1
|
Rook GAW. The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. FRONTIERS IN ALLERGY 2023; 4:1220481. [PMID: 37772259 PMCID: PMC10524266 DOI: 10.3389/falgy.2023.1220481] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
In wealthy urbanised societies there have been striking increases in chronic inflammatory disorders such as allergies, autoimmunity and inflammatory bowel diseases. There has also been an increase in the prevalence of individuals with systemically raised levels of inflammatory biomarkers correlating with increased risk of metabolic, cardiovascular and psychiatric problems. These changing disease patterns indicate a broad failure of the mechanisms that should stop the immune system from attacking harmless allergens, components of self or gut contents, and that should terminate inappropriate inflammation. The Old Friends Hypothesis postulates that this broad failure of immunoregulation is due to inadequate exposures to the microorganisms that drive development of the immune system, and drive the expansion of components such as regulatory T cells (Treg) that mediate immunoregulatory mechanisms. An evolutionary approach helps us to identify the organisms on which we are in a state of evolved dependence for this function (Old Friends). The bottom line is that most of the organisms that drive the regulatory arm of the immune system come from our mothers and family and from the natural environment (including animals) and many of these organisms are symbiotic components of a healthy microbiota. Lifestyle changes that are interrupting our exposure to these organisms can now be identified, and many are closely associated with low socioeconomic status (SES) in wealthy countries. These insights will facilitate the development of education, diets and urban planning that can correct the immunoregulatory deficit, while simultaneously reducing other contributory factors such as epithelial damage.
Collapse
Affiliation(s)
- Graham A. W. Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, United Kingdom
| |
Collapse
|
2
|
Choi YH, Kim BS, Kang SS. Inhibitory Effect of Genomic DNA Extracted from Pediococcus acidilactici on Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammatory Responses. Food Sci Anim Resour 2023; 43:101-112. [PMID: 36789204 PMCID: PMC9890371 DOI: 10.5851/kosfa.2022.e62] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to assess whether genomic DNA (gDNA) extracted from Pediococcus acidilactici inhibits Porphyromonas gingivalis lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 cells. Pretreatment with gDNA of P. acidilactici K10 or P. acidilactici HW01 for 15 h effectively inhibited P. gingivalis LPS-induced mRNA expression of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1. Although both gDNAs did not dose-dependently inhibit P. gingivalis LPS-induced mRNA expression of IL-6 and MCP-1, they inhibited IL-1β mRNA expression in a dose-dependent manner. Moreover, pretreatment with both gDNAs inhibited the secretion of IL-1β, IL-6, and MCP-1. When RAW 264.7 cells were stimulated with P. gingivalis LPS alone, the phosphorylation of mitogen-activated protein kinases (MAPKs) was increased. However, the phosphorylation of MAPKs was reduced in the presence of gDNAs. Furthermore, both gDNAs restored IκBα degradation induced by P. gingivalis LPS, indicating that both gDNAs suppressed the activation of nuclear factor-κB (NF-κB). In summary, P. acidilactici gDNA could inhibit P. gingivalis LPS-induced inflammatory responses through the suppression of MAPKs and NF-κB, suggesting that P. acidilactici gDNA could be effective in preventing periodontitis.
Collapse
Affiliation(s)
- Young Hyeon Choi
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Bong Sun Kim
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Seok-Seong Kang
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| |
Collapse
|
4
|
The Putative Antidepressant Mechanisms of Probiotic Bacteria: Relevant Genes and Proteins. Nutrients 2021; 13:nu13051591. [PMID: 34068669 PMCID: PMC8150869 DOI: 10.3390/nu13051591] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Probiotic bacteria are widely accepted as therapeutic agents against inflammatory bowel diseases for their immunostimulating effects. In the last decade, more evidence has emerged supporting the positive effects of probiotics on the course of neurodegenerative and psychiatric diseases. This brief review summarizes the data from clinical studies of probiotics possessing antidepressant properties and focuses on the potential genes and proteins underlying these mechanisms. Data from small-sample placebo-controlled pilot studies indicate that certain strains of bacteria can significantly reduce the symptoms of depression, especially in depressed patients. Despite the disparity between studies attempting to pinpoint the bacterial putative genes and proteins accounting for these mechanisms, they ultimately show that bacteria are a potential source of metabiotics—microbial metabolites or structural components. Since the constituents of cells—namely, secreted proteins, peptides and cell wall components—are most likely to be entangled in the gut–brain axis, they can serve as starting point in the search for probiotics with concrete properties.
Collapse
|
5
|
Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front Nutr 2020; 7:570344. [PMID: 33195367 PMCID: PMC7642493 DOI: 10.3389/fnut.2020.570344] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactobacilli comprise an important group of probiotics for both human and animals. The emerging concern regarding safety problems associated with live microbial cells is enhancing the interest in using cell components and metabolites derived from probiotic strains. Here, we define cell structural components and metabolites of probiotic bacteria as paraprobiotics and postbiotics, respectively. Paraprobiotics and postbiotics produced from Lactobacilli consist of a wide range of molecules including peptidoglycans, surface proteins, cell wall polysaccharides, secreted proteins, bacteriocins, and organic acids, which mediate positive effect on the host, such as immunomodulatory, anti-tumor, antimicrobial, and barrier-preservation effects. In this review, we systematically summarize the paraprobiotics and postbiotics derived from Lactobacilli and their beneficial functions. We also discuss the mechanisms underlying their beneficial effects on the host, and their interaction with the host cells. This review may boost our understanding on the benefits and molecular mechanisms associated with paraprobiotics and probiotics from Lactobacilli, which may promote their applications in humans and animals.
Collapse
Affiliation(s)
- Tsegay Teame
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Anran Wang
- AgricultureIsLife/EnvironmentIsLife and Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes, Gembloux, Belgium
| | - Mingxu Xie
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenchen Gao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Tobita K, Watanabe I, Saito M. Specific vaginal lactobacilli suppress the inflammation induced by lipopolysaccharide stimulation through downregulation of toll-like receptor 4 expression in human embryonic intestinal epithelial cells. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2017; 36:39-44. [PMID: 28243550 PMCID: PMC5301056 DOI: 10.12938/bmfh.16-011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022]
Abstract
Vaginal lactobacilli (VLB) spread from the mother to the infant during vaginal delivery. However, the effects of VLB on infant intestinal function remain
unclear. We investigated the probiotic function and immune effects of VLB on the human embryonic intestinal epithelial cell line INT-407. VLB survived
artificial gastric juice and adhered to INT-407 cells. Exposure of INT-407 cells to VLB attenuated both the lipopolysaccharide (LPS)-induced stimulation of
interleukin-8 and tumor necrosis factor alpha production and the LPS-stimulated upregulation of TLR4 expression. These results suggest that specific VLB
suppresses the inflammation induced by LPS stimulation through downregulation of TLR4 expression in human embryonic intestinal epithelial cells.
Collapse
Affiliation(s)
- Keisuke Tobita
- KITII Co., Ltd., SEI building, 5 Araki-cho, Shinjuku-ku, Tokyo 160-0007, Japan
| | - Itsuki Watanabe
- KITII Co., Ltd., SEI building, 5 Araki-cho, Shinjuku-ku, Tokyo 160-0007, Japan
| | - Masanori Saito
- Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo-shi, Chiba 271-8587, Japan
| |
Collapse
|
8
|
Liu YW, Fu TY, Peng WS, Chen YH, Cao YM, Chen CC, Hung WL, Tsai YC. Evaluation of the potential anti-allergic effects of heat-inactivated Lactobacillus paracasei V0151 in vitro, ex vivo, and in vivo. Benef Microbes 2015; 6:697-705. [PMID: 26192907 DOI: 10.3920/bm2014.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The efficacy of Lactobacillus paracasei V0151 (V0151), isolated from the faeces of a child, to modulate immune responses was investigated. In RAW 264.7 cells expressing an inducible nitric oxide synthase (iNOS)-directed luciferase gene, heat-inactivated V0151 stimulated iNOS expression followed by nitric oxide production. V0151 significantly elevated interferon gamma, interleukin (IL)-10, tumour necrosis factor alpha, and IL-1β production in human peripheral blood mononuclear cells. In splenocytes isolated from ovalbumin (OVA)-sensitised BALB/c mice treated with OVA and V0151 at different bacterium-to-cell ratios (1:1, 10:1, and 20:1) for 96 h, IL-2, IL-4, IL-5, and IL-13 production was dose-dependently downregulated, whereas IL-12 was dose-dependently upregulated. Collectively, our findings indicate that V0151 might regulate pro-inflammatory factors in macrophages and splenocytes. Furthermore, the T helper 1/T helper 2 (Th1/Th2) balance was also skewed toward Th1 dominance through the elevation of Th1 cytokine production.
Collapse
Affiliation(s)
- Y W Liu
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, BeiTou Dist., Taipei 11221, Taiwan, R.O.C
| | - T Y Fu
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, BeiTou Dist., Taipei 11221, Taiwan, R.O.C.,2 Probiotics Research Center, National Yang-Ming University, No. 155, Li-Nong St., Section 2, BeiTou Dist., Taipei 11221, Taiwan, R.O.C
| | - W S Peng
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, BeiTou Dist., Taipei 11221, Taiwan, R.O.C.,2 Probiotics Research Center, National Yang-Ming University, No. 155, Li-Nong St., Section 2, BeiTou Dist., Taipei 11221, Taiwan, R.O.C
| | - Y H Chen
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, BeiTou Dist., Taipei 11221, Taiwan, R.O.C.,2 Probiotics Research Center, National Yang-Ming University, No. 155, Li-Nong St., Section 2, BeiTou Dist., Taipei 11221, Taiwan, R.O.C
| | - Y M Cao
- 3 Want Want China Holdings Ltd., No.1088, East Hond Song Rd., Shanghai 201103, China P.R
| | - C C Chen
- 3 Want Want China Holdings Ltd., No.1088, East Hond Song Rd., Shanghai 201103, China P.R
| | - W L Hung
- 3 Want Want China Holdings Ltd., No.1088, East Hond Song Rd., Shanghai 201103, China P.R
| | - Y C Tsai
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, BeiTou Dist., Taipei 11221, Taiwan, R.O.C.,2 Probiotics Research Center, National Yang-Ming University, No. 155, Li-Nong St., Section 2, BeiTou Dist., Taipei 11221, Taiwan, R.O.C
| |
Collapse
|