1
|
Li B, Zhang X, Zhang Q, Zheng T, Li Q, Yang S, Shao J, Guan W, Zhang S. Nutritional strategies to reduce intestinal cell apoptosis by alleviating oxidative stress. Nutr Rev 2025; 83:e518-e532. [PMID: 38626282 DOI: 10.1093/nutrit/nuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The gut barrier is the first line of defense against harmful substances and pathogens in the intestinal tract. The balance of proliferation and apoptosis of intestinal epithelial cells (IECs) is crucial for maintaining the integrity of the intestinal mucosa and its function. However, oxidative stress and inflammation can cause DNA damage and abnormal apoptosis of the IECs, leading to the disruption of the intestinal epithelial barrier. This, in turn, can directly or indirectly cause various acute and chronic intestinal diseases. In recent years, there has been a growing understanding of the vital role of dietary ingredients in gut health. Studies have shown that certain amino acids, fibers, vitamins, and polyphenols in the diet can protect IECs from excessive apoptosis caused by oxidative stress, and limit intestinal inflammation. This review aims to describe the molecular mechanism of apoptosis and its relationship with intestinal function, and to discuss the modulation of IECs' physiological function, the intestinal epithelial barrier, and gut health by various nutrients. The findings of this review may provide a theoretical basis for the use of nutritional interventions in clinical intestinal disease research and animal production, ultimately leading to improved human and animal intestinal health.
Collapse
Affiliation(s)
- Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Su Y, Liu L, Lin C, Deng D, Li Y, Huang M, Wang Y, Ling K, Wang H, Chen Q, Huang G. Enhancing cancer therapy: advanced nanovehicle delivery systems for oridonin. Front Pharmacol 2024; 15:1476739. [PMID: 39691396 PMCID: PMC11649421 DOI: 10.3389/fphar.2024.1476739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Oridonin (ORI), an ent-kaurane diterpenoid derived from Rabdosia rubescens (Hemsl.) H.Hara, serves as the primary bioactive component of this plant. It demonstrates a broad spectrum of therapeutic activities, including moderate to potent anticancer properties, alongside anti-inflammatory, antibacterial, antifibrotic, immunomodulatory, and neuromodulatory effects, thus influencing diverse biological processes. However, its clinical potential is significantly constrained by poor aqueous solubility and limited bioavailability. In alignment with the approach of developing drug candidates from natural compounds, various strategies, such as structural modification and nanocarrier systems, have been employed to address these challenges. This review provides an overview of ORI-based nano-delivery systems, emphasizing their potential to improve the clinical applicability of oridonin in oncology. Although some progress has been made in advancing ORI nano-delivery research, it remains insufficient for clinical implementation, necessitating further investigation.
Collapse
Affiliation(s)
- Yilin Su
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Lisha Liu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chongyang Lin
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Dashi Deng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yunfei Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Mou Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yu Wang
- Institute of Pain, The Affiliated Hospital of Southwest Jiaotong University, The Chengdu Third People’s Hospital, Chengdu, China
| | - Kangqiu Ling
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Haobing Wang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Qiyu Chen
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Guixiao Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, Khan T, Khan K, Armaghan M, Palma‐Morales M, Rodríguez‐Pérez C, Caunii A, Butnariu M, Habtemariam S, Sharifi‐Rad J. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy - A comprehensive review. Food Sci Nutr 2024; 12:3046-3067. [PMID: 38726411 PMCID: PMC11077219 DOI: 10.1002/fsn3.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer incidences are rising each year. In 2020, approximately 20 million new cancer cases and 10 million cancer-related deaths were recorded. The World Health Organization (WHO) predicts that by 2024 the incidence of cancer will increase to 30.2 million individuals annually. Considering the invasive characteristics of its diagnostic procedures and therapeutic methods side effects, scientists are searching for different solutions, including using plant-derived bioactive compounds, that could reduce the probability of cancer occurrence and make its treatment more comfortable. In this regard, oridonin (ORI), an ent-kaurane diterpenoid, naturally found in the leaves of Rabdosia rubescens species, has been found to have antitumor, antiangiogenesis, antiasthmatic, antiinflammatory, and apoptosis induction properties. Extensive research has been performed on ORI to find various mechanisms involved in its anticancer activities. This review article provides an overview of ORI's effectiveness on murine and human cancer populations from 1976 to 2022 and provides insight into the future application of ORI in different cancer therapies.
Collapse
Affiliation(s)
| | - Noohela Khan
- Department of Nutrition SciencesRashid Latif Medical CollegeLahorePakistan
| | - Ahmad Ali
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Hira Akram
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Noushaba Zafar
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Kinza Imran
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Tooba Khan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | | | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | - Marta Palma‐Morales
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
| | - Celia Rodríguez‐Pérez
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Angela Caunii
- “Victor Babes” University of Medicine and PharmacyTimisoaraRomania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from TimisoaraTimisoaraRomania
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKUniversity of GreenwichKentUK
| | | |
Collapse
|
4
|
Li GQ, Gao SX, Wang FH, Kang L, Tang ZY, Ma XD. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed Pharmacother 2023; 165:115019. [PMID: 37329709 DOI: 10.1016/j.biopha.2023.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Pyroptosis is a type of inflammatory cell death that is triggered by the formation of pores on the cell membrane by gasdermin (GSDM) family proteins. This process activates inflammasomes and leads to the maturation and release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Pyroptosis, a form of programmed cell death, has been found to be associated with various biomolecules such as caspases, granzymes, non-coding RNA (lncRNA), reactive oxygen species (ROS), and NOD-like receptor protein 3 (NLRP3). These biomolecules have been shown to play a dual role in cancer by affecting cell proliferation, metastasis, and the tumor microenvironment (TME), resulting in both tumor promotion and anti-tumor effects. Recent studies have found that Oridonin (Ori) has anti-tumor effects by regulating pyroptosis through various pathways. Ori can inhibit pyroptosis by inhibiting caspase-1, which is responsible for activating pyroptosis of the canonical pathway. Additionally, Ori can inhibit pyroptosis by inhibiting NLRP3, which is responsible for activating pyroptosis of the noncanonical pathway. Interestingly, Ori can also activate pyroptosis by activating caspase-3 and caspase-8, which are responsible for activating pyroptosis of the emerging pathway; Ori has been found to be effective in inhibiting pyroptosis by blocking the action of perforin, which is responsible for facilitating the entry of granzyme into cells and activating pyroptosis. Additionally, Ori plays a crucial role in regulating pyroptosis by promoting the accumulation of ROS while inhibiting the ncRNA and NLRP3 pathways. It is worth noting that all of these pathways ultimately regulate pyroptosis by influencing the cleavage of GSDM, which is a key factor in the process. These studies concludes that Ori has extensive anti-cancer effects that are related to its potential regulatory function on pyroptosis. The paper summarizes several potential ways in which Ori participates in the regulation of pyroptosis, providing a reference for further study on the relationship between Ori, pyroptosis, and cancer.
Collapse
Affiliation(s)
- Guo Qiang Li
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Shi Xiang Gao
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Fu Han Wang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Affiliated Fudan University, Shang Hai 200030, PR China.
| | - Ze Yao Tang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| | - Xiao Dong Ma
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
5
|
Nie Y, Yang J, Zhou L, Yang Z, Liang J, Liu Y, Ma X, Qian Z, Hong P, Kalueff AV, Song C, Zhang Y. Marine fungal metabolite butyrolactone I prevents cognitive deficits by relieving inflammation and intestinal microbiota imbalance on aluminum trichloride-injured zebrafish. J Neuroinflammation 2022; 19:39. [PMID: 35130930 PMCID: PMC8822793 DOI: 10.1186/s12974-022-02403-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/30/2022] Open
Abstract
Background Mounting evidences indicate that oxidative stress, neuroinflammation, and dysregulation of gut microbiota are related to neurodegenerative disorders (NDs). Butyrolactone I (BTL-I), a marine fungal metabolite, was previously reported as an in vitro neuroprotectant and inflammation inhibitor. However, little is known regarding its in vivo effects, whereas zebrafish (Danio rerio) could be used as a convenient in vivo model of toxicology and central nervous system (CNS) diseases.
Methods Here, we employed in vivo and in silico methods to investigate the anti-NDs potential of BTL-I. Specifically, we established a cognitive deficit model in zebrafish by intraperitoneal (i.p.) injection of aluminum trichloride (AlCl3) (21 μg) and assessed their behaviors in the T-maze test. The proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) as well as acetylcholinesterase (AChE) activity or glutathione (GSH) levels were assayed 24 h after AlCl3 injection. The intestinal flora variation of the zebrafish was investigated by 16S rDNA high-throughput analysis. The marine fungal metabolite, butyrolactone I (BTL-I), was used to modulate zebrafish cognitive deficits evoked by AlCl3 and evaluated about its effects on the above inflammatory, cholinergic, oxidative stress, and gut floral indicators. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of BTL-I were studied by the in silico tool ADMETlab. Results BTL-I dose-dependently ameliorated AlCl3-induced cognitive deficits in zebrafish. While AlCl3 treatment elevated the levels of central and peripheral proinflammatory cytokines, increased AChE activity, and lowered GSH in the brains of zebrafish, these effects, except GSH reduction, were reversed by 25–100 mg/kg BTL-I administration. Besides, 16S rDNA high-throughput sequencing of the intestinal flora of zebrafish showed that AlCl3 decreased Gram-positive bacteria and increased proinflammatory Gram-negative bacteria, while BTL-I contributed to maintaining the predominance of beneficial Gram-positive bacteria. Moreover, the in silico analysis indicated that BTL-I exhibits acceptable drug-likeness and ADMET profiles. Conclusions The present findings suggest that BTL-I is a potential therapeutic agent for preventing CNS deficits caused by inflammation, neurotoxicity, and gut flora imbalance. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02403-3.
Collapse
Affiliation(s)
- Yingying Nie
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingming Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Longjian Zhou
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinyue Liang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yayue Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxiang Ma
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongji Qian
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Allan V Kalueff
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.,Ural Federal University, Ekaterinburg, 620002, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, 199034, Russia
| | - Cai Song
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
6
|
Dončević L, Svetličić E, Hozić A, Mihaljević B, Jarmużek D, Tartaro Bujak I, Pluskota-Karwatka D, Ozdanovac L, Džeba I, Cindrić M. NanoUPLC-QTOF-MS/MS Determination of Major Rosuvastatin Degradation Products Generated by Gamma Radiation in Aqueous Solution. Pharmaceuticals (Basel) 2021; 14:1160. [PMID: 34832942 PMCID: PMC8622667 DOI: 10.3390/ph14111160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
Rosuvastatin, a member of the statin family of drugs, is used to regulate high cholesterol levels in the human body. Moreover, rosuvastatin and other statins demonstrate a protective role against free radical-induced oxidative stress. Our research aimed to investigate the end-products of free radical-induced degradation of rosuvastatin. To induce the radical degradation, an aqueous solution of rosuvastatin was irradiated using different doses of gamma radiation (50-1000 Gy) under oxidative conditions. Rosuvastatin and related degradation products were separated on nanoC18 column under gradient elution, and identification was carried out on hyphenated nanoUPLC and nanoESI-QTOF mass spectrometer system. Elemental composition analysis using highly accurate mass measurements together with isotope fitting algorithm identified nine major degradation products. This is the first study of gamma radiation-induced degradation of rosuvastatin, where chemical structures, MS/MS fragmentation pathways and formation mechanisms of the resulting degradation products are detailly described. The presented results contribute to the understanding of the degradation pathway of rosuvastatin and possibly other statins under gamma radiation conditions.
Collapse
Affiliation(s)
- Lucija Dončević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (L.D.); (A.H.)
| | - Ema Svetličić
- Department of Biochemical Bioengineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Amela Hozić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (L.D.); (A.H.)
| | - Branka Mihaljević
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (B.M.); (I.T.B.); (I.D.)
| | - Dorota Jarmużek
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (D.J.); (D.P.-K.)
| | - Ivana Tartaro Bujak
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (B.M.); (I.T.B.); (I.D.)
| | - Donata Pluskota-Karwatka
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (D.J.); (D.P.-K.)
| | - Luka Ozdanovac
- Research and Development Ltd., PLIVA, Prilaz Baruna Filipovića 29, 10000 Zagreb, Croatia;
| | - Iva Džeba
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (B.M.); (I.T.B.); (I.D.)
| | - Mario Cindrić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (L.D.); (A.H.)
| |
Collapse
|
7
|
Pi S, Nie G, Wei Z, Yang F, Wang C, Xing C, Hu G, Zhang C. Inhibition of ROS/NLRP3/Caspase-1 mediated pyroptosis alleviates excess molybdenum-induced apoptosis in duck renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111528. [PMID: 33157513 DOI: 10.1016/j.ecoenv.2020.111528] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Excess molybdenum (Mo) is harmful to the body, and the kidney is the vital target organ for Mo exposure. This study focused on the impacts of excess Mo on pyroptosis and the relationship between pyroptosis and apoptosis in kidney. METHODS The duck renal tubular epithelial cells were treated with (NH4)6Mo7O24·4H2O (0, 480, 720 and 960 μM Mo), N-acetyl-L-cysteine (NAC) (100 μM), Z-YVAD-fluoromethylketone (YVAD) (10 μM) and the combination of Mo and NAC or YVAD for 12 h. The LDH release and IL-1β, IL-18 contents of cell supernatant were detected by LDH and ELISA kits. The MMP and ROS level were measured using MMP and ROS kits by flow cytometry. The apoptotic rate of cell was detected by AO/EB counterstaining. Pyroptosis and apoptosis-related factors mRNA and protein levels were assayed by real-time qPCR and western blot, respectively. RESULTS Excessive Mo markedly increased LDH, IL-18, IL-1β releases and induced overproduction of ROS, pyroptosis-related factors mRNA and protein levels. NAC and YVAD dramatically decreased pyroptosis induced by Mo. Simultaneously, YVAD significantly changed apoptosis-related factors mRNA and protein levels, and reduced cell apoptotic rate. CONCLUSION Excessive Mo exposure can induce pyroptosis by the ROS/NLRP3/Caspase-1 pathway in duck renal tubular epithelial cells, and restraining pyroptosis of Caspase-1 dependence might weaken excess Mo-induced apoptosis. The study provides theoretical basis for excess Mo exposure nephrotoxic researches on waterfowl and the interplay between pyroptosis and apoptosis highlights a new sight into the mechanism of Mo-induced nephrotoxicity.
Collapse
Affiliation(s)
- Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330032, Jiangxi, PR China
| | - Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
8
|
Anti-Fibrotic Effect of Human Wharton's Jelly-Derived Mesenchymal Stem Cells on Skeletal Muscle Cells, Mediated by Secretion of MMP-1. Int J Mol Sci 2020; 21:ijms21176269. [PMID: 32872523 PMCID: PMC7504611 DOI: 10.3390/ijms21176269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Extracellular matrix (ECM) components play an important role in maintaining skeletal muscle function, but excessive accumulation of ECM components interferes with skeletal muscle regeneration after injury, eventually inducing fibrosis. Increased oxidative stress level caused by dystrophin deficiency is a key factor in fibrosis in Duchenne muscular dystrophy (DMD) patients. Mesenchymal stem cells (MSCs) are considered a promising therapeutic agent for various diseases involving fibrosis. In particular, the paracrine factors secreted by MSCs play an important role in the therapeutic effects of MSCs. In this study, we investigated the effects of MSCs on skeletal muscle fibrosis. In 2–5-month-old mdx mice intravenously injected with 1 × 105 Wharton’s jelly (WJ)-derived MSCs (WJ-MSCs), fibrosis intensity and accumulation of calcium/necrotic fibers were significantly decreased. To elucidate the mechanism of this effect, we verified the effect of WJ-MSCs in a hydrogen peroxide-induced fibrosis myotubes model. In addition, we demonstrated that matrix metalloproteinase-1 (MMP-1), a paracrine factor, is critical for this anti-fibrotic effect of WJ-MSCs. These findings demonstrate that WJ-MSCs exert anti-fibrotic effects against skeletal muscle fibrosis, primarily via MMP-1, indicating a novel target for the treatment of muscle diseases, such as DMD.
Collapse
|
9
|
Chen X, Wang T, Le W, Huang X, Gao M, Chen Q, Xu S, Yin D, Fu Q, Shao C, Chen B, Shi D. Smart Sorting of Tumor Phenotype with Versatile Fluorescent Ag Nanoclusters by Sensing Specific Reactive Oxygen Species. Am J Cancer Res 2020; 10:3430-3450. [PMID: 32206100 PMCID: PMC7069096 DOI: 10.7150/thno.38422] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in cancer formation and development, especially cancer metastasis. However, lack of a precise tool, which could accurately distinguish specific types of ROS, restricts an in-depth study of ROS in cancer development and progression. Herein, we designed smart and versatile fluorescent Ag nanoclusters (AgNCs) for sensitive and selective detection of different species of ROS in cells and tissues. Methods: Firstly, dual-emission fluorescent AgNCs was synthesized by using bovine serum albumin (BSA) to sense different types of ROS (H2O2, O2•-, •OH). The responsiveness of the AgNCs to different species of ROS was explored by fluorescence spectrum, hydrodynamic diameter, and so on. Furthermore, dual-emission fluorescent AgNCs was used to sense ROS in tumor with different degrees of differentiation. Finally, the relationship between specific types of ROS and tumor cell invasion was explored by cell migration ability and the expression of cell adhesion and EMT markers. Results: This dual-emission fluorescent AgNCs possessed an excellent ability to sensitively and selectively distinguish highly reactive oxygen species (hROS, including O2•-and •OH) from moderate reactive oxygen species (the form of H2O2), and exhibited no fluoresence and green fluorescence, respectively. The emission of AgNCs is effective in detecting cellular and tissular ROS. When cultured with AgNCs, malignant tumor cells exhibit non-fluorescence, while the benign tumor emits green and reduced red light and the normal cells appear in weak green and bright red fluorescence. We further verified that not just H2O2 but specific species of ROS (O2•-and •OH) were involved in cell invasion and malignant transformation. Our study warrants further research on the role of ROS in physiological and pathophysiological processes. Conclusion: Taken together, AgNCs would be a promising approach for sensing ROS, and offer an intelligent tool to detect different kinds of ROS in tumors.
Collapse
|
10
|
Chang CH, Yano KI, Sato T. Nanosecond pulsed current under plasma-producing conditions induces morphological alterations and stress fiber formation in human fibrosarcoma HT-1080 cells. Arch Biochem Biophys 2020; 681:108252. [PMID: 31911153 DOI: 10.1016/j.abb.2020.108252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 11/24/2022]
Abstract
Cold atmospheric plasma (CAP) is a promising means for various biomedical applications, including cancer therapy. Although the biological action of CAP is considered to be brought about by synergistic effects of reactive species and electrical factors of CAP, limited information is currently available on the contribution of electrical factors to CAP-induced cell responses. We have previously demonstrated that nanosecond pulsed current (nsPC) under CAP-producing conditions significantly promoted the motility of human HT-1080 cells. In this study, we explored the effects of nsPC on cell morphology associated with cell motility. We observed that nsPC stimulation caused extended cell shape, membrane protrusion formation, and increased cell surface area, but not cell death induction. nsPC stimulation also caused elevated intracellular ROS and Ca2+. HT-1080 cells can undergo two modes of cell motility, namely mesenchymal and ameboid motility, and we found that morphological features of mesenchymal motility was partly shared with nsPC-stimulated cells. Furthermore, nsPC-stimulated cells had extended stress fibers composed of filamentous actin. Taken together, this study provides a novel insight into the electrical aspect of CAP action, and we speculate that nsPC activates a certain mechanism involving intracellular signaling for stress fiber formation, leading to altered cell morphology and increased cell motility.
Collapse
Affiliation(s)
- Chia-Hsing Chang
- Department of Mechanical System Engineering, Tohoku University, Japan
| | - Ken-Ichi Yano
- Institute of Pulsed Power Science, Kumamoto University, Japan
| | - Takehiko Sato
- Institute of Fluid Science, Tohoku University, Japan.
| |
Collapse
|
11
|
Yang S, Tang X, Sheng X, Xing J, Zhan W. Analysis of the role of IL-10 in the phagocytosis of mIgM + B lymphocytes in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2019; 92:813-820. [PMID: 31271840 DOI: 10.1016/j.fsi.2019.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
B cells have been found to have phagocytic activity in recent years, but the studies exploring the regulation mechanisms are still lacking to date. In the present study, the recombinant interleukin-10 (rIL-10) was obtained to study the function of IL-10 on phagocytosis of flounder (Paralichthys olivaceus) mIgM+ B lymphocytes. Flow cytometric analysis showed that IL-10 significantly enhanced the phagocytosis of Edwardsiella tarda but not Lactococcus lactis by mIgM+ B lymphocytes. Moreover, significantly higher intracellular ROS levels were detected in mIgM+ B lymphocytes following rIL-10 stimulation. The qRT-PCR analysis showed that rIL-10 could upregulate the expressions of IL-10Rb and Stat3 in mIgM+ B lymphocytes, suggesting that IL-10 might modulate the phagocytosis of mIgM+ B lymphocytes by activating IL-10R and Stat3. In addition, we also found that the enhancing effect of IL-10 on phagocytosis and intracellular ROS levels of mIgM+ B lymphocytes were suppressed by the administration of niclosamide. These results collectively demonstrated that IL-10 enhanced mIgM+ B lymphocyte-mediated phagocytosis of E. tarda and intracellular bactericidal ability, and IL-10R and Stat3 might play a curial role in the regulation of IL-10-stimulated phagocytosis, which would deepen our understanding of regulation mechanism of B cell phagocytosis.
Collapse
Affiliation(s)
- Shun Yang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
12
|
Tang X, Yang S, Sheng X, Xing J, Zhan W. Transcriptome Analysis of Immune Response of mIgM + B Lymphocytes in Japanese Flounder ( Paralichthys olivaceus) to Lactococcus lactis in vitro Revealed That IFN I-3 Could Enhance Their Phagocytosis. Front Immunol 2019; 10:1622. [PMID: 31379827 PMCID: PMC6646603 DOI: 10.3389/fimmu.2019.01622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
B cells have recently been proven to have phagocytic activities, but few studies have explored the relevant regulation mechanisms. In this study, we showed that the Japanese flounder (Paralichthys olivaceus) membrane-bound (m)IgM+ B lymphocyte population could phagocytose inactivated Lactococcus lactis with a mean phagocytic rate of 25%. High-purity mIgM+ B lymphocytes were subsequently sorted to investigate the cellular response to L. lactis stimulation in vitro. Transcriptome analysis identified 1,375 differentially expressed genes (DEGs) after L. lactis stimulation, including 975 upregulated and 400 downregulated genes. Many of these DEGs were enriched in multiple pathways associated with phagocytosis such as focal adhesion, the phagosome, and actin cytoskeleton regulation. Moreover, many genes involved in phagolysosomal function and antigen presentation were also upregulated after stimulation, indicating that mIgM+ B lymphocytes may degrade the internalized bacteria and present processed antigenic peptides to other immune cells. Interestingly, the type I interferon 3 (IFN I-3) gene was upregulated after L. lactis stimulation, and further analysis showed that the recombinant (r)IFN I-3 significantly enhanced phagocytosis of L. lactis and Edwardsiella tarda by mIgM+ B lymphocytes. In addition, significantly higher intracellular reactive oxygen species (ROS) levels were detected in mIgM+ B lymphocytes following rIFN I-3 treatment. We also found that IFN I-3 significantly upregulated Stat1 expression in mIgM+ B lymphocytes, and the enhancing effect of IFN I-3 on mIgM+ B lymphocyte-mediated phagocytosis was suppressed by fludarabine treatment. Collectively, these results demonstrate that mIgM+ B cell-mediated phagocytosis in the Japanese flounder is effectively triggered by bacterial stimulation, and further enhanced by IFN I-3, which itself may be regulated by Stat1.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shun Yang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Zang L, Wang J, Ren Y, Liu W, Yu Y, Zhao S, Otkur W, Zhao Y, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Activated toll-like receptor 4 is involved in oridonin-induced phagocytosis via promotion of migration and autophagy-lysosome pathway in RAW264.7 macrophages. Int Immunopharmacol 2019; 66:99-108. [DOI: 10.1016/j.intimp.2018.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022]
|
14
|
Wiegand MJ, Kubacki GW, Gilbert JL. Electrochemical potential zone of viability on CoCrMo surfaces is affected by cell type: Macrophages under cathodic bias are more resistant to killing. J Biomed Mater Res A 2018; 107:526-534. [DOI: 10.1002/jbm.a.36567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Michael J. Wiegand
- Department of Biomedical and Chemical Engineering; Syracuse University; Syracuse New York
- Syracuse Biomaterials Institute, Syracuse University; Syracuse New York
| | - Gregory W. Kubacki
- Department of Biomedical and Chemical Engineering; Syracuse University; Syracuse New York
- Syracuse Biomaterials Institute, Syracuse University; Syracuse New York
| | - Jeremy L. Gilbert
- Department of Biomedical and Chemical Engineering; Syracuse University; Syracuse New York
- Syracuse Biomaterials Institute, Syracuse University; Syracuse New York
- Department of Bioengineering; Clemson University; Clemson South Carolina
- Clemson University-Medical University of South Carolina Program in Bioengineering; Charleston South Carolina
| |
Collapse
|
15
|
Sun Y, Jiang X, Lu Y, Zhu J, Yu L, Ma B, Zhang Q. Oridonin prevents epithelial-mesenchymal transition and TGF-β1-induced epithelial-mesenchymal transition by inhibiting TGF-β1/Smad2/3 in osteosarcoma. Chem Biol Interact 2018; 296:57-64. [PMID: 30243739 DOI: 10.1016/j.cbi.2018.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
Osteosarcoma is the most common primary bone tumor with highly invasive characteristic and low long-term survival. Recently, epithelial-mesenchymal transition (EMT) is reported as a key event in cancer invasion and metastasis. Oridonin, a bioactive diterpenoid, has been proved to possess anti-cancer effects. However, the effect of oridonin on EMT and metastasis of osteosarcoma is unclear. In this study, we investigated the underlying mechanism of oridonin on EMT and metastasis of osteosarcoma. We found that oridonin inhibited migration and invasion of MG-63 and 143B cells. Moreover, oridonin increased the protein expression of E-cadherin and decreased that of N-cadherin and Vimentin. Oridonin upregulated the transcription of E-cadherin and downregulated N-cadherin and Vimentin. Oridonin inhibited the protein and mRNA levels of Snail and Slug. Furthermore, oridonin inhibited TGF-β-induced phosphorylation of Smad 2/3, prevented Smad dimer translocation into the nucleus. Finally, we established metastatic models of osteosarcoma 143B cells, and found that oridonin inhibited lung metastasis in vivo. Oridonin increased the protein expression of E-cadherin and reduced N-cadherin and Vimentin. Oridonin inhibited the protein expression of Snail and Slug as well as Smad 2/3 activation. In conclusion, our study demonstrated that oridonin inhibited EMT and TGF-β1-induced EMT by inhibiting TGF-β1/Smad2/3 signaling pathway in osteosarcoma.
Collapse
Affiliation(s)
- Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China.
| | - Xiubo Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Ying Lu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Jianwei Zhu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Lisha Yu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China.
| |
Collapse
|
16
|
Ding Y, Li D, Ding C, Wang P, Liu Z, Wold EA, Ye N, Chen H, White MA, Shen Q, Zhou J. Regio- and Stereospecific Synthesis of Oridonin D-Ring Aziridinated Analogues for the Treatment of Triple-Negative Breast Cancer via Mediated Irreversible Covalent Warheads. J Med Chem 2018. [PMID: 29528645 DOI: 10.1021/acs.jmedchem.7b01514] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Covalent drug discovery has undergone a resurgence in recent years due to comprehensive optimization of the structure-activity relationship (SAR) and the structure-reactivity relationship (SRR) for covalent drug candidates. The natural product oridonin maintains an impressive pharmacological profile through its covalent enone warhead on the D-ring and has attracted substantial SAR studies to characterize its potential in the development of new molecular entities for the treatment of various human cancers and inflammation. Herein, for the first time, we report the excessive reactivity of this covalent warhead and mediation of the covalent binding capability through a Rh2(esp)2-catalyzed mild and concise regio- and stereospecific aziridination approach. Importantly, aziridonin 44 (YD0514), with a more-druglike irreversible covalent warhead, has been identified to significantly induce apoptosis and inhibit colony formation against triple-negative breast cancer with enhanced antitumor effects in vitro and in vivo while displaying lower toxicity to normal human mammary epithelial cells in comparison to oridonin.
Collapse
Affiliation(s)
| | - Dengfeng Li
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States.,Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , China
| | | | | | | | | | | | | | | | - Qiang Shen
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | |
Collapse
|
17
|
Liu X, Kang J, Wang H, Huang T. Mitochondrial ROS contribute to oridonin-induced HepG2 apoptosis through PARP activation. Oncol Lett 2017; 15:2881-2888. [PMID: 29435014 PMCID: PMC5778846 DOI: 10.3892/ol.2017.7665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/10/2017] [Indexed: 01/11/2023] Open
Abstract
Oridonin, the main active constituent of Rabdosia rubescens, is known to exert antitumor activity via the induction of apoptosis in numerous types of human cancer cells. However, the underlying regulatory mechanisms of mitochondrial ROS in oridonin-induced HepG2 apoptosis remain largely unknown, due to limitations of subcellular imaging resolution. Previously, it has been suggested that mitochondria serve a potential role in sensing and signaling cellular redox changes in vital biological processes such as cell death and the abiotic stress response, based on studies involving the mitochondrial-targeted redox-sensitive green fluorescent protein (GFP). To address this, a mitochondrial-targeted Grx1-roGFP2 (mtGrx1-roGFP2) biosensor was implemented to monitor real-time mitochondrial redox changes of HepG2 cells in response to either H2O2/DTT or oridonin/SS31 treatment. It was determined that oridonin caused a perturbation in mitochondrial redox status, which in turn contributed to oridonin-induced apoptosis. Furthermore, a novel mechanism underlying the regulation of mitochondrial redox changes in oridonin-induced HepG2 apoptosis, presumably dependent on PARP cleavage, was proposed. In conclusion, the present study provides evidence in support of mitochondrial redox changes as a potential mediator in the apoptotic activities of oridonin in HepG2 cells, which provides insight into the molecular mechanisms by which mitochondrial redox signaling regulates oridonin-induced apoptosis in cancer therapy, and the development of mitochondria-specific oridonin as a promising novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Xiaoning Liu
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| | - Jingjing Kang
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| | - Hui Wang
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| | - Tao Huang
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| |
Collapse
|
18
|
Yao Z, Xie F, Li M, Liang Z, Xu W, Yang J, Liu C, Li H, Zhou H, Qu LH. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis 2017; 8:e2633. [PMID: 28230866 PMCID: PMC5386482 DOI: 10.1038/cddis.2017.35] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
The Warburg effect is an important characteristic of tumor cells, making it an attractive therapeutic target. Current anticancer drug development strategies predominantly focus on inhibitors of the specific molecular effectors involved in tumor cell proliferation. These drugs or natural compounds, many of which target the Warburg effect and the underlying mechanisms, still need to be characterized. To elucidate the anticancer effects of a natural diterpenoid, oridonin, we first demonstrated the anticancer activity of oridonin both in vitro and in vivo in colorectal cancer (CRC) cells. Then miRNA profiling of SW480 cells revealed those intracellular signaling related to energy supply was affected by oridonin, suggesting that glucose metabolism is a potential target for CRC therapy. Moreover, our results indicated that oridonin induced metabolic imbalances by significantly inhibiting glucose uptake and reducing lactate export through significantly downregulating the protein levels of GLUT1 and MCT1 in vitro and vivo. However, the ATP level in oridonin-treated CRC cells was not decreased when oridonin blocked the glucose supply, indicating that oridonin induced autophagy process, an important ATP source in cancer cells. The observation was then supported by the results of LC3-II detection and transmission electron microscopy analysis, which confirmed the presence of autophagy. Furthermore, p-AMPK was rapidly deactivated following oridonin treatment, resulting in downregulation of GLUT1 and induction of autophagy in the cancer cells. Thus our finding helped to clarify the anticancer mechanisms of oridonin and suggested it could be applied as a glucose metabolism-targeting agent for cancer treatment.
Collapse
Affiliation(s)
- Zhuo Yao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fuhua Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Min Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zirui Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenli Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianhua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chang Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongwangwang Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Abstract
Oridonin has attracted considerable attention in the last decade because of its anti-cancer pharmacological properties. This ent-kaurane diterpenoid, isolated from the Chinese herb Rabdosia rubescens and some related species, has
demonstrated great potential in the treatment profile of many diseases by exerting anti-tumor, anti-inflammatory, pro-apoptotic, and neurological effects. Unfortunately, the mechanisms via which oridonin exerts these effects remain poorly understood. This review provides an overview of the multifunctional effects of oridonin as well as the reasons for its potential for investigations in the treatment of many diseases other than cancer.
Collapse
Affiliation(s)
- Brice Ayissi Owona
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tübingen, Calwer Street 3, Tübingen, Germany,
| | | |
Collapse
|
20
|
Unravelling the relationship between macroautophagy and mitochondrial ROS in cancer therapy. Apoptosis 2016; 21:517-31. [DOI: 10.1007/s10495-016-1236-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
22
|
Manna A, De Sarkar S, De S, Bauri AK, Chattopadhyay S, Chatterjee M. The variable chemotherapeutic response of Malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:713-723. [PMID: 26141757 DOI: 10.1016/j.phymed.2015.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
PURPOSE The 'two-faced' character of reactive oxygen species (ROS) plays an important role in cancer biology by acting as secondary messengers in intracellular signaling cascades, enhancing cell proliferation and survival, thereby sustaining the oncogenic phenotype. Conversely, enhanced generation of ROS can trigger an oxidative assault leading to a redox imbalance translating into an apoptotic cell death. Intrinsically, cancer cells have higher basal levels of ROS which if supplemented by additional oxidative insult by pro-oxidants can be cytotoxic, an example being Malabaricone-A (MAL-A). MAL-A is a plant derived diarylnonanoid, purified from fruit rind of the plant Myristica malabarica whose anti-cancer activity has been demonstrated in leukemic cell lines, the modality of cell death being apoptosis. This study aimed to compare the degree of effectiveness of MAL-A in leukemic vs. solid tumor cell lines. METHODS The cytotoxicity of MAL-A was evaluated by the MTS-PMS cell viability assay in leukemic cell lines (MOLT3, K562 and HL-60) and compared with solid tumor cell lines (MCF7, A549 and HepG2); further studies then proceeded with MOLT3 vs. MCF7 and A549. The contribution of redox imbalance in MAL-A induced cytotoxicity was confirmed by pre-incubating cells with an antioxidant, N-acetyl-L-cysteine (NAC) or a thiol depletor, buthionine sulfoximine (BSO). MAL-A induced redox imbalance was quantitated by flow cytometry, by measuring the generation of ROS and levels of non protein thiols using dichlorofluorescein diacetate (CM-H2DCFDA) and 5-chloromethylfluorescein diacetate (CMFDA) respectively. The activities of glutathione peroxidase (GPx), superoxide dismutase, catalase (CAT), NAD(P)H dehydrogenase (quinone 1) NQO1 and glutathione-S-transferase GST were measured spectrophotometrically. The mitochondrial involvement of MAL-A induced cell death was measured by evaluation of cardiolipin peroxidation using 10-N-nonyl acridine orange (NAO), transition pore activity with calcein-AM, while the mitochondrial transmembrane electrochemical gradient (∆ψ(m)) was measured by JC-1, fluorescence being acquired in a flow cytometer. The apoptotic mode of cell death was evaluated by double staining with annexin V-FITC and propidium iodide (PI), cell cycle analysis by flow cytometry and caspase-3 activity spectrophotometrically. The expression of Nrf2 and HO-1 was examined by western blotting. RESULTS MAL-A demonstrated a higher degree of cytotoxicity in three leukemic cell lines whose IC50 ranged from 12.70 ± 0.10 to 18.10 ± 0.95 µg/ml, whereas in three solid tumor cell lines, the IC50 ranged from 28.10 ± 0.58 to 55.26 ± 5.90 µg/ml. This higher degree of cytotoxicity in MOLT3, a leukemic cell line was due to a higher induction of redox imbalance, evident by both an increased generation of ROS and concomitant depletion of thiols. This was confirmed by pre-incubation with NAC and BSO, wherein NAC decreased MAL-A induced cytotoxicity by 2.04 fold while BSO enhanced MAL-A cytotoxicity and decreased the IC50 by 5.60 fold. However, in solid tumor cell lines (MCF7 and A549), NAC minimally decreased MAL-A induced cytotoxicity, and BSO increased the IC50 by 1.96 and 2.39 fold respectively. Furthermore, the generation of ROS by MAL-A increased maximally in MOLT3 as the fluorescence increased from 44.28 ± 7.85 to 273.99 ± 32.78, and to a lesser degree in solid tumor cell lines, MCF7 (44.28 ± 14.89 to 207.97 ± 70.64) and A549 (37.87 ± 3.24 to 147.12 ± 38.53). In all three cell lines there was a concomitant depletion of thiols as in MOLT3, the GMFC decreased from 340.65 ± 60.39 to 62.67 ± 11.32, in MCF7 (277.82 ± 50.32 to 100.39 ± 31.93) and in A549 (274.05 ± 59.13 to 83.15 ± 21.43). In MOLT3 as compared to MCF7 and A549, decrease in the activities of GPx, CAT, NQO1 and GST was substantially greater. In all cell lines, the MAL-A induced redox imbalance translated into triggering of initial mitochondrial apoptotic events. Here again, MAL-A induced a higher degree of cardiolipin peroxidation in MOLT3 (67.01%) than MCF7 and A549 (29.15% and 44.30%), as also down regulated the mitochondrial transition pore activity from baseline to a higher extent, GMFC being 48.05 ± 2.37 to 10.70 ± 3.97 (MOLT3), 43.55 ± 3.36 to 15.36 ± 0.60 (MCF7) and 39.58 ± 0.4 to 12.65 ± 1.56 (A549). Perturbation of mitochondrial membrane potential evident by a decrease in the ratio of red/green (J-aggregates/monomers) was 134 fold (14.73/0.11) in MOLT3, 45 fold in MCF7 (20.72/0.46) and 34 fold in A549 (22.01/0.64). The extent of apoptosis using a similar concentration of MAL-A was maximal in MOLT3, wherein a 105 fold increase in annexin V binding was evident (0.83 ± 0.51 to 87.08 ± 9.85%) whereas it increased by 43.11 fold in MCF7 (0.69 ± 0.30 to 29.75 ± 11.79%) and 47.52 fold in A549 (0.61 ± 0.31 to 28.99 ± 17.21%). MAL-A induced apoptosis was also associated with a higher degree of caspase-3 activity in MOLT3 vs. MCF7 or A549 which translated into halting of cell cycle progression, evident by an increment in the sub-G0/G1 population [19.26 fold in MOLT3 (0.95 ± 0.45 vs. 18.30 ± 1.90%), 11.01 fold in MCF7 (0.97 ± 0.37 vs. 10.68 ± 0.69%) and 8.58 fold in A549 (1.06 ± 0.45 vs. 9.10 ± 1.05%)]. MAL-A effectively inhibited Nrf2 and HO-1, more prominently in MOLT3. Furthermore, the decreased expression of Nrf2 in MOLT3 correlated with the decreased activities of NQO1 and GST, suggesting that targeting of the Nrf2 anti-oxidant pathway could be considered. CONCLUSION Taken together, MAL-A a pro-oxidant compound is likely to be more effective in leukemias, meriting further pharmacological consideration.
Collapse
Affiliation(s)
- Alak Manna
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B, Acharya JC Bose Road, Kolkata 700 020, India
| | - Sritama De Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B, Acharya JC Bose Road, Kolkata 700 020, India
| | - Soumita De
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B, Acharya JC Bose Road, Kolkata 700 020, India
| | - Ajay K Bauri
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | | | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B, Acharya JC Bose Road, Kolkata 700 020, India .
| |
Collapse
|
23
|
Guo SX, Fang Q, You CG, Jin YY, Wang XG, Hu XL, Han CM. Effects of hydrogen-rich saline on early acute kidney injury in severely burned rats by suppressing oxidative stress induced apoptosis and inflammation. J Transl Med 2015; 13:183. [PMID: 26047940 PMCID: PMC4467622 DOI: 10.1186/s12967-015-0548-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/26/2015] [Indexed: 01/21/2023] Open
Abstract
Background Early acute kidney injury (AKI) in severely burned patients predicts a high mortality that is multi-factorial. Hydrogen has been reported to alleviate organ injury via selective quenching of reactive oxygen species. This study investigated the potential protective effects of hydrogen against severe burn-induced early AKI in rats. Methods Severe burn were induced via immersing the shaved back of rats into a 100°C bath for 15 s. Fifty-six Sprague–Dawley rats were randomly divided into Sham, Burn + saline, and Burn + hydrogen-rich saline (HS) groups, and renal function and the apoptotic index were measured. Kidney histopathology and immunofluorescence staining, quantitative real-time PCR, ELISA and western blotting were performed on the sera or renal tissues of burned rats to explore the underlying effects and mechanisms at varying time points post burn. Results Renal function and tubular apoptosis were improved by HS treatment. In addition, the oxidation–reduction potential and malondialdehyde levels were markedly reduced with HS treatment, whereas endogenous antioxidant enzyme activities were significantly increased. HS also decreased the myeloperoxidase levels and influenced the release of inflammatory mediators in the sera and renal tissues of the burned rats. The regulatory effects of HS included the inhibition of p38, JNK, ERK and NF-κB activation, and an increase in Akt phosphorylation. Conclusion Hydrogen can attenuate severe burn-induced early AKI; the mechanisms of protection include the inhibition of oxidative stress induced apoptosis and inflammation, which may be mediated by regulation of the MAPKs, Akt and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Song-Xue Guo
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Quan Fang
- Department of Plastic Surgery, Binjiang Branch, Second Affiliated Hospital, School of Medicine, Zhejiang University, 1511 Jianghong Road, Hangzhou, 310000, Zhejiang, China.
| | - Chuan-Gang You
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Yun-Yun Jin
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Xin-Gang Wang
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Xin-Lei Hu
- Department of Orthopedic, Binjiang Branch, Second Affiliated Hospital, School of Medicine, Zhejiang University, 1511 Jianghong Road, Hangzhou, 31000, Zhejiang, China.
| | - Chun-Mao Han
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
24
|
Cao Y, Wei W, Zhang N, Yu Q, Xu WB, Yu WJ, Chen GQ, Wu YL, Yan H. Oridonin stabilizes retinoic acid receptor alpha through ROS-activated NF-κB signaling. BMC Cancer 2015; 15:248. [PMID: 25886043 PMCID: PMC4403721 DOI: 10.1186/s12885-015-1219-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/19/2015] [Indexed: 12/22/2022] Open
Abstract
Background Retinoic acid receptor alpha (RARα) plays an essential role in the regulation of many biological processes, such as hematopoietic cell differentiation, while abnormal RARα function contributes to the pathogenesis of certain diseases including cancers, especially acute promyelocytic leukemia (APL). Recently, oridonin, a natural diterpenoid isolated from Rabdosia rubescens, was demonstrated to regulate RARα by increasing its protein level. However, the underlying molecular mechanism for this action has not been fully elucidated. Methods In the APL cell line, NB4, the effect of oridonin on RARα protein was analyzed by western blot and real-time quantitative RT-PCR analyses. Flow cytometry was performed to detect intracellular levels of reactive oxygen species (ROS). The association between nuclear factor-kappa B (NF-κB) signaling and the effect of oridonin was assessed using specific inhibitors, shRNA gene knockdown, and immunofluorescence assays. In addition, primary leukemia cells were treated with oridonin and analyzed by western blot in this study. Results RARα possesses transcriptional activity in the presence of its ligand, all-trans retinoic acid (ATRA). Oridonin remarkably stabilized the RARα protein, which retained transcriptional activity. Oridonin also moderately increased intracellular ROS levels, while pretreatment with the ROS scavenger, N-acetyl-l-cysteine (NAC), dramatically abrogated RARα stabilization by oridonin. More intriguingly, direct exposure to low concentrations of H2O2 also increased RARα protein but not mRNA levels, suggesting a role for ROS in oridonin stabilization of RARα protein. Further investigations showed that NAC antagonized oridonin-induced activation of NF-κB signaling, while the NF-κB signaling inhibitor, Bay 11–7082, effectively blocked the oridonin increase in RARα protein levels. In line with this, over-expression of IκΒα (A32/36), a super-repressor form of IκΒα, or NF-κB-p65 knockdown inhibited oridonin or H2O2-induced RARα stability. Finally, tumor necrosis factor alpha (TNFα), a classical activator of NF-κB signaling, modulated the stability of RARα protein. Conclusions Oridonin stabilizes RARα protein by increasing cellular ROS levels, which causes activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yang Cao
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Wei Wei
- Department of Hematology, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Nan Zhang
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Qing Yu
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Wen-Bin Xu
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Wen-Jun Yu
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Ying-Li Wu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Hua Yan
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 2014; 7:1081-107. [PMID: 25161295 DOI: 10.1158/1940-6207.capr-14-0136] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the incidences are increasing day after day, scientists and researchers taken individually or by research group are trying to fight against cancer by several ways and also by different approaches and techniques. Sesquiterpenes, flavonoids, alkaloids, diterpenoids, and polyphenolic represent a large and diverse group of naturally occurring compounds found in a variety of fruits, vegetables, and medicinal plants with various anticancer properties. In this review, our aim is to give our perspective on the current status of the natural compounds belonging to these groups and discuss their natural sources, their anticancer activity, their molecular targets, and their mechanism of actions with specific emphasis on apoptosis pathways, which may help the further design and conduct of preclinical and clinical trials. Unlike pharmaceutical drugs, the selected natural compounds induce apoptosis by targeting multiple cellular signaling pathways including transcription factors, growth factors, tumor cell survival factors, inflammatory cytokines, protein kinases, and angiogenesis that are frequently deregulated in cancers and suggest that their simultaneous targeting by these compounds could result in efficacious and selective killing of cancer cells. This review suggests that they provide a novel opportunity for treatment of cancer, but clinical trials are still required to further validate them in cancer chemotherapy.
Collapse
Affiliation(s)
- Faya M Millimouno
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China. Dental Hospital, Jilin University, Changchun, China. Higher Institute of Science and Veterinary Medicine of Dalaba, Dalaba, Guinea
| | - Jia Dong
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liu Yang
- Dental Hospital, Jilin University, Changchun, China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun, China.
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| |
Collapse
|
26
|
Wang H, Ye Y, Yu ZL. Proteomic and functional analyses demonstrate the involvement of oxidative stress in the anticancer activities of oridonin in HepG2 cells. Oncol Rep 2014; 31:2165-72. [PMID: 24627081 DOI: 10.3892/or.2014.3081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/27/2014] [Indexed: 11/06/2022] Open
Abstract
Oridonin exhibits a curative effect on liver carcinoma in patients and experimental animals. In the present study, we performed proteomic and functional analyses to explore the mechanism involved in the anticancer activity of oridonin. Oridonin treatment for 24 h resulted in a dose-dependent decrease in cell viability with an IC50 value of 37.90 µM. Treatment with 40 µM oridonin for 24 h induced apoptosis as typical apoptotic nuclear alterations were observed following DAPI staining. Using a 2-DE-based proteomic approach, 3 upregulated oxidative stress markers, Hsp70-1, Hop and Prdx2, were identified in the HepG2 cells treated with 40 µM oridonin for 24 h. A pattern of alteration in Hsp70-1 was verified by western blotting. The mRNA expression patterns of Hsp70-1 and Hop as determined by qPCR were comparable to their protein expression patterns. Further investigations showed that oridonin treatment for 24 h resulted in reactive oxygen species (ROS) generation, and ROS scavenger N-acetylcysteine (NAC) completely inhibited ROS production and restored cell viability, suggesting that oxidative stress contributed to oridonin-induced HepG2 cell death. Western blot analysis of oxidative stress pathway-related proteins demonstrated that oridonin treatment increased p-JNK, p-p38 and p-p53, and decreased Bcl-2 protein expression levels, promoted cytochrome c release, decreased mitochondrial membrane potential, and activated caspase-9 and caspase-3. Furthermore, knockdown of Hsp70-1 expression with specific shRNA significantly decreased the viability of the cells treated with oridonin, suggesting a protective role of Hsp70-1 in oridonin-mediated oxidative stress. The results of the present study provide evidence for a link between oxidative stress and oridonin-induced apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Hui Wang
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Yan Ye
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, P.R. China
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, P.R. China
| |
Collapse
|