1
|
Vithalkar MP, Sandra KS, Bharath HB, Krishnaprasad B, Fayaz SM, Sathyanarayana B, Nayak Y. Network Pharmacology-driven therapeutic interventions for Interstitial Lung Diseases using Traditional medicines: A Narrative Review. Int Immunopharmacol 2025; 147:113979. [PMID: 39746273 DOI: 10.1016/j.intimp.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
This review explores the progressive domain of network pharmacology and its potential to revolutionize therapeutic approaches for Interstitial Lung Diseases (ILDs), a collective term encompassing Interstitial Pneumonia, Pneumoconiosis, Connective Tissue Disease-related ILDs, and Sarcoidosis. The exploration focuses on the profound legacy of traditional medicines, particularly Ayurveda and Traditional Chinese Medicines (TCM), and their largely unexplored capacity in ILD treatment. These ancient healing systems, characterized by their holistic methodologies and multifaceted treatment modalities, offer a promising foundation for discovering innovative therapeutic strategies. Moreover, the review underscores the amalgamation of artificial intelligence (AI) and machine learning (ML) methodologies with bioinformatics, creating a computational synergy capable of deciphering the intricate biological networks associated with ILDs. Network pharmacology has tailored the hypothesis from the conventional "one target, one drug" towards a "network target, multi-component therapeutics" approach. The fusion of traditional literature and computational technology can unveil novel drugs, targets, and pathways, augmenting effective therapies and diminishing adverse effects related to current medications. In conclusion, this review provides a comprehensive exposition of how Network Pharmacology tools can leverage the insights of Ayurveda and TCM to craft efficacious therapeutic solutions for ILDs. It sets the stage for future investigations in this captivating interdisciplinary domain, validating the use of traditional medicines worldwide.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - B Krishnaprasad
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - B Sathyanarayana
- Muniyal Institute of Ayurveda Medical Sciences, Manipal, Karnataka 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
2
|
Sababathy M, Ramanathan G, Ganesan S, Sababathy S, Yasmin A, Ramasamy R, Foo J, Looi Q, Nur-Fazila S. Multipotent mesenchymal stromal/stem cell-based therapies for acute respiratory distress syndrome: current progress, challenges, and future frontiers. Braz J Med Biol Res 2024; 57:e13219. [PMID: 39417447 PMCID: PMC11484355 DOI: 10.1590/1414-431x2024e13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical, life-threatening condition marked by severe inflammation and impaired lung function. Mesenchymal stromal/stem cells (MSCs) present a promising therapeutic avenue due to their immunomodulatory, anti-inflammatory, and regenerative capabilities. This review comprehensively evaluates MSC-based strategies for ARDS treatment, including direct administration, tissue engineering, extracellular vesicles (EVs), nanoparticles, natural products, artificial intelligence (AI), gene modification, and MSC preconditioning. Direct MSC administration has demonstrated therapeutic potential but necessitates optimization to overcome challenges related to effective cell delivery, homing, and integration into damaged lung tissue. Tissue engineering methods, such as 3D-printed scaffolds and MSC sheets, enhance MSC survival and functionality within lung tissue. EVs and MSC-derived nanoparticles offer scalable and safer alternatives to cell-based therapies. Likewise, natural products and bioactive compounds derived from plants can augment MSC function and resilience, offering complementary strategies to enhance therapeutic outcomes. In addition, AI technologies could aid in optimizing MSC delivery and dosing, and gene editing tools like CRISPR/Cas9 allow precise modification of MSCs to enhance their therapeutic properties and target specific ARDS mechanisms. Preconditioning MSCs with hypoxia, growth factors, or pharmacological agents further enhances their therapeutic potential. While MSC therapies hold significant promise for ARDS, extensive research and clinical trials are essential to determine optimal protocols and ensure long-term safety and effectiveness.
Collapse
Affiliation(s)
- M. Sababathy
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - G. Ramanathan
- Faculty of Computer Science and Information Technology, University Malaya, Kuala Lumpur, Malaysia
| | - S. Ganesan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - S. Sababathy
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Sungai Besi, Kuala Lumpur, Malaysia
| | - A.R. Yasmin
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - R. Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - J.B. Foo
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Q.H. Looi
- My Cytohealth Sdn. Bhd., Bandar Seri Petaling, Kuala Lumpur, Malaysia
| | - S.H. Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Zhang J, Ma B. Alpinetin alleviates LPS-induced lung epithelial cell injury by inhibiting p38 and ERK1/2 signaling via aquaporin-1. Tissue Cell 2024; 87:102305. [PMID: 38217934 DOI: 10.1016/j.tice.2024.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Alpinetin has been reported to play a protective role in lung diseases, while its special mechanisms remain indistinct. In this study, acute lung injury (ALI) model was constructed by inducing MLE-12 cells with lipopolysaccharide (LPS). Cell activity together with apoptosis was judged employing cell counting kit-8 (CCK-8), flow cytometry along with western blot. Oxidative stress levels were measured by dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining and corresponding kits. In addition, enzyme-linked immunosorbent assay (ELISA) was to examine the levels of inflammatory factors. The protein expressions of aquaporin-1 (AQP1), p38 and extracellular signal-regulated kinase (ERK) 1/2 pathway were estimated utilizing western blot. The data showed that alpinetin increased the viability, reduced the apoptosis, oxidative stress and inflammation and inactivated p38 and ERK1/2 signaling in LPS-induced MLE-12 cells. Moreover, alpinetin also increased AQP1 expression and AQP1 knockdown reversed the impacts of alpinetin on LPS-induced MLE-12 cells. Additionally, AQP1 agonist AqF026 also exerted anti-apoptotic and anti-inflammatory activities in LPS-treated MLE-12 cells. Evidently, alpinetin may exert its protective role in LPS-induced ALI by inactivation of p38 and ERK1/2 signaling through regulating AQP1.
Collapse
Affiliation(s)
- Junjie Zhang
- Cath Lab, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bin Ma
- Intensive Care Unit, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201599, China.
| |
Collapse
|
4
|
Li J, Zhao R, Miao P, Xu F, Chen J, Jiang X, Hui Z, Wang L, Bai R. Discovery of anti-inflammatory natural flavonoids: Diverse scaffolds and promising leads for drug discovery. Eur J Med Chem 2023; 260:115791. [PMID: 37683361 DOI: 10.1016/j.ejmech.2023.115791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Natural products have been utilized for medicinal purposes for millennia, endowing them with a rich source of chemical scaffolds and pharmacological leads for drug discovery. Among the vast array of natural products, flavonoids represent a prominent class, renowned for their diverse biological activities and promising therapeutic advantages. Notably, their anti-inflammatory properties have positioned them as promising lead compounds for developing novel drugs combating various inflammatory diseases. This review presents a comprehensive overview of flavonoids, highlighting their manifold anti-inflammatory activities and elucidating the underlying pathways in mediating inflammation. Furthermore, this review encompasses systematical classification of flavonoids, related anti-inflammatory targets, involved in vitro and in vivo test models, and detailed statistical analysis. We hope this review will provide researchers engaged in active natural products and anti-inflammatory drug discovery with practical information and potential leads.
Collapse
Affiliation(s)
- Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Peiran Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fengfeng Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
5
|
Zhu MZ, Yang MF, Song Y, Xu HM, Xu J, Yue NN, Zhang Y, Tian CM, Shi RY, Liang YJ, Yao J, Wang LS, Nie YQ, Li DF. Exploring the efficacy of herbal medicinal products as oral therapy for inflammatory bowel disease. Biomed Pharmacother 2023; 165:115266. [PMID: 37541177 DOI: 10.1016/j.biopha.2023.115266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) encompasses a collection of idiopathic diseases characterized by chronic inflammation in the gastrointestinal (GI) tract. Patients diagnosed with IBD often experience necessitate long-term pharmacological interventions. Among the multitude of administration routes available for treating IBD, oral administration has gained significant popularity owing to its convenience and widespread utilization. In recent years, there has been extensive evaluation of the efficacy of orally administered herbal medicinal products and their extracts as a means of treating IBD. Consequently, substantial evidence has emerged, supporting their effectiveness in IBD treatment. This review aimed to provide a comprehensive summary of recent studies evaluating the effects of herbal medicinal products in the treatment of IBD. We delved into the regulatory role of these products in modulating immunity and maintaining the integrity of the intestinal epithelial barrier. Additionally, we examined their impact on antioxidant activity, anti-inflammatory properties, and the modulation of intestinal flora. By exploring these aspects, we aimed to emphasize the significant advantages associated with the use of oral herbal medicinal products in the treatment of IBD. Of particular note, this review introduced the concept of herbal plant-derived exosome-like nanoparticles (PDENs) as the active ingredient in herbal medicinal products for the treatment of IBD. The inclusion of PDENs offers distinct advantages, including enhanced tissue penetration and improved physical and chemical stability. These unique attributes not only demonstrate the potential of PDENs but also pave the way for the modernization of herbal medicinal products in IBD treatment.
Collapse
Affiliation(s)
- Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yang Song
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
6
|
Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 2023; 14:1217165. [PMID: 37701897 PMCID: PMC10493311 DOI: 10.3389/fendo.2023.1217165] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Wang MC. Natural plant resource flavonoids as potential therapeutic drugs for pulmonary fibrosis. Heliyon 2023; 9:e19308. [PMID: 37664726 PMCID: PMC10470008 DOI: 10.1016/j.heliyon.2023.e19308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Pulmonary fibrosis is an enduring and advancing pulmonary interstitial disease caused by multiple factors that ultimately lead to structural changes in normal lung tissue. Currently, pulmonary fibrosis is a global disease with a high degree of heterogeneity and mortality rate. Nitidine and pirfenidone have been approved for treating pulmonary fibrosis, and the quest for effective therapeutic drugs remains unabated. In recent years, the anti-pulmonary fibrosis properties of natural flavonoids have garnered heightened attention, although further research is needed. In this paper, the resources, structural characteristics, anti-pulmonary fibrosis properties and mechanisms of natural flavonoids were reviewed. We hope to provide potential opportunities for the application of flavonoids in the fight against pulmonary fibrosis.
Collapse
Affiliation(s)
- Meng-Chuan Wang
- Department of Pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| |
Collapse
|
8
|
Janpaijit S, Sillapachaiyaporn C, Theerasri A, Charoenkiatkul S, Sukprasansap M, Tencomnao T. Cleistocalyx nervosum var. paniala Berry Seed Protects against TNF-α-Stimulated Neuroinflammation by Inducing HO-1 and Suppressing NF-κB Mechanism in BV-2 Microglial Cells. Molecules 2023; 28:molecules28073057. [PMID: 37049819 PMCID: PMC10095692 DOI: 10.3390/molecules28073057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Sustained inflammatory responses have been implicated in various neurodegenerative diseases (NDDs). Cleistocalyx nervosum var. paniala (CN), an indigenous berry, has been reported to exhibit several health-beneficial properties. However, investigation of CN seeds is still limited. The objective of this study was to evaluate the protective effects of ethanolic seed extract (CNSE) and mechanisms in BV-2 mouse microglial cells using an inflammatory stimulus, TNF-α. Using LC-MS, ferulic acid, aurentiacin, brassitin, ellagic acid, and alpinetin were found in CNSE. Firstly, we examined molecular docking to elucidate its bioactive components on inflammation-related mechanisms. The results revealed that alpinetin, aurentiacin, and ellagic acid inhibited the NF-κB activation and iNOS function, while alpinetin and aurentiacin only suppressed the COX-2 function. Our cell-based investigation exhibited that cells pretreated with CNSE (5, 10, and 25 μg/mL) reduced the number of spindle cells, which was highly observed in TNF-α treatment (10 ng/mL). CNSE also obstructed TNF-α, IL-1β, and IL-6 mRNA levels and repressed the TNF-α and IL-6 releases in a culture medium of BV-2 cells. Remarkably, CNSE decreased the phosphorylated forms of ERK, p38MAPK, p65, and IκB-α related to the inhibition of NF-κB binding activity. CNSE obviously induced HO-1 protein expression. Our findings suggest that CNSE offers good potential for preventing inflammatory-related NDDs.
Collapse
Affiliation(s)
- Sakawrat Janpaijit
- Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Theerasri
- Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Salaya Campus, Mahidol University, Nakhonpathom 73170, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Salaya Campus, Mahidol University, Nakhonpathom 73170, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-28002380 (M.S.); +66-22181533 (T.T.)
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-28002380 (M.S.); +66-22181533 (T.T.)
| |
Collapse
|
9
|
Khanfar MA, Salaas N, Abumostafa R. Discovery of natural-derived M pro inhibitors as therapeutic candidates for COVID-19: Structure-based pharmacophore screening combined with QSAR analysis. Mol Inform 2023; 42:e2200198. [PMID: 36762567 DOI: 10.1002/minf.202200198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
The main protease (Mpro ) is an essential enzyme for the life cycle of SARS-CoV-2 and a validated target for treatment of COVID-19 infection. Structure-based pharmacophore modeling combined with QSAR calculations were employed to identify new chemical scaffolds of Mpro inhibitors from natural products repository. Hundreds of pharmacophore models were manually built from their corresponding X-ray crystallographic structures. A pharmacophore model that was validated by receiver operating characteristic (ROC) curve analysis and selected using the statistically optimum QSAR equation was implemented as a 3D-search tool to mine AnalytiCon Discovery database of natural products. Captured hits that showed the highest predicted inhibitory activities were bioassayed. Three active Mpro inhibitors (pseurotin A, lactupicrin, and alpinetin) were successfully identified with IC50 values in low micromolar range.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, P. O. Box 50927, Riyadh, 11533, Saudi Arabia.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman, 11942, Jordan
| | - Nada Salaas
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, P. O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Reem Abumostafa
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, P. O. Box 50927, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
10
|
Zeng C, Wang S, Chen F, Wang Z, Li J, Xie Z, Ma M, Wang P, Shen H, Wu Y. Alpinetin alleviates osteoporosis by promoting osteogenic differentiation in BMSCs by triggering autophagy via PKA/mTOR/ULK1 signaling. Phytother Res 2023; 37:252-270. [PMID: 36104214 PMCID: PMC10087978 DOI: 10.1002/ptr.7610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Osteoporosis, a systemic bone disease that is characterized by a reduction in bone mass and destruction of bone microstructure, is becoming a serious problem worldwide. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into bone-forming osteoblasts, and play an important role in maintaining homeostasis of bone metabolism, thus being a potential therapeutic target for osteoporosis. Although the phytochemical alpinetin (APT) has been reported to possess a variety of pharmacological activities, it is still unclear whether APT can influence the osteogenic differentiation of on BMSCs and if it can improve osteoporosis. In this study, we found that APT treatment was able to enhance osteogenic differentiation levels of human BMSCs in vitro and mouse ones in vivo as revealed by multiple osteogenic markers including increased alkaline phosphatase activity and osteocalcin expression. Mechanistically, the protein kinase A (PKA)/mTOR/ULK1 signaling was involved in the action of APT to enhance the osteogenic differentiation of BMSCs. In addition, oral administration of APT significantly mitigated the bone loss in a dexamethasone-induced mouse model of osteoporosis through strengthening PKA signaling and autophagy. Altogether, these data demonstrate that APT promotes osteogenic differentiation in BMSCs by augmenting the PKA/mTOR/ULK1 autophagy signaling, highlighting its potential therapeutic application for treating osteoporotic diseases.
Collapse
Affiliation(s)
- Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jinteng Li
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Mengjun Ma
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| |
Collapse
|
11
|
Wang J, Liu YM, Hu J, Chen C. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease. Front Pharmacol 2023; 14:1109576. [PMID: 36895942 PMCID: PMC9989041 DOI: 10.3389/fphar.2023.1109576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|
12
|
Wikan N, Potikanond S, Hankittichai P, Thaklaewphan P, Monkaew S, Smith DR, Nimlamool W. Alpinetin Suppresses Zika Virus-Induced Interleukin-1β Production and Secretion in Human Macrophages. Pharmaceutics 2022; 14:pharmaceutics14122800. [PMID: 36559293 PMCID: PMC9782830 DOI: 10.3390/pharmaceutics14122800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection has been recognized to cause adverse sequelae in the developing fetus. Specially, this virus activates the excessive release of IL-1β causing inflammation and altered physiological functions in multiple organs. Although many attempts have been invested to develop vaccine, antiviral, and antibody therapies, development of agents focusing on limiting ZIKV-induced IL-1β release have not gained much attention. We aimed to study the effects of alpinetin (AP) on IL-1β production in human macrophage upon exposure to ZIKV. Our study demonstrated that ZIKV stimulated IL-1β release in the culture supernatant of ZIKV-infected cells, and AP could effectively reduce the level of this cytokine. AP exhibited no virucidal activities against ZIKV nor caused alteration in viral production. Instead, AP greatly inhibited intracellular IL-1β synthesis. Surprisingly, this compound did not inhibit ZIKV-induced activation of NF-κB and its nuclear translocation. However, AP could significantly inhibit ZIKV-induced p38 MAPK activation without affecting the phosphorylation status of ERK1/2 and JNK. These observations suggest the possibility that AP may reduce IL-1β production, in part, through suppressing p38 MAPK signaling. Our current study sheds light on the possibility of using AP as an alternative agent for treating complications caused by ZIKV infection-induced IL-1β secretion.
Collapse
Affiliation(s)
- Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sathit Monkaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: (D.R.S.); (W.N.); Tel.: +66-53-934597 (W.N.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (D.R.S.); (W.N.); Tel.: +66-53-934597 (W.N.)
| |
Collapse
|
13
|
Wei L, Chen W, Huang L, Wang H, Su Y, Liang J, Lian H, Xu J, Zhao J, Liu Q. Alpinetin ameliorates bone loss in LPS-induced inflammation osteolysis via ROS mediated P38/PI3K signaling pathway. Pharmacol Res 2022; 184:106400. [PMID: 35988868 DOI: 10.1016/j.phrs.2022.106400] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Bone loss occurs in several inflammatory diseases because of chronic persistent inflammation that activates osteoclasts (OCs) to increase bone resorption. Currently available antiresorptive drugs have severe side effects or contraindications. Herein, we explored the effects and mechanism of Alpinetin (Alp) on receptor activator of nuclear factor κB ligand (RANKL)-mediated OCs differentiation, function, and in inflammatory osteolysis of mice. METHOD Primary mouse bone marrow-derived macrophages (BMMs) induced by RANKL and macrophage colony-stimulating factor (M-CSF) were utilized to test the impact of Alp on OCs differentiation, function, and intracellular reactive oxygen species (ROS) production, respectively. Expression of oxidant stress relevant factors and OCs specific genes were assessed via real-time quantitative PCR. Further, oxidative stress-related factors, NF-κB, MAPK, PI3K/AKT/GSK3-β, and NFATc1 pathways were examined via Western blot. Finally, LPS-induced mouse calvarial osteolysis was used to investigate the effect of Alp on inflammatory osteolysis in vivo. RESULT Alp suppressed OCs differentiation and resorption function, and down-regulated the ROS production. Alp inhibited IL-1β, TNF-α and osteoclast-specific gene transcription. It also blocked the gene and protein expression of Nox1 and Keap1, but enhanced Nrf2, CAT, and HO-1 protein levels. Additionally, Alp suppressed the phosphorylation of PI3K and P38, and restrained the expression of osteoclast-specific gene Nfatc1 and its auto-amplification, hence minimizing LPS-induced osteolysis in mice. CONCLUSION Alp is a novel candidate or therapeutics for the osteoclast-associated inflammatory osteolytic ailment.
Collapse
Affiliation(s)
- Linhua Wei
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Orthopaedics, Affiliated Infectious Diseases Hospital of Guangxi Medical University, The Fourth People's Hospital of Nanning, Nanning, Guangxi, 530021, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Linke Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Orthopaedics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Hui Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiamin Liang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
14
|
An W, Zhang Y, Lai H, Zhang Y, Zhang H, Zhao G, Liu M, Li Y, Lin X, Cao S. Alpinia katsumadai Hayata induces growth inhibition and autophagy‑related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells. Oncol Rep 2022; 48:142. [PMID: 35730618 PMCID: PMC9245070 DOI: 10.3892/or.2022.8353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Alpinia katsumadai Hayata (AKH), a widely used traditional Chinese medicine, exerts various biological functions, including anti-inflammatory, antioxidant, anti-microbial and anti-asthmatic effects. However, studies on its anticancer activity and associated mechanisms are limited. The present study investigated the effects of ethanol extract from AKH on the viability of various human cancer and normal liver LX-2 cells using Cell Counting Kit-8 assay. Apoptosis was detected by Hoechst 33342/PI staining and Annexin-V-FITC/PI double staining. Autophagy was examined by Ad-GFP-LC3B transfection. The association between AKH-induced autophagy and apoptosis was investigated by pre-treatment of the cells with the autophagy inhibitors, 3-methyladenine (3MA) and bafilomycin A1 (Baf-A1), followed by treatment with AKH. The expression levels of cleaved poly(ADP-ribose) polymerase (PARP), caspase-8, caspase-3, caspase-9, phosphorylated (p-)AMP-activated protein kinase (AMPK), Akt, mTOR and p70S6K were examined using western blot analysis. The in vivo antitumor activity of AKH was investigated in nude mice bearing A549 lung cancer xenografts. The components of AKH were detected by liquid chromatography mass spectrometry-ion trap-time-of-flight mass spectrometry. The results revealed that AKH significantly inhibited the proliferation of various cancer cells with the half maximal inhibitory concentration (IC50) values of 203–284 µg/ml; however, its inhibitory effect was much less prominent against normal liver LX-2 cells with an IC50 value of 395 µg/ml. AKH markedly induced apoptosis and autophagy, and upregulated the protein expression of cleaved-caspase-3, caspase-8, caspase-9 and cleaved PARP in a concentration-dependent manner. Of note, the autophagy inhibitors (3MA and Baf-A1) significantly attenuated its pro-apoptotic effects on human pancreatic cancer Panc-28 and lung cancer A549 cells. Furthermore, AKH significantly increased the levels of p-AMPK, and decreased those of p-Akt, p-mTOR and p-p70S6K in Panc-28 and A549 cells. AKH markedly inhibited the growth of A549 tumor xenografts in vivo. In addition, a total of nine compounds were detected from AKH. The present study demonstrates that AKH markedly inhibits the growth and induces autophagy-related apoptosis in cancer cells by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways. AKH and/or its active fractions may thus have potential to be developed as novel anticancer agents for clinical use.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuxi Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Honglin Lai
- Department of Pharmacy, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yangyang Zhang
- Department of Pharmacy, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| | - Hongmei Zhang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276801, P.R. China
| | - Ge Zhao
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Li
- Department of International Trade, School of International Traded and Economics, University of International Business and Economics, Beijing 100029, P.R. China
| | - Xiukun Lin
- Delisi Group Co. Ltd., Zhucheng, Shandong 262200, P.R. China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
15
|
Galli C, Sala R, Colangelo MT, Guizzardi S. Tamquam alter idem: formal similarities in a subset of reports on anti-inflammatory compounds in the years 2008–2019. Scientometrics 2022. [DOI: 10.1007/s11192-022-04434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractA literature search on the in vitro testing of anti-inflammatory compounds of natural origin revealed a considerable number of studies adopting a similar template for data reporting in the years up to 2019. Sixty-five such reports appear to have been published between the years 2008 and 2019. Interestingly, this format template was clearly recognizable by a few hallmarks, such as a precise way of plotting cell viability data, extremely consistent endpoints, and the way these were graphically represented. In some instances the similarities extended to some textual features, such as in the case of figure legends. The similarity was so high that chance can be excluded and these studies can be safely assumed to have intentionally followed a template. By 2020, however, no new reports following this format have been published. Although a consistent and reproducible formatting for data reporting may improve report readability, this phenomenon should also be closely scrutinized to assess the rationale why it occurred, the validity of the endpoints that were chosen and why it was then abandoned. The present report reviewed the mean features of this format, traced its origin and its evolution over time, while discussing the limitations of this model.
Collapse
|
16
|
Zhao G, Tong Y, Luan F, Zhu W, Zhan C, Qin T, An W, Zeng N. Alpinetin: A Review of Its Pharmacology and Pharmacokinetics. Front Pharmacol 2022; 13:814370. [PMID: 35185569 PMCID: PMC8854656 DOI: 10.3389/fphar.2022.814370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Flavonoids isolated from medicinal herbs have been utilized as valuable health-care agents due to their virous biological applications. Alpinetin is a natural flavonoid that emerges in many widely used medicinal plants, and has been frequently applied in Chinese patent drugs. Accumulated evidence has demonstrated that alpinetin possesses a broad range of pharmacological activities such as antitumor, antiinflammation, hepatoprotective, cardiovascular protective, lung protective, antibacterial, antiviral, neuroprotective, and other properties through regulating multiple signaling pathways with low systemic toxicity. However, pharmacokinetic studies have documented that alpinetin may have poor oral bioavailability correlated to its extensive glucuronidation. Currently, the reported pharmacological properties and pharmacokinetics profiles of alpinetin are rare to be scientifically reviewed. In this article, we aimed to highlight the mechanisms of action of alpinetin in various diseases to strongly support its curative potentials for prospective clinical applications. We also summarized the pharmacokinetics properties and proposed some viable strategies to convey an appreciable reference for future advances of alpinetin in drug development.
Collapse
|
17
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
18
|
Alpinetin Protects Chondrocytes and Exhibits Anti-Inflammatory Effects via the NF-κB/ERK Pathway for Alleviating Osteoarthritis. Inflammation 2021; 43:1742-1750. [PMID: 32474881 DOI: 10.1007/s10753-020-01248-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease which is greatly affected by the inflammatory response triggered by the NF-κB signaling pathway. Alpinetin (APT) is a natural flavonoid compound, which has been reported to have many important biological activities such as antibacterial, antitumor, and anti-inflammatory. However, the action of its effect on chondrocytes in OA has yet to be elucidated. In this study, we investigated APT's anti-inflammatory action. The effects of APT on cell viability and cytotoxicity of rat chondrocytes was investigated by CCK8. Western blotting, qRT-PCR, and immunofluorescent staining were used to elucidate the molecular mechanisms and signaling pathways of APT mediating anti-inflammatory effects on chondrocytes. An OA model was induced by destabilization of the medial meniscus (DMM) in rats, then APT was injected into the knee articular cavity to examine its anti-inflammatory effects in vivo. These results showed that APT could reduce the TNF-α-induced increase of MMP-13 and ADAMTS-5 and decrease of COL2A1 levels. APT antagonized TNF-α-induced down-regulation of BCL-2 and CDK1. Further studies have shown that APT simultaneously repressed cell nucleus translocation of p65 and the phosphorylation of IκB and activated the phosphorylation of ERK. In vivo, APT suppressed cartilage matrix degradation. In conclusion, APT appears to favorably modulate anti-inflammatory effects in chondrocytes making it a promising compound for OA treatment. Graphical Abstract Inhibitory effects of Alpinetin on TNF-α-induced NF-κB activation resulted in destruction of cartilage in rat OA chondrocytes in vitro. The TNF-α receptor were stimulated by TNF-α, activating the cytoplasmic IκBα kinases(IKKS), then IKKs will be phosphorylated, and subsequently degraded by the ubiquitin-proteasome system. NF-κB transfer to the nucleus and bind various NF-κB regulates the NF-κB recognition site in the promoter region. Which triggers the gene expression of pro-inflammatory and pro-apoptotic. However, Alpinetin could inhibits the NF-κB signaling pathway in different ways: APT inhibits IκBα phosphorylation, preventing phosphorylated ubiquitination of IκBα further. Moreover, APT blocks translocation of the activated NF-κB to the nucleus, to protect the cartilage tissue from damage.
Collapse
|
19
|
Silva LM, Marconato DG, Nascimento da Silva MP, Barbosa Raposo NR, Faria Silva Facchini GD, Macedo GC, Teixeira FDS, Barbosa da Silveira Salvadori MC, Faria Pinto PD, Moraes JD, Pittella F, Da Silva Filho AA. Licochalcone A-loaded solid lipid nanoparticles improve antischistosomal activity in vitro and in vivo. Nanomedicine (Lond) 2021; 16:1641-1655. [PMID: 34256609 DOI: 10.2217/nnm-2021-0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: To isolate licochalcone A (LicoA) from licorice, prepare LicoA-loaded solid lipid nanoparticles (L-SLNs) and evaluate the L-SLNs in vitro and in vivo against Schistosoma mansoni. Materials & methods: LicoA was obtained by chromatographic fractionation and encapsulated in SLNs by a modified high shear homogenization method. Results: L-SLNs showed high encapsulation efficiency, with satisfactory particle size, polydispersity index and Zeta potential. Transmission electron microscopy revealed that L-SLNs were rounded and homogenously distributed. Toxicity studies revealed that SLNs decreased the hemolytic and cytotoxic properties of LicoA. Treatment with L-SLNs showed in vivo efficacy against S. mansoni. Conclusion: L-SLNs are efficient in reducing worm burden and SLNs may be a promising delivery system for LicoA to treat S. mansoni infections.
Collapse
Affiliation(s)
- Lívia Mara Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Danielle Gomes Marconato
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | | | - Nádia Rezende Barbosa Raposo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Gabriela de Faria Silva Facchini
- Department of Parasitology, Microbiology & Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Gilson Costa Macedo
- Department of Parasitology, Microbiology & Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | | | | | - Priscila de Faria Pinto
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, 07025-000, SP, Brazil
| | - Frederico Pittella
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| |
Collapse
|
20
|
Baier A, Szyszka R. Compounds from Natural Sources as Protein Kinase Inhibitors. Biomolecules 2020; 10:biom10111546. [PMID: 33198400 PMCID: PMC7698043 DOI: 10.3390/biom10111546] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The advantage of natural compounds is their lower number of side-effects when compared to most synthetic substances. Therefore, over the past several decades, the interest in naturally occurring compounds is increasing in the search for new potent drugs. Natural compounds are playing an important role as a starting point when developing new selective compounds against different diseases. Protein kinases play a huge role in several diseases, like cancers, neurodegenerative diseases, microbial infections, or inflammations. In this review, we give a comprehensive view of natural compounds, which are/were the parent compounds in the development of more potent substances using computational analysis and SAR studies.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Animal Physiology and Toxicology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Ryszard Szyszka
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
21
|
Wu D, Li S, Liu X, Xu J, Jiang A, Zhang Y, Liu Z, Wang J, Zhou E, Wei Z, Yang Z, Guo C. Alpinetin prevents inflammatory responses in OVA-induced allergic asthma through modulating PI3K/AKT/NF-κB and HO-1 signaling pathways in mice. Int Immunopharmacol 2020; 89:107073. [PMID: 33039967 DOI: 10.1016/j.intimp.2020.107073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Allergic asthma is the most common type of asthma which characterized by inflammatory responses of the airways. Alpinetin, a flavonoid compound derived from the ginger family of medicinal herbs, possesses various biological properties including anti-inflammatory, anti-oxidant and other medical effects. In this study, we aimed to evaluate the effects of alpinetin on OVA-induced allergic asthma, and further to examine its molecular mechanisms underlying these processes in vivo and in vitro. Mice were sensitized and challenged with OVA to build allergic asthma model in vivo. Bronchoalveolar lavage fluid (BALF) was collected for inflammatory cells analysis and lung tissues were examined for histopathological examination. The levels of IL-5, IL-13, IL-4, IgE, TNF-α, IL-6 and IL-1β were determined by the respective ELISA kits. The PI3K/AKT/NF-κB and HO-1 signaling pathways were examined by western blot analysis. The results showed that alpinetin significantly ameliorated OVA-induced pathologic changes of lungs, such as decreasing massive inflammatory cell infiltration and mucus hypersecretion, and reduced the number of inflammatory cells in BALF. Alpinetin also decreased the OVA-induced levels of IL-4, IL-5, IL-13 and IgE. Furthermore, alpinetin inhibited OVA-induced phosphorylation of p65, IκB, PI3K and AKT, and the activity of HO-1 in vivo. More importantly, these anti-inflammatory effects and molecular mechanisms of alpinetin has also been confirmed in LPS-stimulated RAW 264.7 macrophages in vitro. In conclusion, above results indicate that alpinetin exhibites a potent anti-inflammatory activity in allergic asthma through modulating PI3K/AKT/NF-κB and HO-1 signaling pathways, which would be used as a promising therapy agent for allergic asthma.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Shuangqiu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Aimin Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Yong Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Ziyi Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China; College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| | - Changmin Guo
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China.
| |
Collapse
|
22
|
Romerio A, Peri F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Front Immunol 2020; 11:1210. [PMID: 32765484 PMCID: PMC7381287 DOI: 10.3389/fimmu.2020.01210] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-Like Receptor 4 (TLR4) is one of the receptors of innate immunity. It is activated by Pathogen- and Damage-Associated Molecular Patterns (PAMPs and DAMPs) and triggers pro-inflammatory responses that belong to the repertoire of innate immune responses, consequently protecting against infectious challenges and boosting adaptive immunity. Mild TLR4 stimulation by non-toxic molecules resembling its natural agonist (lipid A) provided efficient vaccine adjuvants. The non-toxic TLR4 agonist monophosphoryl lipid A (MPLA) has been approved for clinical use. This suggests the development of other TLR4 agonists as adjuvants or drugs for cancer immunotherapy. TLR4 excessive activation by a Gram-negative bacteria lipopolysaccharide (LPS) leads to sepsis, while TLR4 stimulation by DAMPs is a common mechanism in several inflammatory and autoimmune diseases. TLR4 inhibition by small molecules and antibodies could therefore provide access to innovative therapeutics targeting sepsis as well as acute and chronic inflammations. The potential use of TLR4 antagonists as anti-inflammatory drugs with unique selectivity and a new mechanism of action compared to corticosteroids or other non-steroid anti-inflammatory drugs fueled the search for compounds of natural or synthetic origin able to block or inhibit TLR4 activation and signaling. The wide spectrum of clinical settings to which TLR4 inhibitors can be applied include autoimmune diseases (rheumatoid arthritis, inflammatory bowel diseases), vascular inflammation, neuroinflammations, and neurodegenerative diseases. The last advances (from 2017) in TLR4 activation or inhibition by small molecules (molecular weight <2 kDa) are reviewed here. Studies on pre-clinical validation of new chemical entities (drug hits) on cellular or animal models as well as new clinical studies on previously developed TLR4 modulators are reported. Innovative TLR4 modulators discovered by computer-assisted drug design and an artificial intelligence approach are described. Some "old" TLR4 agonists or antagonists such as MPLA or Eritoran are under study for repositioning in different pharmacological contexts. The mechanism of action of the molecules and the level of TLR4 involvement in their biological activity are critically discussed.
Collapse
Affiliation(s)
- Alessio Romerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
23
|
Zhang T, Guo S, Zhu X, Qiu J, Deng G, Qiu C. Alpinetin inhibits breast cancer growth by ROS/NF-κB/HIF-1α axis. J Cell Mol Med 2020; 24:8430-8440. [PMID: 32562470 PMCID: PMC7412407 DOI: 10.1111/jcmm.15371] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Alpinetin, the main active ingredient in the Chinese medicinal herb Alpinia katsumadai Hayata, has been found to have anticancer activity. However, the therapeutic efficacy of signalling cascades modulated by alpinetin remains unknown. Here, we showed that alpinetin provoked mitochondria‐associated apoptosis in a dose‐dependent manner in breast cancer cells. Mechanistic investigations revealed that alpinetin dampens hypoxia‐inducible factor‐1α (HIF‐1α) signalling due to a lack of NF‐κB activation through reduced mitochondrial reactive oxygen species (ROS) production, decreasing HIF‐1α transcription. In vivo, we also found alpinetin led to significant tumour regression by inhibiting NF‐κB pathway. Overall, our work uncovers a ROS/NF‐κB/HIF‐1α axis‐dependent mechanism underlying the anticancer effects of alpinetin and suggests that alpinetin could act as a novel therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxia Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Wang D, Hiebl V, Xu T, Ladurner A, Atanasov AG, Heiss EH, Dirsch VM. Impact of natural products on the cholesterol transporter ABCA1. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112444. [PMID: 31805338 DOI: 10.1016/j.jep.2019.112444] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In different countries and areas of the world, traditional medicine has been and is still used for the treatment of various disorders, including chest pain or liver complaints, of which we now know that they can be linked with altered lipid and cholesterol homeostasis. As ATP-binding cassette transporter A1 (ABCA1) plays an essential role in cholesterol metabolism, its modulation may be one of the molecular mechanisms responsible for the experienced benefit of traditional recipes. Intense research activity has been dedicated to the identification of natural products from traditional medicine that regulate ABCA1 expression. AIMS OF THE REVIEW This review surveys natural products, originating from ethnopharmacologically used plants, fungi or marine sources, which influence ABCA1 expression, providing a reference for future study. MATERIALS AND METHODS Information on regulation of ABCA1 expression by natural compounds from traditional medicine was extracted from ancient and modern books, materia medica, and electronic databases (PubMed, Google Scholar, Science Direct, and ResearchGate). RESULTS More than 60 natural compounds from traditional medicine, especially traditional Chinese medicine (TCM), are reported to regulate ABCA1 expression in different in vitro and in vivo models (such as cholesterol efflux and atherosclerotic animal models). These active compounds belong to the classes of polyketides, terpenoids, phenylpropanoids, tannins, alkaloids, steroids, amino acids and others. Several compounds appear very promising in vivo, which need to be further investigated in animal models of diseases related to ABCA1 or in clinical studies. CONCLUSION Natural products from traditional medicine constitute a large promising pool for compounds that regulate ABCA1 expression, and thus may prevent/treat diseases related to cholesterol metabolism, like atherosclerosis or Alzheimer's disease. In many cases, the molecular mechanisms of these natural products remain to be investigated.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Verena Hiebl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, 05-552, Jastrzębiec, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchevstr., 1113, Sofia, Bulgaria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Wang C, Li Q, Li T. Dioscin alleviates lipopolysaccharide-induced acute lung injury through suppression of TLR4 signaling pathways. Exp Lung Res 2020; 46:11-22. [PMID: 31931639 DOI: 10.1080/01902148.2020.1711830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aim: Acute lung injury (ALI) is a life-threatening inflammatory syndrome that lacks an effective therapy. Dioscin, a natural steroid saponin isolated from a variety of herbs, could serve as an anti-inflammatory agent, as suggested in previous reports. The purpose of this study was to explore the effects of dioscin on lipopolysaccharide (LPS)-induced ALI and validate the potential mechanisms.Materials and Methods: An ALI model was induced by intratracheal administration of LPS. Dioscin (20, 40, and 80 mg/kg) was administered intragastrically once daily for seven consecutive days prior to LPS challenge.Results: Our data revealed that dioscin significantly suppressed LPS-induced lung pathological changes, pulmonary capillary permeability, pulmonary edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity, and cytokine production, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and keratinocyte chemoattractant (KC). Moreover, dioscin inhibited LPS-induced nuclear factor-kappaB (NF-κB) activation as well as Toll-like receptor 4 (TLR4) expression.Conclusions: In brief, the results indicated that dioscin alleviates LPS-induced ALI through suppression of TLR4 signaling pathways.
Collapse
Affiliation(s)
- Chuntao Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingnian Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Guo Y, Chen Y, Liu H, Yan W. Alpinetin Inhibits Oral Squamous Cell Carcinoma Proliferation via miR-211-5p Upregulation and Notch Pathway Deactivation. Nutr Cancer 2019; 72:757-767. [PMID: 31403340 DOI: 10.1080/01635581.2019.1651878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: The effect of alpinetin (ALP) on miR-211-5p level and function in oral squamous cell carcinoma (OSCC) remains unclear.Materials and methods: Human OSCC cell lines (CAL-27 and TCA-8113) and a mouse xenograft model with subcutaneously injected TCA-8113 cells were used. Effect of ALP treatment on cell viability, cell cycle distributions, and p-p53, p21, c-PARP, cyclin D1, NICD, HES1, and miR-211-5p expression levels was analyzed. Influence of ALP on tumor volume and weight was determined.Results: ALP treatment (at doses 400 and 500 µM) significantly decreased the viability of CAL-27 and TCA-8113 cells (P < 0.05). It upregulated the number of cells in G1 phase and miR-211-5p expression, increased p-p53, p21, and c-PARP levels, and decreased cyclin D1 levels. Furthermore, miR-211-5p mimic treatment increased the number of cells in G1 phase, and p53, p21, and c-PARP levels, and decreased cyclin D1 levels. Contrasting effects were observed under anti-miR-211-5p treatment. ALP downregulated NICD and HES1, whereas anti-miR-211-5p increased NICD and HES1 expression. ALP effects were alleviated in both cell lines under Jagged-1 overexpression plasmid treatment. Finally, ALP inhibited tumor growth and increased miR-211-5p expression in vivo.Conclusion: ALP-induced miR-211-5p upregulation and Notch pathway deactivation may be involved in its anti-proliferative effects in OSCC.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yong Chen
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Hongli Liu
- Department of Stomatology, Cangzhou Medical College, Cangzhou, China
| | - Wei Yan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
27
|
Portincasa P, Calamita G. Phytocompounds modulating Aquaporins: Clinical benefits are anticipated. Food Chem 2019; 274:642-650. [PMID: 30372989 DOI: 10.1016/j.foodchem.2018.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022]
Abstract
A series of plant-derived bioactive compounds belonging to the class of polyphenols, terpenes and capsaicinoids, interact with important pathophysiological pathways at a molecular, cellular and systemic level. Mechanisms of action include altering cell growth and differentiation, apoptosis, autophagy, inflammation, redox balance and metabolic and energy homeostasis. These effects might also involve the expression and function of Aquaporins (AQPs), a family of membrane channel proteins, involved in several body functions. The ultimate translational beneficial effect of such phytocompounds on AQPs in health and disease is a matter of intensive research. Results might provide novel therapeutic approaches to a number of human diseases. Here, we give an updated overview of this fast growing and promising field, discussing a number of phytocompounds and their action on AQPs and related potential clinical achievements.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy.
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
28
|
Liu TG, Sha KH, Zhang LG, Liu XX, Yang F, Cheng JY. Protective effects of alpinetin on lipopolysaccharide/d-Galactosamine-induced liver injury through inhibiting inflammatory and oxidative responses. Microb Pathog 2019; 126:239-244. [DOI: 10.1016/j.micpath.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/06/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
|
29
|
Bi S, Sun X, Wang Y, Wu J, Zhou H. A sensitive resonance Rayleigh light scattering method for alpinetin using gold nanorods probes. LUMINESCENCE 2018; 33:1164-1170. [PMID: 30047614 DOI: 10.1002/bio.3531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/11/2022]
Abstract
A sensitive resonance Rayleigh light scattering (RLS) assay for alpinetin was developed based on alpinetin-modified gold nanorods (AuNRs). Alpinetin could interact with AuNRs and formed a new assembly by electrostatic attraction. In pH 7.4 Tris-HCl buffer solution, the assembly of alpinetin-AuNRs showed a sensitive RLS signal. Under optimum conditions, the magnitude of enhanced RLS intensity (ΔIRLS ) was proportional to the concentration of alpinetin over the range 0.027-3.24 μg ml-1 , with a detection limit of 1.79 ng ml-1 (by 3σ). The developed RLS method was successfully applied to the detection of alpinetin in real or synthesized samples. Alpinetin recoveries were 90.4-108.7% with an RSD of 0.82-2.9% (n = 5) for Alpinia katsumadai samples, and 95.1-103.7% with an RSD of 0.28-3.9% (n = 5) for synthesized samples. The results showed that this new approach was convenient, reliable and sensitive.
Collapse
Affiliation(s)
- Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun, Peoples Republic of China
| | - Xiaoyue Sun
- College of Chemistry, Changchun Normal University, Changchun, Peoples Republic of China
| | - Yu Wang
- College of Chemistry, Changchun Normal University, Changchun, Peoples Republic of China
| | - Jun Wu
- College of Chemistry, Changchun Normal University, Changchun, Peoples Republic of China
| | - Huifeng Zhou
- College of Chemistry, Changchun Normal University, Changchun, Peoples Republic of China
| |
Collapse
|
30
|
Alpinetin ameliorates inflammatory response in LPS-induced endometritis in mice. Int Immunopharmacol 2018; 62:309-312. [DOI: 10.1016/j.intimp.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022]
|
31
|
Zhao X, Guo X, Shen J, Hua D. Alpinetin inhibits proliferation and migration of ovarian cancer cells via suppression of STAT3 signaling. Mol Med Rep 2018; 18:4030-4036. [PMID: 30132572 DOI: 10.3892/mmr.2018.9420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/23/2018] [Indexed: 11/06/2022] Open
Abstract
Natural bioactive components are increasingly being applied in cancer research. Alpinetin is a type of natural flavonoid primarily derived from Alpinia katsumadai Hayata, which exhibits anti‑bacterial and anti‑inflammatory properties. Therefore, it may possess anticancer potential and be employed therapeutically for different diseases. The aim of the present study was to investigate the anticancer effects of alpinetin on the SKOV3 ovarian cancer cell line. The effect of alpinetin treatment on SKOV3 cell proliferation, apoptosis, spheroid and colony formation were measured using Cell Counting kit‑8, cell apoptosis, 3D spheroid and colony formation assays, respectively. Analysis of the cell cycle was performed using flow cytometry. Western blot analysis was used to determine the protein expression levels of B‑cell lymphoma (Bcl)‑2, Bcl‑2‑associated X protein, cleaved caspase‑3, cleaved poly (ADP‑ribose) polymerase (PARP), cyclin D1, cyclin‑dependent kinase (CDK) 4, CDK6, signal transducer and activator of transcription (STAT) 3, phosphorylated (p)‑STAT3, c‑myc, survivin, tissue inhibitor of metalloproteinase (TIMP)‑1, TIMP‑2, matrix metalloproteinase (MMP)‑2 and MMP‑9. In addition, a wound healing assay was used to determine cancer cell migration. The results revealed alpinetin suppressed cell viability and induced apoptosis of SKOV3 cells in a dose‑ and time‑dependent manner, and cells were arrested in the G1 phase. Alpinetin treatment upregulated protein expression levels of Bax, cleaved caspase‑3 and PARP, and downregulated protein expression levels of Bcl‑2, cyclin D1, CDK4 and CDK6. Alpinetin also inhibited cell migration, through increased protein expression levels of TIMP‑1 and TIMP‑2, and decreased protein expression levels of MMP‑2 and MMP‑9. Alpinetin also significantly suppressed colony and spheroid formation by SKOV3 cells. In addition, the STAT3 pathway was suppressed as demonstrated by downregulation of p‑STAT3 and reduced expression of downstream factors, including c‑myc and survivin. Overall, these results indicated that alpinetin may have anticancer effects on human ovarian cancer by inhibiting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xuezhi Zhao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaohan Guo
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Junhua Shen
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Dingchao Hua
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
32
|
Alternative and Natural Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2476824. [PMID: 29862257 PMCID: PMC5976962 DOI: 10.1155/2018/2476824] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/08/2018] [Indexed: 01/17/2023]
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a complex clinical syndrome characterized by acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure and death. Current best practice for ARDS involves “lung-protective ventilation,” which entails low tidal volumes and limiting the plateau pressures in mechanically ventilated patients. Although considerable progress has been made in understanding the pathogenesis of ARDS, little progress has been made in the development of specific therapies to combat injury and inflammation. Areas Covered In recent years, several natural products have been studied in experimental models and have been shown to inhibit multiple inflammatory pathways associated with acute lung injury and ARDS at a molecular level. Because of the pleiotropic effects of these agents, many of them also activate antioxidant pathways through nuclear factor erythroid-related factor 2, thereby targeting multiple pathways. Several of these agents are prescribed for treatment of inflammatory conditions in the Asian subcontinent and have shown to be relatively safe. Expert Commentary Here we review natural remedies shown to attenuate lung injury and inflammation in experimental models. Translational human studies in patients with ARDS may facilitate treatment of this devastating disease.
Collapse
|
33
|
Tan Y, Zheng C. Effects of Alpinetin on Intestinal Barrier Function, Inflammation and Oxidative Stress in Dextran Sulfate Sodium-Induced Ulcerative Colitis Mice. Am J Med Sci 2018; 355:377-386. [PMID: 29661352 DOI: 10.1016/j.amjms.2018.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alpinetin is a flavonoid isolated from Alpinia katsumadai Hayata that has demonstrated anti-inflammatory, antibacterial and anti-tumor activities. However, alpinetin has not been widely studied in amelioration of inflammatory bowel disease. The study aimed to investigate the role of alpinetin on intestinal epithelial tight junctions, oxidative stress and Nrf2/HO-1 signaling pathway in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. METHODS A total of 40 mice were divided into 5 groups (n = 8/group): control group, DSS group (received 3% DSS), and low, medium and high-dose treatment groups (3% DSS + alpinetin 25, 50 and 100mg/kg). The disease activity index (DAI), histological scores, epithelial tight junctions, oxidative stress factors, and Nrf2/HO-1 signaling pathway in the colon were determined. RESULTS Alpinetin improved DAI, colonic shortening, histological scores and myeloperoxidase activity compared with the DSS group. The expression of occludin and zonula occludens-1 were upregulated by alpinetin, whereas the expression of claudin-2 was reduced. Moreover, alpinetin inhibited the level of malondialdehyde, and increased the level of superoxide dismutase. Nrf2/HO-1 signaling pathways were also found to be activated. CONCLUSION Alpinetin is associated with decreased intestinal inflammation and oxidative stress dose-dependently, and also regulated the expression of tight junctions between cells in UC mice. The findings of our study may shed light on the use of alpinetin in the treatment of UC.
Collapse
Affiliation(s)
- Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
34
|
Zhou Y, Ding YL, Zhang JL, Zhang P, Wang JQ, Li ZH. Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomed Pharmacother 2018; 97:1397-1408. [DOI: 10.1016/j.biopha.2017.10.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022] Open
|
35
|
Ye W, Lin X, Zhang Y, Xu Y, Sun R, Wen C, Wang X, Bao S, Chen R. Quantification and pharmacokinetics of alpinetin in rat plasma by UHPLC-MS/MS using protein precipitation coupled with dilution approach to eliminate matrix effects. J Pharm Biomed Anal 2017; 152:242-247. [PMID: 29433096 DOI: 10.1016/j.jpba.2017.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
Alpinetin, a bioactive flavonoid, has attracted great attention due to its diverse therapeutic effects, namely anti-oxidant, anti-tumor and anti-inflammatory effects with low systemic toxicity. Various determination methods have been developed in quality control and plant chemistry areas. However, quantification and pharmacokinetics of alpinetin in biological matrix have not been studied. In the present research, a sensitive, efficient and reliable ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the determination of alpinetin in rat plasma was developed and validated. Plasma samples were processed with protein precipitation (PP) followed by a 5-fold acetonitrile/water (50:50, v/v) dilution to significantly decrease matrix effect which exited in one step PP method. Determination of alpinetin was conducted using positive electrospray ionization tandem mass spectrometry in multiple reaction monitoring mode. Results demonstrated that the method was precise (3.3%-12.3%), accurate (-5.8% to 10.8%) and linear in the range of 1-1000 ng/mL. The new developed method was subsequently applied to a pharmacokinetic research of alpinetin following oral and intravenous dosing to healthy Sprague-Dawley rats. Alpinetin was demonstrated rapid absorption after oral administration with an absolute bioavailability of ∼15.1% and extensive distribution after dosing.
Collapse
Affiliation(s)
- Weijian Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoji Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Youting Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Youxiao Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325027, China
| | - Xianqin Wang
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shihui Bao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Ruijie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
36
|
Liu W, Zhu H, Fang H. Propofol Potentiates Sevoflurane-Induced Inhibition of Nuclear Factor--κB-Mediated Inflammatory Responses and Regulation of Mitogen-Activated Protein Kinases Pathways via Toll-like Receptor 4 Signaling in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Am J Med Sci 2017; 354:493-505. [DOI: 10.1016/j.amjms.2017.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022]
|
37
|
Kim HP, Lim H, Kwon YS. Therapeutic Potential of Medicinal Plants and Their Constituents on Lung Inflammatory Disorders. Biomol Ther (Seoul) 2017; 25:91-104. [PMID: 27956716 PMCID: PMC5340533 DOI: 10.4062/biomolther.2016.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Acute bronchitis and chronic obstructive pulmonary diseases (COPD) are essentially lung inflammatory disorders. Various plant extracts and their constituents showed therapeutic effects on several animal models of lung inflammation. These include coumarins, flavonoids, phenolics, iridoids, monoterpenes, diterpenes and triterpenoids. Some of them exerted inhibitory action mainly by inhibiting the mitogen-activated protein kinase pathway and nuclear transcription factor-κB activation. Especially, many flavonoid derivatives distinctly showed effectiveness on lung inflammation. In this review, the experimental data for plant extracts and their constituents showing therapeutic effectiveness on animal models of lung inflammation are summarized.
Collapse
Affiliation(s)
- Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Yong Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| |
Collapse
|
38
|
Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7379146. [PMID: 27579049 PMCID: PMC4992511 DOI: 10.1155/2016/7379146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/29/2016] [Indexed: 12/12/2022]
Abstract
Jie-Geng-Tang (JGT), a classic and famous traditional Chinese medicine (TCM) prescription composed of Platycodon grandiflorum (Jacq.) A. DC. (PG) and Glycyrrhiza uralensis Fisch. (GU), is well known for "clearing heat and relieving toxicity" and its ability to "diffuse the lung and relieve sore throat." However, the mechanism underlying its action remains unclear. In this study, potential anti-inflammatory ingredients were screened and submitted to PharmMapper and the KEGG bioinformatics website to predict the target proteins and related pathways, respectively. Differentially expressed candidate proteins from acute lung injury (ALI) mice treated with JGT were identified by isobaric tags for relative and absolute quantitation (iTRAQ) and LC Triple-TOF. Eleven potential anti-inflammatory ingredients were found, including the derivatives of glycyrrhizic acid, licorice-saponin, liquiritin, and platycodigenin. A total of sixty-seven differentially expressed proteins were confirmed after JGT treatment with four therapeutic functions, including immunoregulation, anti-inflammation, ribosome, and muscle contraction. PG and GU comediate PI3K/Akt signal pathway inhibition of NF-κB, VCAM1, and ICAM1 release which primarily act on PI3K, PDK1, AKT, and GSK3β. GU markedly inhibits the ERK/MAPK signaling pathways and primarily acts on LCK, RAS, and MEK. A network was constructed using bioactive ingredients, targets, and pathways to determine the mechanism underlying JGT treatment of ALI.
Collapse
|
39
|
Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis. Sci Rep 2016; 6:28370. [PMID: 27321991 PMCID: PMC4913257 DOI: 10.1038/srep28370] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
Alpinetin, a composition of Alpinia katsumadai Hayata, has been reported to have a number of biological properties, such as antibacterial, antitumor and other important therapeutic activities. However, the effect of alpinetin on inflammatory bowel disease (IBD) has not yet been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of alpinetin on dextran sulfate sodium (DSS)-induced colitis in mice. In vivo, DSS-induced mice colitis model was established by giving mice drinking water containing 5% (w/v) DSS for 7 days. Alpinetin (25, 50 and 100 mg/kg) were administered once a day by intraperitoneal injection 3 days before DSS treatment. In vitro, phorbol myristate acetate (PMA)-differentiated monocytic THP-1 macrophages were treated with alpinetin and stimulated by lipopolysaccharide (LPS). The results showed that alpinetin significantly attenuated diarrhea, colonic shortening, histological injury, myeloperoxidase (MPO) activity and the expressions of tumor necrosis factor (TNF-α) and interleukin (IL-1β) production in mice. In vitro, alpinetin markedly inhibited LPS-induced TNF-α and IL-1β production, as well as Toll-like receptor 4 (TLR4) mediated nuclear transcription factor-kappaB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, this study demonstrated that alpinetin had protective effects on DSS-induced colitis and may be a promising therapeutic reagent for colitis treatment.
Collapse
|
40
|
Liang X, Zhang B, Chen Q, Zhang J, Lei B, Li B, Wei Y, Zhai R, Liang Z, He S, Tang B. The mechanism underlying alpinetin-mediated alleviation of pancreatitis-associated lung injury through upregulating aquaporin-1. Drug Des Devel Ther 2016; 10:841-50. [PMID: 26966354 PMCID: PMC4771394 DOI: 10.2147/dddt.s97614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Characterized by its acute onset, critical condition, poor prognosis, and high mortality rate, severe acute pancreatitis (SAP) can cause multiple organ failure at its early stage, particularly acute lung injury (ALI). The pathogenesis of ALI is diffuse alveolar damage, including an increase in pulmonary microvascular permeability, a decrease in compliance, and invasion of many inflammatory cells. Corticosteroids are the main treatment method for ALI; however, the associated high toxicity and side effects induce pain in patients. Recent studies show that the effective components in many traditional Chinese medicines can effectively inhibit inflammation with few side effects, which can decrease the complications caused by steroid consumption. Based on these observations, the main objective of the current study is to investigate the effect of alpinetin, which is a flavonoid extracted from Alpinia katsumadai Hayata, on treating lung injury induced by SAP and to explore the mechanism underlying the alpinetin-mediated decrease in the extent of ALI. In this study, we have shown through in vitro experiments that a therapeutic dose of alpinetin can promote human pulmonary microvascular endothelial cell proliferation. We have also shown via in vitro and in vivo experiments that alpinetin upregulates aquaporin-1 and, thereby, inhibits tumor necrosis factor-α expression as well as reduces the degree of lung injury. Overall, our study shows that alpinetin alleviates SAP-induced ALI. The likely molecular mechanism includes upregulated aquaporin expression, which inhibits tumor necrosis factor-α and, thus, alleviates SAP-induced ALI.
Collapse
Affiliation(s)
- Xingsi Liang
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China; Department of Infectious Diseases, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Quan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Jing Zhang
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China
| | - Biao Lei
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China
| | - Bo Li
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China
| | - Yangchao Wei
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China
| | - Run Zhai
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China
| | - Zhiqing Liang
- Department of Infectious Diseases, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China
| | - Songqing He
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China
| | - Bo Tang
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
41
|
Anti-Ulcerogenic Properties of Lycium chinense Mill Extracts against Ethanol-Induced Acute Gastric Lesion in Animal Models and Its Active Constituents. Molecules 2015; 20:22553-64. [PMID: 26694339 PMCID: PMC6332331 DOI: 10.3390/molecules201219867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
The objective of this study was to explore the gastroprotective properties of the aerial part of Lycium chinense Mill (LCA) against ethanol-induced gastric mucosa lesions in mice models. Administration of LCA at doses of 50, 100, 200 and 400 mg/kg body weight prior to ethanol consumption dose dependently inhibited gastric ulcers. The gastric mucosal injury was analyzed by gastric juice acidity, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO) activities. Furthermore, the levels of the inflammatory mediators, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in serum were also analyzed using ELISA. Pathological changes were also observed with the aid of hematoxylin-eosin (HE) staining. Our results indicated that LCA significantly reduced the levels of MPO, MDA and increased SOD and GSH activities. Furthermore, LCA also significantly inhibited the levels of TNF-α, IL-6, and IL-1β in the serum of ulcerated mice in a dose dependent manner. Immunohistological analysis indicated that LCA also significantly attenuated the overexpression of nuclear factor-κB in pretreated mice models. This findings suggests Lycium chinense Mill possesses gastroprotective properties against ethanol-induced gastric injury and could be a possible therapeutic intervention in the treatment and management of gastric ulcers.
Collapse
|
42
|
Huang Y, Zhou LS, Yan L, Ren J, Zhou DX, Li SS. Alpinetin inhibits lipopolysaccharide-induced acute kidney injury in mice. Int Immunopharmacol 2015; 28:1003-8. [DOI: 10.1016/j.intimp.2015.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/10/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
|
43
|
Jiang Z, Sang H, Fu X, Liang Y, Li L. Alpinetin enhances cholesterol efflux and inhibits lipid accumulation in oxidized low-density lipoprotein-loaded human macrophages. Biotechnol Appl Biochem 2015; 62:840-7. [PMID: 25496323 DOI: 10.1002/bab.1328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/30/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Zhengming Jiang
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Haiqiang Sang
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Xin Fu
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Ying Liang
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Ling Li
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| |
Collapse
|
44
|
Ribeiro D, Freitas M, Lima JLFC, Fernandes E. Proinflammatory Pathways: The Modulation by Flavonoids. Med Res Rev 2015; 35:877-936. [PMID: 25926332 DOI: 10.1002/med.21347] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a natural, carefully orchestrated response of the organism to tissue damage, involving various signaling systems and the recruitment of inflammatory cells. These cells are stimulated to release a myriad of mediators that amplify the inflammatory response and recruit additional cells. These mediators present numerous redundancies of functions, allowing a broad and effective inflammatory response, but simultaneously make the understanding of inflammation pathways much difficult. The extent of the inflammatory response is usually self-limited, although it depends on the balance between the pro- and anti-inflammatory signals. When that equilibrium is dislocated, a more widespread inflammatory response may take place. Flavonoids have been shown to be possible alternatives to the traditionally molecules used as anti-inflammatory agents. In fact, the biological activities of flavonoids include the modulation of the diverse phases of inflammatory processes, from the gene transcription and expression to the inhibition of the enzymatic activities and the scavenging of the reactive species. In the present review, the inflammatory network is widely revised and the flavonoids' broad spectrum of action in many of the analyzed inflammatory pathways is revised. This kind of integrated revision is original in the field, providing the reader the simultaneous comprehension of the inflammatory process and the potential beneficial activities of flavonoids.
Collapse
Affiliation(s)
- Daniela Ribeiro
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Marisa Freitas
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - José L F C Lima
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| |
Collapse
|
45
|
Yu JL, Zhang XS, Xue X, Wang RM. Patchouli alcohol protects against lipopolysaccharide-induced acute lung injury in mice. J Surg Res 2014; 194:537-543. [PMID: 25519986 DOI: 10.1016/j.jss.2014.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Patchouli alcohol (PA), a natural compound isolated from Pogostemon cablin, has been reported to possess anti-inflammatory activity. However, the effects of PA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) have not yet been studied. In the present study, we investigated in vivo the effect of PA on ALI induced by LPS. METHODS Mice were administrated intranasally with LPS to induce lung injury. PA was administrated intraperitoneally 1 h before or after the LPS challenge. RESULTS The results showed that PA significantly decreased the wet-to-dry weight ratio of lungs and the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid at 7 h after the LPS challenge. In addition, PA also suppressed the production of inflammatory cytokines, such as tumor necrosis factor-α, interleukin-1β, and interleukin-6 in bronchoalveolar lavage fluid. Furthermore, Western blot analysis showed that PA inhibited the phosphorylation of IκB-α and p65 nuclear factor κB (NF-κB) induced by LPS. CONCLUSIONS Our results suggest that the anti-inflammatory effects of PA against LPS-induced ALI may be due to its ability to inhibit NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jin-Long Yu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao-Shi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Rong-Mei Wang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
46
|
Zhou E, Li Y, Wei Z, Fu Y, Lei H, Zhang N, Yang Z, Xie G. Schisantherin A protects lipopolysaccharide-induced acute respiratory distress syndrome in mice through inhibiting NF-κB and MAPKs signaling pathways. Int Immunopharmacol 2014; 22:133-40. [PMID: 24975658 DOI: 10.1016/j.intimp.2014.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 11/29/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by polymorphonuclear neutrophils (PMNs) adhesion, activation, sequestration and inflammatory damage to alveolar-capillary membrane. Schisantherin A, a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been reported to have anti-inflammatory properties. In the present study, we aimed to investigate the protective effects of schisantherin A on LPS-induced mouse ARDS. The pulmonary injury severity was evaluated 7 h after LPS administration and the protective effects of schisantherin A on LPS-induced mouse ARDS were assayed by enzyme-linked immunosorbent assay and Western blot. The results revealed that the wet/dry weight ratio, myeloperoxidase activity, and the number of total cells, neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) were significantly reduced by schisantherin A in a dose-dependent manner. Meanwhile, pretreatment with schisantherin A markedly ameliorated LPS-induced histopathologic changes and decreased the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in the BALF. In addition, the phosphorylation of nuclear transcription factor-kappaB (NF-κB) p65, inhibitory kappa B alpha (IκB-α), c-jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 induced by LPS were suppressed by schisantherin A. These findings indicated that schisantherin A exerted potent anti-inflammatory properties in LPS-induced mouse ARDS, possibly through blocking the activation of NF-KB and mitogen activated protein kinases (MAPKs) signaling pathways. Therefore, schisantherin A may be a potential agent for the prophylaxis of ARDS.
Collapse
Affiliation(s)
- Ershun Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yimeng Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - He Lei
- TongLe School, Nanshan ShenZhen, Guangdong Province, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Guanghong Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
47
|
Guan S, Fang B, Song B, Xiong Y, Lu J. Immunosuppressive activity of alpinetin on activation and cytokines secretion of murine T lymphocytes. Immunopharmacol Immunotoxicol 2014; 36:290-6. [PMID: 24964870 DOI: 10.3109/08923973.2014.932798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Alpinetin, a flavonoid compound extracted from the seeds of Alpinia katsumadai Hayata, has been known to possess antibacterial, anti-inflammatory and other important therapeutic activities. In the current study, we investigated alpinetin for its immunosuppressive effect on activation and cytokines secretion of murine T lymphocytes. The data showed that alpinetin markedly suppressed ConA-induced murine splenocyte proliferation, Th1/Th2 cytokines production, CD4(+) T-cell populations and ratio of CD4(+)/CD8(+). This inspired us to further study the effects of alpinetin in vivo. The results showed that administration of alpinetin suppressed T-cell-mediated delayed-type hypersensitivity reaction in mice. In addition, we studied signal transduction pathways about T-cell activation on puried murine T lymphocytes by Western-blot assay. The data revealed that alpinetin could shock the activation of NF-κB, NFAT2 signal transduction pathways. These observations indicated that alpinetin have potential effects in downregulating the immune system and might be developed as a useful immunosuppressive agent in treating undesired immune responses.
Collapse
Affiliation(s)
- Shuang Guan
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine and
| | | | | | | | | |
Collapse
|
48
|
Choudhury SS, Bashyam L, Manthapuram N, Bitla P, Kollipara P, Tetali SD. Ocimum sanctum leaf extracts attenuate human monocytic (THP-1) cell activation. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:148-155. [PMID: 24732112 DOI: 10.1016/j.jep.2014.03.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/20/2014] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ocimum sanctum (OS), commonly known as Holy basil/Tulsi, has been traditionally used to treat cardiovascular diseases (CVD) and manage general cardiac health. The present study is designed to evaluate the antiinflammatory effect of O. sanctum and its phenolic compound and eugenol (EUG) in human monocytic (THP-1) cells and validate its traditional use for treating cardiovascular diseases. MATERIALS AND METHODS The phytochemical analysis of alcoholic and water extracts of OS-dry leaves (OSAE and OSWE) was done using LC-QTOF-MS. A phenolic compound, EUG was quantified in both OSAE and OSWE by an LC-MS technique using a mass hunter work station software quantitative analysis system. The effect of both OSAE, OSWE, pure compound EUG and positive control imatinib (IMT) was investigated in THP-1 cells by studying the following markers: lipopolysaccharide (LPS) induced tumor necrosis factor alpha (TNF-α) secretion by ELISA, gene expression of inflammatory markers (TNF-α, IL-6, MIP-1α and MCP-1) by real time PCR and translocation of nuclear factor kappa B (NF-κB) by confocol microscopy. Furthermore, the effect of the extracts, EUG and IMT, was studied on phorbol-12-myristate-13-acetate (PMA) induced monocyte to macrophage differentiation and gene expression of CD14, TLR2 and TLR4. RESULTS The LC-MS analysis of OSAE and OSWE revealed the presence of several bioactive compounds including eugenol. Quantitative analysis revealed that OSAE and OSWE had EUG of 12 ng/mgdwt and 19 ng/mgdwt respectively. OSAE, OSWE (1 mg dwt/mL) pure compound EUG (60 µg/mL) and positive control IMT (20 µg/mL) showed marked inhibition on LPS induced TNF-α secretion by THP-1 cells. At the selected concentration, the plant extracts, EUG and IMT inhibited gene expression of cytokines and chemokines (IL-6, TNF-α, MIP-1α, MCP-1) and translocation of NF-κB-p65 to the nuclei. In addition, they showed significant inhibition on PMA induced monocyte to macrophage differentiation and the gene expression of CD14, TLR2 and TLR4 markers. CONCLUSION The result of the present study validated traditional use of Ocimum sanctum for treating cardiovascular disease for the first time by testing antiinflammatory activity of Ocimum sanctum in acute inflammatory model, LPS induced THP-1 cells. The plant extracts showed significant antiinflammatory activity, however, further to be evaluated using chronic inflammatory animal models like diabetic or apolipoprotein E-deficient mice to make it evidence based medicine. The phenolic compound eugenol (60 µg/mL) showed significant antiinflammatory activity. However the amount of eugenol present in 1mg of OSAE and OSWE (12 ng/mg and 19 ng/mg dwt respectively) used for cell based assays was very low. It suggests that several other metabolites along with eugenol are responsible for the efficacy of the extracts.
Collapse
Affiliation(s)
| | - Leena Bashyam
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Nalini Manthapuram
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Prasanth Bitla
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Padmasree Kollipara
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Sarada D Tetali
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, INDIA.
| |
Collapse
|
49
|
Fu Y, Zhou E, Wei Z, Liang D, Wang W, Wang T, Guo M, Zhang N, Yang Z. Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. FEBS J 2014; 281:2543-57. [PMID: 24698106 DOI: 10.1111/febs.12801] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/22/2014] [Accepted: 03/31/2014] [Indexed: 01/15/2023]
Abstract
Glycyrrhizin, a triterpene glycoside isolated from licorice root, is known to have anti-inflammatory activities. However, the effect of glycyrrhizin on mastitis has not been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of action of glycyrrhizin on lipopolysaccharide (LPS)-induced mastitis in mouse. An LPS-induced mouse mastitis model was used to confirm the anti-inflammatory activity of glycyrrhizin in vivo. Primary mouse mammary epithelial cells were used to investigate the molecular mechanism and targets of glycyrrhizin. In vivo, glycyrrhizin significantly attenuated the mammary gland histopathological changes, myeloperoxidase activity and infiltration of neutrophilic granulocytes and downregulated the expression of tumor necrosis factor-α, interleukin (IL)-1β and IL-6 caused by LPS. In vitro, glycyrrhizin dose-dependently inhibited the LPS-induced expression of tumor necrosis factor-α, IL-6, and RANTES. Western blot analysis showed that glycyrrhizin suppressed LPS-induced nuclear factor-κB and interferon regulatory factor 3 activation. However, glycyrrhizin did not inhibit nuclear factor-κB and interferon regulatory factor 3 activation induced by MyD88-dependent (MyD88, IKKβ) or TRIF-dependent (TRIF, TBK1) downstream signaling components. Moreover, glycyrrhizin did not act though affecting the function of CD14 or expression of Toll-like receptor 4. Finally, we showed that glycyrrhizin decreased the levels of cholesterol of lipid rafts and inhibited the translocation of Toll-like receptor 4 to lipid rafts. Moreover, glycyrrhizin activated ATP-binding cassette transporter A1, which could induce cholesterol efflux from lipid rafts. In conclusion, we find that the anti-inflammatory effects of glycyrrhizin may be attributable to its ability to activate ATP-binding cassette transporter A1. Glycyrrhizin might be a useful therapeutic reagent for the treatment of mastitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Protective Effect of Carvacrol on Acute Lung Injury Induced by Lipopolysaccharide in Mice. Inflammation 2014; 37:1091-101. [PMID: 24577726 DOI: 10.1007/s10753-014-9833-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|