1
|
Emami F, Vatanara A, Vakhshiteh F, Kim Y, Kim TW, Na DH. Amino acid-based stable adalimumab formulation in spray freeze-dried microparticles for pulmonary delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2
|
Lin J, Yang D, Huang M, Zhang Y, Chen P, Cai S, Liu C, Wu C, Yin K, Wang C, Zhou X, Su N. Chinese expert consensus on diagnosis and management of severe asthma. J Thorac Dis 2018; 10:7020-7044. [PMID: 30746249 PMCID: PMC6344700 DOI: 10.21037/jtd.2018.11.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/25/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Jiangtao Lin
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dong Yang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mao Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongming Zhang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Chen
- Department of Respiratory Medicine, General Hospital of Shenyang Military Region, Shenyang 110015, China
| | - Shaoxi Cai
- Department of Respiratory Medicine, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Chuntao Liu
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Changgui Wu
- Department of Respiratory Medicine, Xijing Hospital of Fourth Military Medical University, Xi’an 710032, China
| | - Kaisheng Yin
- Department of Respiratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Changzheng Wang
- Department of Respiratory Medicine, Xinqiao Hospital of Third Military Medical University, Chongqing 400037, China
| | - Xin Zhou
- Department of Respiratory Medicine, First People’s Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Nan Su
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
3
|
Human lung tissue provides highly relevant data about efficacy of new anti-asthmatic drugs. PLoS One 2018; 13:e0207767. [PMID: 30500834 PMCID: PMC6267969 DOI: 10.1371/journal.pone.0207767] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Subgroups of patients with severe asthma are insensitive to inhaled corticosteroids and require novel therapies on top of standard medical care. IL-13 is considered one of the key cytokines in the asthma pathogenesis, however, the effect of IL-13 was mostly studied in rodents. This study aimed to assess IL-13 effect in human lung tissue for the development of targeted therapy approaches such as inhibition of soluble IL-13 or its receptor IL-4Rα subunit. Precision-cut lung slices (PCLS) were prepared from lungs of rodents, non-human primates (NHP) and humans. Direct effect of IL-13 on human lung tissue was observed on inflammation, induction of mucin5AC, and airway constriction induced by methacholine and visualized by videomicroscopy. Anti-inflammatory treatment was evaluated by co-incubation of IL-13 with increasing concentrations of IL-13/IL-13 receptor inhibitors. IL-13 induced a two-fold increase in mucin5AC secretion in human bronchial tissue. Additionally, IL-13 induced release of proinflammatory cytokines eotaxin-3 and TARC in human PCLS. Anti-inflammatory treatment with four different inhibitors acting either on the IL-13 ligand itself (anti-IL-13 antibody, similar to Lebrikizumab) or the IL-4Rα chain of the IL-13/IL-4 receptor complex (anti-IL-4Rα #1, similar to AMG 317, and #2, similar to REGN668) and #3 PRS-060 (a novel anticalin directed against this receptor) could significantly attenuate IL-13 induced inflammation. Contrary to this, IL-13 did not induce airway hyperresponsiveness (AHR) in human and NHP PCLS, although it was effective in rodent PCLS. Overall, this study demonstrates that IL-13 stimulation induces production of mucus and biomarkers of allergic inflammation in human lung tissue ex-vivo but no airway hyperresponsiveness. The results of this study show a more distinct efficacy than known from animals models and a clear discrepancy in AHR induction. Moreover, it allows a translational approach in inhibitor profiling in human lung tissue.
Collapse
|
4
|
Huang ZW, Lien GS, Lin CH, Jiang CP, Chen BC. p300 and C/EBPβ-regulated IKKβ expression are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Pharmacol Res 2017; 121:33-41. [PMID: 28428115 DOI: 10.1016/j.phrs.2017.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 12/17/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are common chronic lung inflammatory diseases. Thrombin and interleukin (IL)-8/C-X-C chemokine ligand 8 (CXCL8) play critical roles in lung inflammation. Our previous study showed that c-Src-dependent IκB kinase (IKK)/IκBα/nuclear factor (NF)-κB and mitogen-activated protein kinase kinase kinase 1 (MEKK1)/extracellular signal-regulated kinase (ERK)/ribosomal S6 protein kinase (RSK)-dependent CAAT/enhancer-binding protein β (C/EBPβ) activation are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. In this study, we aimed to investigate the roles of p300 and C/EBPβ-reliant IKKβ expression in thrombin-induced IL-8/CXCL8 expression. Thrombin-induced increases in IL-8/CXCL8-luciferase activity and IL-8/CXCL8 release were inhibited by p300 small interfering (siRNA). Thrombin-caused histone H3 acetylation was attenuated by p300 siRNA. Stimulation of cells with thrombin for 12h resulted in increases in IKKβ expression and phosphorylation in human lung epithelial cells. However, thrombin did not affect p65 expression. Moreover, 12h of thrombin stimulation produced increases in IKKβ expression and phosphorylation, and IκBα phosphorylation, which were inhibited by C/EBPβ siRNA. Finally, treatment of cells with thrombin caused increases in p300 and C/EBPβ complex formation, p65 and C/EBPβ complex formation, and recruitment of p300, p65, and C/EBPβ to the IL-8/CXCL8 promoter. These results imply that p300-dependent histone H3 acetylation and C/EBPβ-regulated IKKβ expression contribute to thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Results of this study will help clarify C/EBPβ signaling pathways involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Zheng-Wei Huang
- Graduate Institute of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Gi-Shih Lien
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ping Jiang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther 2017; 177:9-22. [PMID: 28202366 DOI: 10.1016/j.pharmthera.2017.02.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a broadly expressed, polymodally gated ion channel that plays an important role in many physiological and pathophysiological processes. TRPV4 knockout mice and several synthetic pharmacological compounds that selectively target TRPV4 are now available, which has allowed detailed investigation in to the therapeutic potential of this ion channel. Results from animal studies suggest that TRPV4 antagonism has therapeutic potential in oedema, pain, gastrointestinal disorders, and lung diseases such as cough, bronchoconstriction, pulmonary hypertension, and acute lung injury. A lack of observed side-effects in vivo has prompted a first-in-human trial for a TRPV4 antagonist in healthy participants and stable heart failure patients. If successful, this would open up an exciting new area of research for a multitude of TRPV4-related pathologies. This review will discuss the known roles of TRPV4 in disease, and highlight the possible implications of targeting this important cation channel for therapy.
Collapse
Affiliation(s)
- Megan S Grace
- Baker Heart and Diabetes Institute, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia; Department of Physiology, School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
6
|
André DM, Calixto MC, Sollon C, Alexandre EC, Leiria LO, Tobar N, Anhê GF, Antunes E. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice. Int Immunopharmacol 2016; 38:298-305. [PMID: 27344038 DOI: 10.1016/j.intimp.2016.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Obesity and insulin resistance have been associated with deterioration in asthma outcomes. High oxidative stress and deficient activation of AMP-activated protein kinase (AMPK) have emerged as important regulators linking insulin resistance and inflammation. This study aimed to evaluate the effects of resveratrol on obesity-associated allergic pulmonary inflammation. Male C57/Bl6 mice fed with high-fat diet to induce obesity (obese group) or standard-chow diet (lean group) were treated or not with resveratrol (100mg/kg/day, two weeks). Mice were sensitized and challenged with ovalbumin (OVA). At 48h thereafter, bronchoalveolar lavage fluid was performed, and lungs collected for morphological studies and Western blot analysis. Treatment of obese mice with resveratrol significantly reduced hyperglycemia and insulin resistance, as well as the body measures (body mass, fat mass, % fat, and body area). OVA-challenge promoted a higher increase in pulmonary eosinophil infiltration in obese compared with lean mice, which was nearly abrogated by resveratrol treatment. Resveratrol markedly increased the phosphorylated AMPK expression in lung tissues of obese compared with lean mice. Resveratrol reduced the p47phox expression and reactive-oxygen species (ROS) production, and elevated the superoxide dismutase (SOD) levels in lung tissues of obese mice. The increased pulmonary levels of TNF-α and inducible nitric oxide synthase (iNOS) in obese mice were also normalized after resveratrol treatment. In lean mice, resveratrol failed to affect the levels of fasting glucose, p47phox, ROS levels, TNF-α, iNOS and phosphorylated AMPK. Resveratrol exhibits protective effects in obesity-associated lung inflammation that is accompanied by local AMPK activation and antioxidant property.
Collapse
Affiliation(s)
- Diana Majolli André
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marina Ciarallo Calixto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolina Sollon
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luiz O Leiria
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Natalia Tobar
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The Th2 pathway starts with the binding of IL-4 to the IL-4 receptor followed by the phosphorylation of signal transducer and activator of transcription 6 and the activation of GATA3. The most important question relates to the sources of IL-4 and IL-4 related inflammation. Which cells other than Th2 cells are responsible for airway inflammation in asthma? RECENT FINDINGS Accumulating data indicate that basophils contribute to endothelium-related IL-4-dependent inflammation. There is also a dendritic cell-related alternative for the induction of Th2 cells via Notch signalling. GATA3 deoxyribozyme improves asthma that is not clearly related to T-cells. The innate immune response in allergy is linked to mast cells, basophils, and the innate lymphoid cell type 2 (ILC2). ILC2s respond to IL-25, IL-33, thymic stromal lymphopoietin, and leukotrienes by producing IL-4, IL-5, and IL-13. In addition to all this inflammatory-cell-driven asthma, increasing evidence has emerged relating to smooth muscle cell activation, the endothelial and epithelial barrier functions, and improvements in the barrier function. The elevation of intracellular cyclic adenosine monophosphate because of the use of phosphodiesterase inhibitors adds to the prevention of epithelial-endothelial leakage, supports airway smooth muscle relaxation, and is immunosuppressive. CONCLUSION AND SUMMARY IL-4 is the predominant Th2 cell cytokine. Many more cells, including eosinophils, basophils, mast cells, and ILC2, contribute to the production of IL-4 in the airways. Epithelial cells and endothelial cells lose barrier function in the context of allergic airway inflammation, and this could be at least partially remedied by increasing the intracellular cyclic adenosine monophosphate levels through phosphodiesterase inhibition.
Collapse
|
8
|
Fang R, Cui Q, Sun J, Duan X, Ma X, Wang W, Cheng B, Liu Y, Hou Y, Bai G. PDK1/Akt/PDE4D axis identified as a target for asthma remedy synergistic with β2 AR agonists by a natural agent arctigenin. Allergy 2015; 70:1622-32. [PMID: 26335809 DOI: 10.1111/all.12763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Asthma is a heterogenetic disorder characterized by chronic inflammation with variable airflow obstruction and airway hyper-responsiveness. As the most potent and popular bronchodilators, β2 adrenergic receptor (β2 AR) agonists bind to the β2 ARs that are coupled via a stimulatory G protein to adenylyl cyclase, thereby improving cAMP accumulation and resulting in airway smooth muscle relaxation. We previously demonstrated arctigenin had a synergistic function with the β2 AR agonist, but the target for this remained elusive. METHOD Chemical proteomics capturing was used to enrich and uncover the target of arctigenin in human bronchial smooth muscle cells, and reverse docking and molecular dynamic stimulation were performed to evaluate the binding of arctigenin and its target. In vitro enzyme activities and protein levels were demonstrated with special kits and Western blotting. Finally, guinea pig tracheal muscle segregation and ex vivo function were analysed. RESULTS Arctigenin bound to PDK1 with an ideal binding free energy -25.45 kcal/mol and inhibited PDK1 kinase activity without changing its protein level. Additionally, arctigenin reduced PKB/Akt-induced phosphorylation of PDE4D, which was first identified in this study. Attenuation of PDE4D resulted in cAMP accumulation in human bronchial smooth muscle. The inhibition of PDK1 showed a synergistic function with β2 AR agonists and relaxed the constriction of segregated guinea pig tracheal muscle. CONCLUSIONS The PDK1/Akt/PDE4D axis serves as a novel asthma target, which may benefit airflow obstruction.
Collapse
Affiliation(s)
- R. Fang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing China
- State Key Laboratory of Medicinal Chemical Biology; Department of Biochemistry; College of Life Sciences; Nankai University; Tianjin China
| | - Q. Cui
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - J. Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - X. Duan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - X. Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - W. Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - B. Cheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Y. Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Y. Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing China
| | - G. Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| |
Collapse
|
9
|
Respaud R, Marchand D, Parent C, Pelat T, Thullier P, Tournamille JF, Viaud-Massuard MC, Diot P, Si-Tahar M, Vecellio L, Heuzé-Vourc'h N. Effect of formulation on the stability and aerosol performance of a nebulized antibody. MAbs 2014; 6:1347-55. [PMID: 25517319 DOI: 10.4161/mabs.29938] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most monoclonal antibodies (mAbs) are administered to patients intravenously to ensure high bioavailability as rapidly as possible. The airways, however, are an attractive delivery route for mAbs for the treatment of lung diseases, making it possible to increase their concentration in the target organ while limiting their systemic passage. Several challenges must be overcome for translation into clinical practice. For example, the drug and device must be paired for the efficient and reliable deposition of a pharmacologically active and safe mAb in the lung region of interest. Mesh nebulizers appear to be the most effective aerosol-producing devices for delivering large amounts of biopharmaceutical while limiting protein instability during nebulization. We used metrological and analytic methods to analyze the effect of both antibody concentration and surfactant addition on aerosol performance and antibody integrity. These two factors had a limited effect on aerosol performance, but affected antibody aggregation. The addition of surfactants to antibody formulations at concentrations appropriate for lung administration markedly reduced the formation of medium or large aggregates, as shown by dynamic light scattering and fluorescence microscopy. Aggregation was also dependent on the type of mesh nebulizer, highlighting the need to optimize drug and device together.
Collapse
Affiliation(s)
- Renaud Respaud
- a Génétique, Immunothérapie, Chimie et Cancer; UMR 7292/EA6306 ; Tours , France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|