1
|
Jiang Q, Wang X, Xu X, Hu L, Zhou G, Liu R, Yang G, Cui D. Inflammasomes in rheumatoid arthritis: a pilot study. BMC Rheumatol 2023; 7:39. [PMID: 37899476 PMCID: PMC10614352 DOI: 10.1186/s41927-023-00353-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The inflammasome plays an important role in rheumatoid arthritis (RA), which has rarely been systematically reported. The aim of this study was to understand whether the levels of inflammasomes were related to the severity of RA disease, which might provide a stronger theoretical basis for RA treatment. METHODS The mRNA expression levels of some inflammasomes and associated molecules, including IL-1beta and IL-18, in peripheral blood mononuclear cells (PBMCs) from 30 RA patients (n = 30) and 16 healthy control (HC) individuals were determined by quantitative real-time polymerase chain reaction (qRT‒PCR), and the levels of plasma IL-1beta and IL-18 were also measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the clinical characteristics and laboratory results of the patients were collected and analyzed in this study. RESULTS The relative mRNA expression levels of NLRP3, NLRC4, AIM2, caspase-1, and IL-1beta were significantly higher and those of NLRP1, NLRP2 and NLRC5 were notably lower in the HC group than in the RA group. Moreover, the plasma IL-1beta and IL-18 levels were markedly increased in the RA group. Additionally, the mRNA level of AIM2 was negatively correlated with disease activity score 28 (DAS28) by stepwise linear regression analysis. erythrocyte sedimentation rate (ESR) was positively correlated with DAS28 by multiple linear regression analysis in the RA group. CONCLUSIONS These findings imply the critical role of NLRP3, NLRC4, AIM2, caspase-1 and plasma IL-1beta and IL-18 in the pathogenesis of RA patients, which provides potential targets for the treatment of RA.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Xin Wang
- Department of Rheumatology and Immunology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Xiuping Xu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Liangfeng Hu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Guozhong Zhou
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Rui Liu
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China.
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People's Hospital, Shaoxing, 312000, China.
| | - Dawei Cui
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Davidson CT, Miller E, Muir M, Dawson JC, Lee M, Aitken S, Serrels A, Webster SP, Homer NZM, Andrew R, Brunton VG, Hadoke PWF, Walker BR. 11β-HSD1 inhibition does not affect murine tumour angiogenesis but may exert a selective effect on tumour growth by modulating inflammation and fibrosis. PLoS One 2023; 18:e0255709. [PMID: 36940215 PMCID: PMC10027213 DOI: 10.1371/journal.pone.0255709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/05/2022] [Indexed: 03/21/2023] Open
Abstract
Glucocorticoids inhibit angiogenesis by activating the glucocorticoid receptor. Inhibition of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) reduces tissue-specific glucocorticoid action and promotes angiogenesis in murine models of myocardial infarction. Angiogenesis is important in the growth of some solid tumours. This study used murine models of squamous cell carcinoma (SCC) and pancreatic ductal adenocarcinoma (PDAC) to test the hypothesis that 11β-HSD1 inhibition promotes angiogenesis and subsequent tumour growth. SCC or PDAC cells were injected into female FVB/N or C57BL6/J mice fed either standard diet, or diet containing the 11β-HSD1 inhibitor UE2316. SCC tumours grew more rapidly in UE2316-treated mice, reaching a larger (P<0.01) final volume (0.158 ± 0.037 cm3) than in control mice (0.051 ± 0.007 cm3). However, PDAC tumour growth was unaffected. Immunofluorescent analysis of SCC tumours did not show differences in vessel density (CD31/alpha-smooth muscle actin) or cell proliferation (Ki67) after 11β-HSD1 inhibition, and immunohistochemistry of SCC tumours did not show changes in inflammatory cell (CD3- or F4/80-positive) infiltration. In culture, the growth/viability (assessed by live cell imaging) of SCC cells was not affected by UE2316 or corticosterone. Second Harmonic Generation microscopy showed that UE2316 reduced Type I collagen (P<0.001), whilst RNA-sequencing revealed that multiple factors involved in the innate immune/inflammatory response were reduced in UE2316-treated SCC tumours. 11β-HSD1 inhibition increases SCC tumour growth, likely via suppression of inflammatory/immune cell signalling and extracellular matrix deposition, but does not promote tumour angiogenesis or growth of all solid tumours.
Collapse
Affiliation(s)
- Callam T. Davidson
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eileen Miller
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - John C. Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Lee
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott P. Webster
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Natalie Z. M. Homer
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Mass Spectrometry Core, Clinical Research Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Ruth Andrew
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie G. Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick W. F. Hadoke
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R. Walker
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Genetic Medicine, Newcastle University, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Jiang Q, Wang X, Huang E, Wang Q, Wen C, Yang G, Lu L, Cui D. Inflammasome and Its Therapeutic Targeting in Rheumatoid Arthritis. Front Immunol 2022; 12:816839. [PMID: 35095918 PMCID: PMC8794704 DOI: 10.3389/fimmu.2021.816839] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammasome is a cytoplasmic multiprotein complex that facilitates the clearance of exogenous microorganisms or the recognition of endogenous danger signals, which is critically involved in innate inflammatory response. Excessive or abnormal activation of inflammasomes has been shown to contribute to the development of various diseases including autoimmune diseases, neurodegenerative changes, and cancers. Rheumatoid arthritis (RA) is a chronic and complex autoimmune disease, in which inflammasome activation plays a pivotal role in immune dysregulation and joint inflammation. This review summarizes recent findings on inflammasome activation and its effector mechanisms in the pathogenesis of RA and potential development of therapeutic targeting of inflammasome for the immunotherapy of RA.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xin Wang
- Department of Rheumatology and Immunology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Qiao Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Sakalyte R, Denkovskij J, Bernotiene E, Stropuviene S, Mikulenaite SO, Kvederas G, Porvaneckas N, Tutkus V, Venalis A, Butrimiene I. The Expression of Inflammasomes NLRP1 and NLRP3, Toll-Like Receptors, and Vitamin D Receptor in Synovial Fibroblasts From Patients With Different Types of Knee Arthritis. Front Immunol 2022; 12:767512. [PMID: 35126351 PMCID: PMC8807559 DOI: 10.3389/fimmu.2021.767512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Activated rheumatoid arthritis (RA) synovial fibroblasts (SFs) are among the most important cells promoting RA pathogenesis. They are considered active contributors to the initiation, progression, and perpetuation of the disease; therefore, early detection of RASF activation could advance contemporary diagnosis and adequate treatment of undifferentiated early inflammatory arthritis (EA). In this study, we investigated the expression of nucleotide-binding, oligomerization domain (NOD)-like receptor family, pyrin domain containing (NLRP)1, NLRP3 inflammasomes, Toll-like receptor (TLR)1, TLR2, TLR4, vitamin D receptor (VDR), and secretion of matrix metalloproteinases (MMPs) in SFs isolated from patients with RA, osteoarthritis (OA), EA, and control individuals (CN) after knee surgical intervention. C-reactive protein, general blood test, anticyclic citrullinated peptide (anti-CCP), rheumatoid factor (RF), and vitamin D (vitD) in patients’ sera were performed. Cells were stimulated or not with 100 ng/ml tumor necrosis factor alpha (TNF-α) or/and 1 nM or/and 0.01 nM vitamin D3 for 72 h. The expression levels of NLRP1, NLRP3, TLR1, TLR2, TLR4, and VDR in all examined SFs were analyzed by quantitative real-time PCR (RT-qPCR). Additionally, the secretion of IL-1β by SFs and MMPs were determined by ELISA and Luminex technology. The expression of NLRP3 was correlated with the levels of CRP, RF, and anti-CCP, suggesting its implication in SF inflammatory activation. In the TNF-α-stimulated SFs, a significantly lower expression of NLRP3 and TLR4 was observed in the RA group, compared with the other tested forms of arthritis. Moreover, upregulation of NLRP3 expression by TNF-α alone or in combination with vitD3 was observed, further indicating involvement of NLRP3 in the inflammatory responses of SFs. Secretion of IL-1β was not detected in any sample, while TNF-α upregulated the levels of secreted MMP-1, MMP-7, MMP-8, MMP-12, and MMP-13 in all patient groups. Attenuating effects of vitD on the expression of NLRP3, TLR1, and TLR4 suggest potential protective effects of vitD on the inflammatory responses in SFs. However, longer studies may be needed to confirm or fully rule out the potential implication of vitD in SF activation in inflammatory arthritis. Both VDR and NLRP3 in the TNF-α-stimulated SFs negatively correlated with the age of patients, suggesting potential age-related changes in the local inflammatory responses.
Collapse
Affiliation(s)
- Regina Sakalyte
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Department of Experimental, Preventative and Clinic Medicine, Vilnius, Lithuania
- *Correspondence: Regina Sakalyte,
| | - Jaroslav Denkovskij
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, The Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius Tech, Vilnius, Lithuania
| | - Sigita Stropuviene
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Department of Experimental, Preventative and Clinic Medicine, Vilnius, Lithuania
| | - Silvija Ona Mikulenaite
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, Vilnius, Lithuania
| | - Giedrius Kvederas
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
| | - Narunas Porvaneckas
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
| | - Vytautas Tutkus
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Algirdas Venalis
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Department of Experimental, Preventative and Clinic Medicine, Vilnius, Lithuania
| | - Irena Butrimiene
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Department of Experimental, Preventative and Clinic Medicine, Vilnius, Lithuania
| |
Collapse
|
5
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
6
|
Huang P, Li Y, Xu C, Melino G, Shao C, Shi Y. HSD11B1 is upregulated synergistically by IFNγ and TNFα and mediates TSG-6 expression in human UC-MSCs. Cell Death Discov 2020; 6:24. [PMID: 32328292 PMCID: PMC7168568 DOI: 10.1038/s41420-020-0262-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammatory factors such as IFNγ and TNFα could endow mesenchymal stem cells (MSCs) a potent immunomodulatory property, a process called licensing, but the mechanisms are not fully understood. We here found that glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1), which converts inactive cortisone to the active cortisol and thereby regulates tissue glucocorticoid (GC) levels, was greatly upregulated by IFNγ and TNFα in human umbilical cord-derived MSCs (UC-MSCs) in a synergistic manner. While IFNγ alone was not able to induce HSD11B1, it could increase the activity of NF-kB and thus augment the upregulation of HSD11B1 by TNFα. Interestingly, the upregulation of HSD11B1 by IFNγ and TNFα also required glucocorticoid receptor. Furthermore, HSD11B1 was shown to be required for the expression of TNF-stimulated gene 6 (TSG-6), an important anti-inflammatory effector molecule of MSCs. Therefore, the inflammatory factors IFNγ and TNFα can promote GC metabolism and thereby drive the expression of anti-inflammatory factor TSG-6 in human UC-MSCs, forming a potential negative feedback loop. These findings help to understand the relationship between inflammation and GC metabolism.
Collapse
Affiliation(s)
- Peiqing Huang
- 1State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, China
| | - Yinghong Li
- 1State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, China
| | - Chenchang Xu
- 1State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, China
| | - Gerry Melino
- 2Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.,3Medical Research Council (MRC) Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Changshun Shao
- 1State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- 1State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, China.,4The First Affiliated Hospital of Soochow University, Suzhou, China.,5Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Chuanxin Z, Shengzheng W, Lei D, Duoli X, Jin L, Fuzeng R, Aiping L, Ge Z. Progress in 11β-HSD1 inhibitors for the treatment of metabolic diseases: A comprehensive guide to their chemical structure diversity in drug development. Eur J Med Chem 2020; 191:112134. [PMID: 32088493 DOI: 10.1016/j.ejmech.2020.112134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key metabolic enzyme that catalyzing the intracellular conversion of inactive glucocorticoids to physiologically active ones. Work over the past decade has demonstrated the aberrant overexpression of 11β-HSD1 contributed to the pathophysiological process of metabolic diseases like obesity, type 2 diabetes mellitus, and metabolic syndromes. The inhibition of 11β-HSD1 represented an attractive therapeutic strategy for the treatment of metabolic diseases. Therefore, great efforts have been devoted to developing 11β-HSD1 inhibitors based on the diverse molecular scaffolds. This review focused on the structural features of the most important 11β-HSD1 inhibitors and categorized them into natural products derivatives and synthetic compounds. We also briefly discussed the optimization process, binding modes, structure-activity relationships (SAR) and biological evaluations of each inhibitor. Moreover, the challenges and directions for 11β-HSD1 inhibitors were discussed, which might provide some useful clues to guide the future discovery of novel 11β-HSD1 inhibitors.
Collapse
Affiliation(s)
- Zhong Chuanxin
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wang Shengzheng
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dang Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xie Duoli
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Liu Jin
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute for Research and Continuing Education (IRACE), Hong Kong Baptist University, Shenzhen, China
| | - Ren Fuzeng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Lu Aiping
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhang Ge
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
8
|
Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis. Immunol Rev 2020; 294:48-62. [DOI: 10.1111/imr.12839] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lotte Spel
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| | - Fabio Martinon
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| |
Collapse
|
9
|
Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci 2019; 20:ijms20236008. [PMID: 31795299 PMCID: PMC6929211 DOI: 10.3390/ijms20236008] [Citation(s) in RCA: 1083] [Impact Index Per Article: 180.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
This review aims to briefly discuss a short list of a broad variety of inflammatory cytokines. Numerous studies have implicated that inflammatory cytokines exert important effects with regard to various inflammatory diseases, yet the reports on their specific roles are not always consistent. They can be used as biomarkers to indicate or monitor disease or its progress, and also may serve as clinically applicable parameters for therapies. Yet, their precise role is not always clearly defined. Thus, in this review, we focus on the existing literature dealing with the biology of cytokines interleukin (IL)-6, IL-1, IL-33, tumor necrosis factor-alpha (TNF-α), IL-10, and IL-8. We will briefly focus on the correlations and role of these inflammatory mediators in the genesis of inflammatory impacts (e.g., shock, trauma, immune dysregulation, osteoporosis, and/or critical illness).
Collapse
Affiliation(s)
- Shinwan Kany
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany;
- Department of Cardiology with Emphasis on Electrophysiology, University Heart Centre, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, 60590 Frankfurt, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6721395
| |
Collapse
|
10
|
Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, Shin M, Cho S, Kim TH, Park S, Jeon BY, Jeong H, Lee K, Kang K, Oh M, Lee H, Lee S, Kwon Y, Oh GH, Kronbichler A. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun 2019; 103:102299. [PMID: 31326231 DOI: 10.1016/j.jaut.2019.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes are a multi-protein platform forming a part of the innate immune system. Inflammasomes are at standby status and can be activated when needed. Inflammasome activation is an important mechanism for the production of active interleukin (IL)-1β and IL-18, which have important roles to instruct adaptive immunity. Active forms of inflammasomes trigger a series of inflammatory cascades and lead to the differentiation and polarization of naïve T cells and secretion of various cytokines, which can induce various kinds of autoimmune and rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), gout, Sjögren's syndrome, Behçet's disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgA vasculitis (former Henoch-Schönlein purpura ). In this review, we summarize studies published on inflammasomes and review their roles in various autoimmune diseases. Understanding of the role of inflammasomes may facilitate the diagnosis of autoimmune diseases and the development of tailored therapies in the future.
Collapse
Affiliation(s)
- Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea
| | - Yo Han Joo
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon M Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Jaewook Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jae Jung
- Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyue Shin
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seobum Cho
- Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hwan Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyuk Park
- Yonsei University College of Medicine, Seoul, South Korea
| | - Bong Yeol Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunwoo Jeong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kangto Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kyutae Kang
- Yonsei University College of Medicine, Seoul, South Korea
| | - Myungsuk Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hansang Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seungchul Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yeji Kwon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Geun Ho Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Luo L, Liu Q, Peng S, Meng Y, Du W, Luo D, Wang Q, Ding J, Dong X, Ma X. The Number of Regulatory B Cells is Increased in Mice with Collagen-induced Arthritis. Open Life Sci 2019; 14:12-18. [PMID: 33817132 PMCID: PMC7874759 DOI: 10.1515/biol-2019-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of this study is to investigate changes in regulatory B cells (Bregs) and the expression of related cytokines such as interleukin-10 (IL-10) and transforming growth factor (TGF)-β in a mouse model of collagen-induced arthritis (CIA). A total 20 DBA/1 mice (6-8 weeks old) were randomly divided into control and CIA disease groups. For the CIA disease group, animals were injected intradermally with chicken collagen type II and complete Freund's adjuvant. The calculated arthritis index score of the CIA group was significantly higher than that in control group. Hematoxylin and eosin staining showed tumid synovial cells with irregular arrangement and obvious hyperplasia, with a high degree of inflammatory cell infiltration in CIA model group. Cytometric bead array technology and quantitative RT-PCR indicated that the levels of IL-10 and TGF-β in serum, and synovial cells were significantly increased in the CIA group. The proportion of Bregs in the spleen of the CIA group was significantly increased compared to the control group. In conclusion, our findings demonstrate that the number of Bregs and the expression of TGF-β and IL-10 are enhanced in mice with CIA.
Collapse
Affiliation(s)
- Li Luo
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Qing Liu
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Shanshan Peng
- College of Basic Medicine, Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Yan Meng
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Wenjing Du
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Demei Luo
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Qian Wang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Jianbing Ding
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Xunan Dong
- The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 West Henan Road, Urumqi 830011, Xinjiang Uygur Autonomous Region, Urumqi P.R. China
| | - Xiumin Ma
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, No. 137 South Liyushan Road, Urumqi 830011, Xinjiang Uygur Autonomous Region, Urumqi P.R. China.,College of Basic Medicine, Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| |
Collapse
|
12
|
Hardy RS, Fenton C, Croft AP, Naylor AJ, Begum R, Desanti G, Buckley CD, Lavery G, Cooper MS, Raza K. 11 Beta-hydroxysteroid dehydrogenase type 1 regulates synovitis, joint destruction, and systemic bone loss in chronic polyarthritis. J Autoimmun 2018; 92:104-113. [PMID: 29891135 PMCID: PMC6066611 DOI: 10.1016/j.jaut.2018.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 01/15/2023]
Abstract
OBJECTIVE In rheumatoid arthritis, the enzyme 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is highly expressed at sites of inflammation, where it converts inactive glucocorticoids (GC) to their active counterparts. In conditions of GC excess it has been shown to be a critical regulator of muscle wasting and bone loss. Here we examine the contribution of 11β-HSD1 to the pathology of persistent chronic inflammatory disease. METHODS To determine the contribution of 11β-HSD1 to joint inflammation, destruction and systemic bone loss associated with persistent inflammatory arthritis, we generated mice with global and mesenchymal specific 11β-HSD1 deletions in the TNF-transgenic (TNF-tg) model of chronic polyarthritis. Disease severity was determined by clinical scoring. Histology was assessed in formalin fixed sections and fluorescence-activated cell sorting (FACS) analysis of synovial tissue was performed. Local and systemic bone loss were measured by micro computed tomography (micro-CT). Measures of inflammation and bone metabolism were assessed in serum and in tibia mRNA. RESULTS Global deletion of 11β-HSD1 drove an enhanced inflammatory phenotype, characterised by florid synovitis, joint destruction and systemic bone loss. This was associated with increased pannus invasion into subchondral bone, a marked polarisation towards pro-inflammatory M1 macrophages at sites of inflammation and increased osteoclast numbers. Targeted mesenchymal deletion of 11β-HSD1 failed to recapitulate this phenotype suggesting that 11β-HSD1 within leukocytes mediate its protective actions in vivo. CONCLUSIONS We demonstrate a fundamental role for 11β-HSD1 in the suppression of synovitis, joint destruction, and systemic bone loss. Whilst a role for 11β-HSD1 inhibitors has been proposed for metabolic complications in inflammatory diseases, our study suggests that this approach would greatly exacerbate disease severity.
Collapse
Affiliation(s)
- R S Hardy
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.
| | - C Fenton
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - A P Croft
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK
| | - A J Naylor
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK
| | - R Begum
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - G Desanti
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK
| | - C D Buckley
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK
| | - G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, UK
| | - M S Cooper
- ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - K Raza
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK; Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| |
Collapse
|
13
|
Yi YS. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 22:1-15. [PMID: 29302207 PMCID: PMC5746506 DOI: 10.4196/kjpp.2018.22.1.1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023]
Abstract
Inflammasomes are intracellular multiprotein complexes that coordinate anti-pathogenic host defense during inflammatory responses in myeloid cells, especially macrophages. Inflammasome activation leads to activation of caspase-1, resulting in the induction of pyroptosis and the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Although the inflammatory response is an innate host defense mechanism, chronic inflammation is the main cause of rheumatic diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and Sjögren's syndrome (SS). Since rheumatic diseases are inflammatory/autoimmune disorders, it is reasonable to hypothesize that inflammasomes activated during the inflammatory response play a pivotal role in development and progression of these diseases. Indeed, previous studies have provided important observations that inflammasomes are actively involved in the pathogenesis of inflammatory/autoimmune rheumatic diseases. In this review, we summarize the current knowledge on several types of inflammasomes during macrophage-mediated inflammatory responses and discuss recent research regarding the role of inflammasomes in the pathogenesis of inflammatory/autoimmune rheumatic diseases. This avenue of research could provide new insights for the development of promising therapeutics to treat inflammatory/autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Korea
| |
Collapse
|
14
|
Wu Q, Xiong X, Zhang X, Lu J, Zhang X, Chen W, Wu T, Cui L, Liu Y, Xu B. Secondary osteoporosis in collagen-induced arthritis rats. J Bone Miner Metab 2016. [PMID: 26210858 DOI: 10.1007/s00774-015-0700-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous studies have demonstrated that rheumatoid arthritis (RA) is often associated with bone loss; however, few experiments have focused on cancellous and cortical bone changes in rats during the process of arthritis. We have investigated bone changes in rats with collagen-induced arthritis (CIA) and have explored the characteristics of how RA induces osteoporosis by means of bone histomorphometry, bone biomechanics studies, bone mineral density studies, micro computer tomography, enzyme-linked immunosorbant assay, immunohistochemistry, and Western blot analysis. Bone mineral density of the femur and lumbar vertebrae and biomechanical properties of the femur were decreased in CIA rats. Trabecular bone volume of the tibia and lumbar vertebrae was decreased whereas bone resorption was increased in CIA rats. Bone formation of the tibial shaft in periosteal surfaces was decreased in CIA rats. Furthermore, the trabecular bone loss in CIA rats was severer at 16 weeks than at 8 weeks, as was cortical bone loss. The serum level of tumor necrosis factor α in CIA rats was increased, and the expression of dickkopf 1 and that of receptor activator of nuclear factor κB (RANKL) ligand (RANKL) in the ankle joints were also increased, but the expression of osteoprotegerin (OPG) was decreased. We conclude that CIA rats developed systemic osteoporosis, and that osteoporosis became more serious with CIA development. The mechanism may be related to the increase of bone resorption in cancellous bone cause by upregulation of the expression of DKK-1 and regulation of the RANKL/RANK/OPG signaling pathway, and the decrease of bone formation in cortical bone caused by an increase in the expression of DKK-1.
Collapse
Affiliation(s)
- Qingyun Wu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Xueting Xiong
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Xinle Zhang
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Jiaqi Lu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Xuemei Zhang
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Wenshuang Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Tie Wu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Yuyu Liu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China.
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Bhunia D, Pallavi PMC, Bonam SR, Reddy SA, Verma Y, Halmuthur MSK. Design, Synthesis, and Evaluation of Novel 1,2,3-Triazole-Tethered Glycolipids as Vaccine Adjuvants. Arch Pharm (Weinheim) 2015; 348:689-703. [DOI: 10.1002/ardp.201500143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Debabrata Bhunia
- Vaccine Immunology Laboratory; Natural Products Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad India
| | - Preethi M. C. Pallavi
- Vaccine Immunology Laboratory; Natural Products Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory; Natural Products Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad India
| | - Sandeep A. Reddy
- Vaccine Immunology Laboratory; Natural Products Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad India
| | - Yogesh Verma
- Vaccine Immunology Laboratory; Natural Products Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad India
| | - M. Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory; Natural Products Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad India
| |
Collapse
|
16
|
Nanus DE, Filer AD, Yeo L, Scheel-Toellner D, Hardy R, Lavery GG, Stewart PM, Buckley CD, Tomlinson JW, Cooper MS, Raza K. Differential glucocorticoid metabolism in patients with persistent versus resolving inflammatory arthritis. Arthritis Res Ther 2015; 17:121. [PMID: 25971255 PMCID: PMC4431033 DOI: 10.1186/s13075-015-0633-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/20/2015] [Indexed: 02/08/2023] Open
Abstract
Introduction Impairment in the ability of the inflamed synovium to generate cortisol has been proposed to be a factor in the persistence and severity of inflammatory arthritis. In the inflamed synovium, cortisol is generated from cortisone by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. The objective of this study was to determine the role of endogenous glucocorticoid metabolism in the development of persistent inflammatory arthritis. Methods Urine samples were collected from patients with early arthritis (symptoms ≤12 weeks duration) whose final diagnostic outcomes were established after clinical follow-up and from patients with established rheumatoid arthritis (RA). All patients were free of disease-modifying anti-rheumatic drugs at the time of sample collection. Systemic measures of glucocorticoid metabolism were assessed in the urine samples by gas chromatography/mass spectrometry. Clinical data including CRP and ESR were also collected at baseline. Results Systemic measures of 11β-HSD1 activity were significantly higher in patients with early arthritis whose disease went on to persist, and also in the subgroup of patients with persistent disease who developed RA, when compared with patients whose synovitis resolved over time. We observed a significant positive correlation between systemic 11β-HSD1 activity and ESR/CRP in patients with established RA but not in any of the early arthritis patients group. Conclusions The present study demonstrates that patients with a new onset of synovitis whose disease subsequently resolved had significantly lower levels of systemic 11β-HSD1 activity when compared with patients whose synovitis developed into RA or other forms of persistent arthritis. Low absolute levels of 11β-HSD1 activity do not therefore appear to be a major contributor to the development of RA and it is possible that a high total body 11β-HSD1 activity during early arthritis may reduce the probability of disease resolution. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0633-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dominika E Nanus
- Rheumatology Research Group, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Andrew D Filer
- Rheumatology Research Group, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, B15 2TH, UK.
| | - Lorraine Yeo
- Rheumatology Research Group, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Dagmar Scheel-Toellner
- Rheumatology Research Group, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rowan Hardy
- Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Gareth G Lavery
- Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Paul M Stewart
- Faculty of Medicine and Health, University of Leeds, Worsley Building, Leeds, LS2 9JT, UK.
| | - Christopher D Buckley
- Rheumatology Research Group, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Rheumatology, Sandwell and West Birmingham Hospitals NHS Trust, Dudley Road, Birmingham, B18 7QH, UK.
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LE, UK.
| | - Mark S Cooper
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Hospital Road, Sydney, NSW 2139, Australia.
| | - Karim Raza
- Rheumatology Research Group, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Rheumatology, Sandwell and West Birmingham Hospitals NHS Trust, Dudley Road, Birmingham, B18 7QH, UK.
| |
Collapse
|
17
|
Doig CL, Bashir J, Zielinska AE, Cooper MS, Stewart PM, Lavery GG. TNFα-mediated Hsd11b1 binding of NF-κB p65 is associated with suppression of 11β-HSD1 in muscle. J Endocrinol 2014; 220:389-96. [PMID: 24413279 PMCID: PMC4027025 DOI: 10.1530/joe-13-0494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The activity of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive cortisone (11-dehydrocorticosterone (11-DHC)) (in mice) into the active glucocorticoid (GC) cortisol (corticosterone in mice), can amplify tissue GC exposure. Elevated TNFα is a common feature in a range of inflammatory disorders and is detrimental to muscle function in diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease. We have previously demonstrated that 11β-HSD1 activity is increased in the mesenchymal stromal cells (MSCs) by TNFα treatment and suggested that this is an autoregulatory anti-inflammatory mechanism. This upregulation was mediated by the P2 promoter of the Hsd11b1 gene and was dependent on the NF-κB signalling pathway. In this study, we show that in contrast to MSCs, in differentiated C2C12 and primary murine myotubes, TNFα suppresses Hsd11b1 mRNA expression and activity through the utilization of the alternative P1 promoter. As with MSCs, in response to TNFα treatment, NF-κB p65 was translocated to the nucleus. However, ChIP analysis demonstrated that the direct binding was seen at position -218 to -245 bp of the Hsd11b1 gene's P1 promoter but not at the P2 promoter. These studies demonstrate the existence of differential regulation of 11β-HSD1 expression in muscle cells through TNFα/p65 signalling and the P1 promoter, further enhancing our understanding of the role of 11β-HSD1 in the context of inflammatory disease.
Collapse
|
18
|
Hardy RS, Raza K, Cooper MS. Glucocorticoid metabolism in rheumatoid arthritis. Ann N Y Acad Sci 2014; 1318:18-26. [DOI: 10.1111/nyas.12389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rowan S. Hardy
- Rheumatology Research Group; University of Birmingham; Birmingham United Kingdom
| | - Karim Raza
- Rheumatology Research Group; University of Birmingham; Birmingham United Kingdom
| | - Mark S. Cooper
- ANZAC Research Institute; Concord Repatriation General Hospital; University of Sydney; Sydney Australia
| |
Collapse
|