBR via the two signaling pathways. Notably, in Nlrp3 deficient mice, the protective effect of BBR was abolished. These findings demonstrate that BBR has a depressant effect on inflammatory response caused by LPS via regulating NF-κB/Nlrp3 signaling pathway, providing a potential therapeutic strategy in ALI.
Collapse
Affiliation(s)
- Jiyu Chen
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yanli Huang
- Office of Academic Research, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaohong Bian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Xiaohong Bian
| | - Yan He
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Yan He
| |
Collapse
|
3
|
Silent hypoxia in COVID-19: pathomechanism and possible management strategy. Mol Biol Rep 2021; 48:3863-3869. [PMID: 33891272 PMCID: PMC8062941 DOI: 10.1007/s11033-021-06358-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) has become a severe health issue, especially to the patients who develop silent hypoxia condition after SARS-CoV-2 infection. Due to the lack of dyspnoea and extremely low oxygen saturation level, these patients are at exceptionally higher risk. Although the prevalence of silent hypoxia in COVID-19 patients has been evident in several cases, the underlying pathomechanism behind this condition is still unclear. Silent hypoxia in SARS-CoV-2 infected patients can be diagnosed with the help of a pulse oximeter, blood gas levels, and a 6-min walking test. While the clinicians and researchers figure out the exact reason for this phenomenon, the patients must be under strict day-to-day monitoring. In this article, we aim to provide comprehensive insights into the underlying symptoms, mechanism, and possible factors behind the occurrence of silent hypoxia among COVID-19 patients.
Collapse
|
4
|
Vašíček J, Baláži A, Bauer M, Svoradová A, Tirpáková M, Tomka M, Chrenek P. Molecular Profiling and Gene Banking of Rabbit EPCs Derived from Two Biological Sources. Genes (Basel) 2021; 12:genes12030366. [PMID: 33806502 PMCID: PMC7998175 DOI: 10.3390/genes12030366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been broadly studied for several years due to their outstanding regenerative potential. Moreover, these cells might be a valuable source of genetic information for the preservation of endangered animal species. However, a controversy regarding their characterization still exists. The aim of this study was to isolate and compare the rabbit peripheral blood- and bone marrow-derived EPCs with human umbilical vein endothelial cells (HUVECs) in terms of their phenotype and morphology that could be affected by the passage number or cryopreservation as well as to assess their possible neuro-differentiation potential. Briefly, cells were isolated and cultured under standard endothelial conditions until passage 3. The morphological changes during the culture were monitored and each passage was analyzed for the typical phenotype using flow cytometry, quantitative real–time polymerase chain reaction (qPCR) and novel digital droplet PCR (ddPCR), and compared to HUVECs. The neurogenic differentiation was induced using a commercial kit. Rabbit cells were also cryopreserved for at least 3 months and then analyzed after thawing. According to the obtained results, both rabbit EPCs exhibit a spindle-shaped morphology and high proliferation rate. The both cell lines possess same stable phenotype: CD14−CD29+CD31−CD34−CD44+CD45−CD49f+CD73+CD90+CD105+CD133−CD146−CD166+VE-cadherin+VEGFR-2+SSEA-4+MSCA-1−vWF+eNOS+AcLDL+ALDH+vimentin+desmin+α-SMA+, slightly different from HUVECs. Moreover, both induced rabbit EPCs exhibit neuron-like morphological changes and expression of neuronal markers ENO2 and MAP2. In addition, cryopreserved rabbit cells maintained high viability (>85%) and endothelial phenotype after thawing. In conclusion, our findings suggest that cells expanded from the rabbit peripheral blood and bone marrow are of the endothelial origin with a stable marker expression and interesting proliferation and differentiation capacity.
Collapse
Affiliation(s)
- Jaromír Vašíček
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: (J.V.); (P.C.); Tel.: +421-37-654-6600 (J.V.); +421-37-641-4274 (P.C.)
| | - Andrej Baláži
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
| | - Miroslav Bauer
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Andrea Svoradová
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
| | - Mária Tirpáková
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Marián Tomka
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
| | - Peter Chrenek
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (M.B.); (A.S.); (M.T.)
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: (J.V.); (P.C.); Tel.: +421-37-654-6600 (J.V.); +421-37-641-4274 (P.C.)
| |
Collapse
|
5
|
Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020; 22:3327-3337. [PMID: 32945451 PMCID: PMC7453557 DOI: 10.3892/mmr.2020.11431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non-invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)-labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION-poly-l-lysine (USPION-PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2-weighted image fast spin-echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high-fat diet. USPION-labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary-like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION-PLL nanoparticles were 10–20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue-stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION-labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Tingting Tan
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Li Cheng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Jiapeng Liu
- Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| | - Hongyan Song
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Li
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Kui Zhang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
6
|
Marchetti M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol 2020; 99:1701-1707. [PMID: 32583086 PMCID: PMC7312112 DOI: 10.1007/s00277-020-04138-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemia is a major health emergency causing hundreds of deaths worldwide. The high reported morbidity has been related to hypoxia and inflammation leading to endothelial dysfunction and aberrant coagulation in small and large vessels. This review addresses some of the pathways leading to endothelial derangement, such as complement, HIF-1α, and ABL tyrosine kinases. This review also highlights potential targets for prevention and therapy of COVID-19-related organ damage and discusses the role of marketed drugs, such as eculizumab and imatinib, as suitable candidates for clinical trials.
Collapse
Affiliation(s)
- Monia Marchetti
- Hematology Department, Az Osp SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy.
| |
Collapse
|
7
|
Hydrogen-Rich Saline Inhibits Lipopolysaccharide-Induced Acute Lung Injury and Endothelial Dysfunction by Regulating Autophagy through mTOR/TFEB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9121894. [PMID: 32071922 PMCID: PMC7011387 DOI: 10.1155/2020/9121894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Background Hydrogen-rich saline (HRS) has strong anti-inflammatory, antioxidative stress, and antiapoptotic properties. The study focused on the protection of HRS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rat models and the relationship with autophagic regulation and mTOR/TFEB signaling pathway. Material and Methods. The LPS-induced ALI rats' model was established. Pathohistological change in lung tissue was detected by hematoxylin-eosin staining. The inflammatory cytokines were examined by enzyme-linked immunosorbent assay (ELISA). The key apoptosis proteins and autophagy-relevant proteins were analyzed by western blotting. In vitro, HPMEC models of ALI were treated with LPS. The inflammatory cytokines were detected. Apoptosis rate was determined by flow cytometry. The autophagy and mTOR/TFEB signaling pathway-related proteins were detected by western blot and immunohistochemical staining. Results HRS attenuated LPS-induced ALI and apoptosis both in vivo and in vitro. HRS attenuated inflammatory response, inhibited apoptosis, induced and activated autophagy in LPS-induced ALI model, and downregulated mTOR/TFEB signaling pathway. The protection of HRS can be blocked by autophagy inhibitor. Moreover, mTOR activator reversed HRS protection and mTOR inhibitor enhanced HRS protection in LPS-induced model and HRS activated autophagy via mTOR/TFEB signaling pathway. Conclusion The results confirmed the protection of HRS in LPS-induced ALI by regulating apoptosis through inhibiting the mTOR/TFEB signaling pathway.
Collapse
|
8
|
Ju YN, Geng YJ, Wang XT, Gong J, Zhu J, Gao W. Endothelial Progenitor Cells Attenuate Ventilator-Induced Lung Injury with Large-Volume Ventilation. Cell Transplant 2019; 28:1674-1685. [PMID: 31526054 PMCID: PMC6923558 DOI: 10.1177/0963689719874048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a common complication that results from treatment with mechanical ventilation (MV) in acute respiratory distress syndrome (ARDS) patients. The present study investigated the effect of endothelial progenitor cell (EPC) transplantation on VILI. Wistar rats were divided into three groups (n = 8): sham (S), VILI model (V) induced by tidal volume ventilation (17 mL/kg), and VILI plus EPC transplantation (VE) groups. The lung PaO2/FiO2 ratio, pulmonary wet-to-dry (W/D) weight ratio, number of neutrophils, total protein, neutrophil elastase level, and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were examined. Furthermore, the histological and apoptotic analysis, and lung tissue protein expression analysis of Bax, Bcl-2, cleaved caspase-3, matrix metalloproteinase (MMP)-9, total nuclear factor kappa B (total-NF-κB), phosphorylated NF-κB (phospho-NF-κB) and myosin light chain (MLC) were performed. The ventilation-induced decrease in PaO2/FiO2 ratio, and the increase in W/D ratio and total protein concentration were prevented by the EPC transplantation. The EPC transplantation (VE group) significantly attenuated the VILI-induced increased expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, MMP-9, phospho-NF-κB and MLC, neutrophil elastase levels and neutrophil counts in BALF. In addition, the anti-inflammatory factor IL-10 increased in the VE group. Furthermore, pulmonary histological injury and apoptosis (TUNEL-positive cells, increase in Bax and cleaved caspase-3) were considerably diminished by the EPC transplantation. The EPC transplantation ameliorated the VILI. The mechanism may be primarily through the improvement of epithelial permeability, inhibition of local and systemic inflammation, and reduction in apoptosis.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ying-Jie Geng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Ting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Gong
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingli Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
9
|
Qiu Y, Chen C, Zhang J, Chen M, Gong H, Gong L, Du L, Wang R. VEGF attenuates lung injury by inducing homing of CD133+ progenitors via VEGFR1. Biochem Biophys Res Commun 2019; 511:650-657. [DOI: 10.1016/j.bbrc.2019.02.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
|
10
|
Mokhber Dezfouli MR, Jabbari Fakhr M, Sadeghian Chaleshtori S, Dehghan MM, Vajhi A, Mokhtari R. Intrapulmonary autologous transplant of bone marrow-derived mesenchymal stromal cells improves lipopolysaccharide-induced acute respiratory distress syndrome in rabbit. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:353. [PMID: 30572913 PMCID: PMC6302408 DOI: 10.1186/s13054-018-2272-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Background Lung diseases such as acute respiratory distress syndrome (ARDS) have a high incidence worldwide. The current drug therapies for ARDS have supportive effects, making them inefficient. New methods such as stromal cell therapy are needed for this problem. Methods This research was performed with ten New Zealand rabbits in two groups. Bone marrow aspiration was performed on the treated group, and mesenchymal stem cells were isolated and cultured. The experimental model of ARDS was induced using LPS from Escherichia coli strain O55:B5. Then, 1010 bone marrow mesenchymal stem cells (BM-MSCs) were autologously transplanted intrapulmonary in the treatment group, and 1–2 ml of PBS in the control group. The clinical signs, computed tomographic (CT) scans, echocardiography, blood gas analysis, complete blood count, and cytokine levels were measured before and at 3, 6, 12, 24, 48, 72, and 168 h after BM-MSC transplant. Finally, the rabbits were killed, and histopathological examination was performed. Results The results showed that BM-MSCs decreased the severity of clinical symptoms, the number of white blood cells and heterophils in the blood, the total cell count, and number of heterophils and macrophages in bronchoalveolar lavage, and balanced the values of arterial blood gases (increase in partial pressure of oxygen and O2 saturation and decrease in the partial pressure of carbon dioxide). They also downregulated the tumor necrosis factor (TNF)-α and interleukin (IL)-6 concentrations and increased the IL-10 concentrations at different times compared with time 0 and in the control group, significantly. In the CT scan, a significant decrease in the Hounsfield units and total lung volume was found by echocardiography, and in comparing the two groups, a significant difference in the parameters was noticed. The histopathology demonstrated that the BM-MSCs were able to reduce the infiltration of inflammatory cells and pulmonary hemorrhage and edema. Conclusions This study indicated that BM-MSCs play a significant role in the repair of lung injury. Electronic supplementary material The online version of this article (10.1186/s13054-018-2272-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammad Reza Mokhber Dezfouli
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | | | - Sirous Sadeghian Chaleshtori
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. .,Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Alireza Vajhi
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Roshanak Mokhtari
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Mao M, Hao L, Wang Y, Liu QQ. Transplantation of Endothelial Progenitor Cells Attenuates Lipopolysaccharide-Induced Lung Injury via Inhibiting the Inflammatory Secretion of Neutrophils in Rats. Am J Med Sci 2018; 357:49-56. [PMID: 30611320 DOI: 10.1016/j.amjms.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are special types of stem cells and are a potential novel therapeutic approach in acute lung injury (ALI). Transplantation of EPCs can ameliorate the inflammatory state by reducing adhesion and exudation of inflammatory cells. However, the mechanism underlying the effect of EPCs on inflammatory response modulation remains unclear. The aim of the present study was to investigate the effect of EPCs on the modulation of neutrophils in vitro and in vivo. MATERIALS AND METHODS EPCs were cocultured with neutrophils after lipopolysaccharide stimulation in vitro or transplanted into ALI rats, and neutrophil inflammatory mediators including tumor necrosis factor-α, interleukin-1β, neutrophil elastase, myeloperoxidase and matrix metalloproteinases-9 were detected by enzyme-linked immunosorbent assay, an myeloperoxidase detection kits, reverse transcription-polymerase chain reaction and western blotting. RESULTS The results showed that EPCs significantly downregulated the expression of inflammatory mediators when cocultured with neutrophils in vitro or in vivo. CONCLUSIONS These findings demonstrated that EPCs contributed to lung injury in ALI rats by downregulating neutrophil inflammatory mediators.
Collapse
Affiliation(s)
- Mei Mao
- Department of Geriatrics, No 958 Hospital of PLA, Chongqing, China.
| | - Lei Hao
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yi Wang
- Department of Respiratory Medicine, the Sixth People's Hospital of Ji'nan City Affiliated to Jining Medical College, Jinan, China
| | - Qiu-Qian Liu
- Department of Infection Prevention and Control, No.958 Hospital of PLA, Chongqing, China
| |
Collapse
|
12
|
Vašíček J, Shehata M, Schnabl S, Hilgarth M, Hubmann R, Jäger U, Bauer M, Chrenek P. Critical assessment of the efficiency of CD34 and CD133 antibodies for enrichment of rabbit hematopoietic stem cells. Biotechnol Prog 2018; 34:1278-1289. [PMID: 29882300 DOI: 10.1002/btpr.2659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 03/25/2018] [Indexed: 12/11/2022]
Abstract
Rabbits have many hereditary diseases common to humans and are therefore a valuable model for regenerative disease and hematopoietic stem cell (HSC) therapies. Currently, there is no substantial data on the isolation and/or enrichment of rabbit HSCs. This study was initiated to evaluate the efficiency of the commercially available anti-CD34 and anti-CD133 antibodies for the detection and potential enrichment of rabbit HSCs from peripheral blood. PBMCs from rabbit and human blood were labelled with different clones of anti-human CD34 monoclonal antibodies (AC136, 581, and 8G12) and rabbit polyclonal CD34 antibody (pCD34) and anti-human CD133 monoclonal antibodies (AC133 and 293C3). Flow cytometry showed a higher percentage of rabbit CD34+ cells labelled by AC136 in comparison to the clone 581 and pCD34 (P < 0.01). A higher percentage of rabbit CD133+ cells were also detected by 293C3 compared to the AC133 clone (P < 0.01). Therefore, AC136 clone was used for the indirect immunomagnetic enrichment of rabbit CD34+ cells using magnetic-activated cell sorting (MACS). The enrichment of the rabbit CD34+ cells after sorting was low in comparison to human samples (2.4% vs. 39.6%). PCR analyses confirmed the efficient enrichment of human CD34+ cells and the low expression of CD34 mRNA in rabbit positive fraction. In conclusion, the tested antibodies might be suitable for detection, but not for sorting the rabbit CD34+ HSCs and new specific anti-rabbit CD34 antibodies are needed for efficient enrichment of rabbit HSCs. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1278-1289, 2018.
Collapse
Affiliation(s)
- Jaromír Vašíček
- NAFC-Research Institute for Animal Production in Nitra, Institute of Farm Animal Genetics and Reproduction, Lužianky, Slovak Republic, Hlohovecká 2, 951 41.,Research Centre AgroBioTech, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.,Faculty of Biotechnology and Food Science, Department of Biochemistry and Biotechnology, Slovak University of Agriculture, Nitra, Tr A. Hlinku 2, 949 76, Slovak Republic
| | - Medhat Shehata
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Susanne Schnabl
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Martin Hilgarth
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Rainer Hubmann
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Ulrich Jäger
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Miroslav Bauer
- NAFC-Research Institute for Animal Production in Nitra, Institute of Farm Animal Genetics and Reproduction, Lužianky, Slovak Republic, Hlohovecká 2, 951 41.,Faculty of Natural Sciences, Department of Botany and Genetics, Constantine the Philosopher University in Nitra, 949 74 Nitra, mládeže, Slovak Republic, Nábrežie 91
| | - Peter Chrenek
- NAFC-Research Institute for Animal Production in Nitra, Institute of Farm Animal Genetics and Reproduction, Lužianky, Slovak Republic, Hlohovecká 2, 951 41.,Faculty of Biotechnology and Food Science, Department of Biochemistry and Biotechnology, Slovak University of Agriculture, Nitra, Tr A. Hlinku 2, 949 76, Slovak Republic
| |
Collapse
|
13
|
Shi X, Zhang W, Yin L, Chilian WM, Krieger J, Zhang P. Vascular precursor cells in tissue injury repair. Transl Res 2017; 184:77-100. [PMID: 28284670 PMCID: PMC5429880 DOI: 10.1016/j.trsl.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/25/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Vascular precursor cells include stem cells and progenitor cells giving rise to all mature cell types in the wall of blood vessels. When tissue injury occurs, local hypoxia and inflammation result in the generation of vasculogenic mediators which orchestrate migration of vascular precursor cells from their niche environment to the site of tissue injury. The intricate crosstalk among signaling pathways coordinates vascular precursor cell proliferation and differentiation during neovascularization. Establishment of normal blood perfusion plays an essential role in the effective repair of the injured tissue. In recent years, studies on molecular mechanisms underlying the regulation of vascular precursor cell function have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches to treat chronic wounds and ischemic diseases in vital organ systems. Verification of safety and establishment of specific guidelines for the clinical application of vascular precursor cell-based therapy remain major challenges in the field.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Weihong Zhang
- Department of Basic Medicine, School of Nursing, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Liya Yin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - William M Chilian
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica Krieger
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|
14
|
Cruz FF, Weiss DJ, Rocco PRM. Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opin Biol Ther 2016; 16:1353-1360. [DOI: 10.1080/14712598.2016.1218845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Moussa MD, Santonocito C, Fagnoul D, Donadello K, Pradier O, Gaussem P, De Backer D, Vincent JL. Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Med 2015; 41:231-8. [PMID: 25510299 DOI: 10.1007/s00134-014-3589-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Endothelial cell activation and dysfunction are involved in the pathophysiology of ARDS. Circulating endothelial cells (CECs) may be a useful marker of endothelial dysfunction and damage but have been poorly studied in ARDS. We hypothesized that the CEC count may be elevated in patients with sepsis-related ARDS compared to those with sepsis without ARDS. METHODS ARDS was defined according to the Berlin consensus definition. The study population included 17 patients with moderate or severe ARDS, 9 with mild ARDS, 13 with sepsis and no ARDS, 13 non-septic patients, and 12 healthy volunteers. Demographic, hemodynamic, and prognostic variables, including PaO(2)/FiO(2) ratio, 28-day survival, blood lactate, APACHE II, and SOFA score, were recorded. CECs were counted in arterial blood samples using the reference CD146 antibody-based immunomagnetic isolation and UEA1-FITC staining method. Measurements were performed 12-24 h after diagnosis of ARDS and repeated daily for 3 days. RESULTS The median day-1 CEC count was significantly higher in patients with moderate or severe ARDS than in mild ARDS or septic-control patients [27.2 (18.3-49.4) vs. 17.4 (11-24.5) cells/ml (p < 0.034), and 18.4 (9.1-31) cells/ml (p < 0.035), respectively]. All septic patients (with or without ARDS) had higher day-1 CEC counts than the non-septic patients [19.6 (14.2-30.6) vs. 10.8 (5.7-13.2) cells/ml, p = 0.002]. CONCLUSION The day-1 CEC count was significantly higher in ARDS patients than in other critically ill patients, and in moderate or severe ARDS patients compared to those with milder disease, making it a potentially useful marker of ARDS severity.
Collapse
Affiliation(s)
- Mouhamed Djahoum Moussa
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles (ULB), 808 Route de Lennik, 1070, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rafat N, Dacho C, Kowanetz G, Betzen C, Tönshoff B, Yard B, Beck G. Bone marrow-derived progenitor cells attenuate inflammation in lipopolysaccharide-induced acute respiratory distress syndrome. BMC Res Notes 2014; 7:613. [PMID: 25196505 PMCID: PMC4161837 DOI: 10.1186/1756-0500-7-613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is the most common cause of respiratory failure among critically ill patients. Novel treatment strategies are required to address this common clinical problem. The application of exogenous adult stem cells was associated with a beneficial outcome in various pre-clinical models of ARDS. In the present study we evaluated the functional capacity and homing ability of bone marrow-derived progenitor cells (BMDPC) in vitro and investigated their potential as a treatment strategy in lipopolysaccharide (LPS)-induced ARDS. Results Evaluation of the BMDPC showed functional capacity to form endothelial outgrowth cell colonies, which stained positive for CD133 and CD31. Furthermore, DiI-stained BMDPC were demonstrated to home to injured lung tissue. Rats treated with BMDPC showed significantly reduced histopathological changes, a reduced expression of ICAM-1 and VCAM-1 by the lung tissue, an inhibition of proinflammatory cytokine synthesis, a reduced weight loss and a reduced mortality (p < 0.03) compared to rats treated with LPS alone. Conclusions These findings suggest that the application of exogenous BMDPC can attenuate inflammation in LPS-induced ARDS and thereby reduce the severity of septic organ damage. Cell therapy strategies using adult stem cells might therefore become a novel and alternative option in ARDS therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grietje Beck
- Department for Anaesthesiology and Intensive Care Medicine, Dr, Horst-Schmidt Clinic, Wiesbaden, Germany.
| |
Collapse
|
17
|
Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012. Ann Am Thorac Soc 2014; 10:S45-97. [PMID: 23869446 DOI: 10.1513/annalsats.201304-090aw] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A conference, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012.
Collapse
|
18
|
Zhu YG, Hao Q, Monsel A, Feng XM, Lee JW. Adult stem cells for acute lung injury: remaining questions and concerns. Respirology 2014; 18:744-56. [PMID: 23578018 DOI: 10.1111/resp.12093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome remains a major cause of morbidity and mortality in hospitalized patients. The pathophysiology of ALI involves complex interactions between the inciting event, such as pneumonia, sepsis or aspiration, and the host immune response resulting in lung protein permeability, impaired resolution of pulmonary oedema, an intense inflammatory response in the injured alveolus and hypoxemia. In multiple preclinical studies, adult stem cells have been shown to be therapeutic due to both the ability to mitigate injury and inflammation through paracrine mechanisms and perhaps to regenerate tissue by virtue of their multi-potency. These characteristics have stimulated intensive research efforts to explore the possibility of using stem or progenitor cells for the treatment of lung injury. A variety of stem or progenitor cells have been isolated, characterized and tested experimentally in preclinical animal models of ALI. However, questions remain concerning the optimal dose, route and the adult stem or progenitor cell to use. Here, the current mechanisms underlying the therapeutic effect of stem cells in ALI as well as the questions that will arise as clinical trials for ALI are planned are reviewed.
Collapse
Affiliation(s)
- Ying-Gang Zhu
- Department of Pulmonary Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
19
|
Li H, Qiang Y, Wang L, Wang G, Yi J, Jing H, Wu H. Repair of lipopolysaccharide-induced acute lung injury in mice by endothelial progenitor cells, alone and in combination with simvastatin. Chest 2014; 144:876-886. [PMID: 23539119 DOI: 10.1378/chest.12-2429] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are involved in endothelium repair of acute lung injury (ALI). Numerous studies have demonstrated that statins can promote EPC function in vitro and in vivo; therefore, the purpose of this study was to determine whether simvastatin enhances the function of EPCs participating in the repair of ALI. METHODS BALB/C mice were initially pretreated with simvastatin by intraperitoneal administration 24 h before, and again at the time of, intratracheal instillation of lipopolysaccharide (LPS) and subsequently treated with EPCs by i.v. transplantation 2 h later. The effects of capillary permeability, endothelium repair, and inflammatory cytokines were measured. RESULTS This study revealed that both simvastatin administration and EPC transplantation can reduce the severity of LPS-induced ALI in mice, and the effect can be further improved by combining the two therapies. CONCLUSIONS The administration of simvastatin and EPC transplantation can reduce the severity of LPS-induced ALI in mice, and improvement is moderately enhanced in some respects when EPC transplantation is combined with simvastatin administration. The beneficial role of simvastatin on EPCs may be a component of its pleiotropic effects. Although the exact mechanism remains unknown, the combined administration of simvastatin and EPC transplantation may be a potentially important, cell-based, inflammation-mediated therapy for patients with ALI/ARDS.
Collapse
Affiliation(s)
- Hao Li
- Department of Cardiothoracic Surgery, Jinling Hospital, Clinical Medicine School of Nanjing University, Nanjing
| | - Yong Qiang
- Department of Cardiothoracic Surgery, Jinling Hospital, Clinical Medicine School of Nanjing University, Nanjing
| | - Lian Wang
- Department of Cardiothoracic Surgery, Jinling Hospital, Clinical Medicine School of Nanjing University, Nanjing
| | - Gaoming Wang
- Department of Cardiothoracic Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Jun Yi
- Department of Cardiothoracic Surgery, Jinling Hospital, Clinical Medicine School of Nanjing University, Nanjing
| | - Hua Jing
- Department of Cardiothoracic Surgery, Jinling Hospital, Clinical Medicine School of Nanjing University, Nanjing
| | - Haiwei Wu
- Department of Cardiothoracic Surgery, Jinling Hospital, Clinical Medicine School of Nanjing University, Nanjing.
| |
Collapse
|
20
|
Endothelial progenitor cells: the promise of cell-based therapies for acute lung injury. Inflamm Res 2012; 62:3-8. [PMID: 23138575 DOI: 10.1007/s00011-012-0570-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 10/03/2012] [Accepted: 10/22/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are defined as a special type of stem cell that have been found to directly incorporate into injured vessels and that participate in angiogenesis and reconstruction by differentiation into endothelial cells. EPCs are widely used to therapeutically treat cardiovascular disease, limb ischemia and vascular repair. However, the role of EPCs in inflammatory diseases, especially in lung injury, is less studied. OBJECTIVE To investigate the application of EPCs to vascular repair, and the role of EPCs in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). METHODS A computer-based online search was performed in the PubMed database and Web of Science database for articles published, concerning EPCs, angiogenesis, ALI/ARDS and stem cell transplantation CONCLUSION EPCs have a therapeutic potential for vascular regeneration and may emerge as novel strategy for the diseases that are associated with ALI/ARDS.
Collapse
|
21
|
O'Reilly M, Thébaud B. Cell-based strategies to reconstitute lung function in infants with severe bronchopulmonary dysplasia. Clin Perinatol 2012; 39:703-25. [PMID: 22954277 PMCID: PMC7112346 DOI: 10.1016/j.clp.2012.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Recent advances in our understanding of stem/progenitor cells and their potential to repair damaged organs offer the possibility of cell-based treatments for neonatal lung injury. This review summarizes basic concepts of stem/progenitor cell biology and discusses the recent advances and challenges of cell-based therapies for lung diseases, with a particular focus on bronchopulmonary dysplasia (BPD), a form of chronic lung disease that primarily affects very preterm infants. Despite advances in perinatal care, BPD still remains the most common complication of extreme prematurity, and there is no specific treatment.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Pediatrics, Women and Children Health Research Institute, University of Alberta, 87 Avenue, T6G 1C9, Edmonton, Alberta, Canada
| | - Bernard Thébaud
- Department of Pediatrics, Women and Children Health Research Institute, University of Alberta, 87 Avenue, T6G 1C9, Edmonton, Alberta, Canada,Department of Pediatrics, Cardiovascular Research Center, University of Alberta, 87 Avenue, T6G 2S2, Edmonton, Alberta, Canada,Department of Physiology, University of Alberta, 87 Avenue, T6G 2H7, Edmonton, Alberta, Canada,Corresponding author. University of Alberta, 3020 Katz Centre, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|