1
|
Guo L, Liu Y, Li J, Liu Q, Liu B, Shi X. Inflammatory bowel disease can reduce ovarian reserve function in women: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e33113. [PMID: 36930072 PMCID: PMC10019261 DOI: 10.1097/md.0000000000033113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
PURPOSE We conducted a systematic review and meta-analysis to examine the role of inflammatory bowel disease (IBD) in ovarian reserve functions. METHODS The PECO strategy was employed. Women of reproductive age (Population) and with IBD (Exposure) were compared with healthy women of reproductive age (Comparison) to evaluate the ovarian reserve function (Outcome). Two reviewers searched three databases as well as relevant gray literature. After following the PRISMA 2020 guidelines, RevMan 5.0 software and Newcastle-Ottawa Scale (NOS) scoring were used to analyze and summarize the data included in the studies. The protocol was registered on PROSPERO (CRD42021267804). RESULTS The search yielded 367 studies, out of which 13 were selected for full-text evaluation, and finally, seven studies were included in our research. An analysis of ovarian reserve function in IBD women of reproductive age and healthy women revealed that the ovarian reserve function was lower in IBD women of reproductive age than in healthy women (P < .01, I2 = 81%); the ovarian reserve function was significantly lower in women with IBD in remission than in healthy women (P < .01, I2 = 0%), and ovarian reserve function was lower in IBD women of reproductive age taking thalidomide than in healthy women (P < .01, I2 = 18%). CONCLUSION IBD could reduce ovarian reserve function in women of reproductive age, and patients should plan for conception as soon as possible under permissible conditions.
Collapse
Affiliation(s)
- Lin Guo
- Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Liu
- Rongcheng Maternal and Child Health Hospital, Weihai, China
| | - Jiansheng Li
- Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quan Liu
- Lixia District People’s Hospital, Jining, China
| | - Bing Liu
- Shanxian Hospital of Traditional Chinese Medicine, Heze, China
| | - Xuewen Shi
- Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Thalidomide Alleviates Pulmonary Fibrosis Induced by Silica in Mice by Inhibiting ER Stress and the TLR4-NF-κB Pathway. Int J Mol Sci 2022; 23:ijms23105656. [PMID: 35628464 PMCID: PMC9144898 DOI: 10.3390/ijms23105656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Silicosis is the most prevalent occupational disease in China. It is a form of pulmonary fibrosis caused by the inhalation of silicon particles. As there is no cure for the potentially lethal and progressive condition, the treatment of silicotic fibrosis is an important and difficult problem to address. Thalidomide, a drug with anti-inflammatory and immunoregulatory properties, has been reported to have lung-protective effects. The purpose of this study was to observe the therapeutic effect of thalidomide on silicotic mice and to determine the protective mechanism. By using silicotic mice models and MH-S cells, we found the expression of endoplasmic reticulum stress (ER stress) and Toll-like receptor 4 (TLR4)-nuclear factor kappa-B (NF-κB) pathway as well as inflammation-related factors were upregulated in the macrophages of silicotic mice. The same indexes were detected in silica-stimulated MH-S cells, and the results were consistent with those in vivo. That is, silica activated ER stress and the TLR4-NF-κB pathway as well as the inflammatory response in vitro. Treating both silicotic mice and silica-stimulated MH-S cells with thalidomide inhibited ER stress and the TLR4-NF-κB pathway as well as the inflammatory response. The present study demonstrates thalidomide as a potential therapeutic agent against silicosis.
Collapse
|
3
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Current and future treatment. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:84-96. [PMID: 35001525 PMCID: PMC9060042 DOI: 10.1111/crj.13466] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3–5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development. Data Source The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management. Results Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy. Conclusion Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well‐being.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - David Grossfeld
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Heather A Renna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Priya Agarwala
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Peter Spiegler
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joshua DeLeon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
4
|
Gubenzhike Recipe Ameliorates Respiratory Mucosal Immunity in Mice with Chronic Obstructive Pulmonary Disease through Upregulation of the γδT Lymphocytes and KGF Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3056797. [PMID: 32280354 PMCID: PMC7128036 DOI: 10.1155/2020/3056797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/22/2020] [Indexed: 11/18/2022]
Abstract
Background Gubenzhike recipe, a traditional Chinese herbal compound, was assumed to have a possible beneficial effect on COPD. This study was designed to elucidate the mechanism from the perspective of respiratory mucosal immunity. Methods COPD model was induced by exposure to cigarette smoke and LPS instillation in mice for 12 weeks. Animals were administered solution of Gubenzhike recipe by intragastric gavage daily for 4 weeks. After that, mice were sacrificed for lung function test and histological examination of lung tissues. The levels of IL-6 and IL-13 in serum, bronchoalveolar lavage fluid (BALF), and intestinal mucus were measured by ELISA. The KGF and KGFR in lung tissue were analysed by immunohistochemical staining, ELISA, and western blotting, and the mRNA expressions were assessed by PCR. γδT lymphocytes in the lungs were isolated and analysed by immunohistochemical staining and flow cytometry. Results Gubenzhike recipe improved the structure of airway and damage of lung tissue and also the respiratory status and lung function, reduced the content of IL-6 in serum and BALF and IL-13 in BALF and intestinal mucus, increased the proportion of γδT cells in lung tissue, and promoted the secretion of KGF and KGFR (P < 0.05). Conclusion We for the first time demonstrated an experimental procedure for the isolation of γδT lymphocytes from lung tissue. This study suggested that Gubenzhike recipe could enhance the respiratory mucosal immunity which provided experimental evidence for its effects of reinforcing "wei qi" by means of strengthening vital qi, tonifying spleen and kidney, relieving cough, and reducing phlegm in TCM.
Collapse
|
5
|
Dastan F, Tabarsi P, Marjani M, Moniri A, Hashemian SMR, Tavakoli-Ardakani M, Saffaei A. Thalidomide against Coronavirus Disease 2019 (COVID-19): A Medicine with a Thousand Faces. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:1-2. [PMID: 32922463 PMCID: PMC7462477 DOI: 10.22037/ijpr.2020.113369.14259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Farzaneh Dastan
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Moniri
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maria Tavakoli-Ardakani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Saffaei
- Student Research Committee, Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tsai YR, Tweedie D, Navas-Enamorado I, Scerba MT, Chang CF, Lai JH, Wu JCC, Chen YH, Kang SJ, Hoffer BJ, de Cabo R, Greig NH, Chiang YH, Chen KY. Pomalidomide Reduces Ischemic Brain Injury in Rodents. Cell Transplant 2019; 28:439-450. [PMID: 31094216 PMCID: PMC6628558 DOI: 10.1177/0963689719850078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stroke is a leading cause of death and severe disability worldwide. After cerebral
ischemia, inflammation plays a central role in the development of permanent neurological
damage. Reactive oxygen species (ROS) are involved in the mechanism of post-ischemic
inflammation. The activation of several inflammatory enzymes produces ROS, which
subsequently suppress mitochondrial activity, leading to further tissue damage.
Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent.
Prior cellular studies demonstrate that POM can mitigate oxidative stress and lower levels
of pro-inflammatory cytokines, particularly TNF-α, which plays a prominent role in
ischemic stroke-induced brain damage and functional deficits. To evaluate the potential
value of POM in cerebral ischemia, POM was initially administered to transgenic mice
chronically over-expressing TNF-α surfactant protein (SP)-C promoter (SP-C/TNF-α mice) to
assess whether systemically administered drug could lower systemic TNF-α level. POM
significantly lowered serum levels of TNF-α and IL-5. Pharmacokinetic studies were then
undertaken in mice to evaluate brain POM levels following systemic drug administration.
POM possessed a brain/plasma concentration ratio of 0.71. Finally, rats were subjected to
transient middle cerebral artery occlusion (MCAo) for 60 min, and subsequently treated
with POM 30 min thereafter to evaluate action on cerebral ischemia. POM reduced the
cerebral infarct volume in MCAo-challenged rats and improved motor activity, as evaluated
by the elevated body swing test. POM’s neuroprotective actions on ischemic injury
represent a potential therapeutic approach for ischemic brain damage and related
disorders, and warrant further evaluation.
Collapse
Affiliation(s)
- Yan-Rou Tsai
- 1 The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei.,2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei
| | - David Tweedie
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ignacio Navas-Enamorado
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael T Scerba
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Cheng-Fu Chang
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,4 Department of Neurosurgery, Taipei City Hospital, Zhongxiao Branch, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei
| | - Jing-Huei Lai
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei
| | - John Chung-Che Wu
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei.,6 Department of Neurosurgery, Taipei Medical University Hospital, Taipei
| | - Yen-Hua Chen
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei
| | - Shuo-Jhen Kang
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei
| | - Barry J Hoffer
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,7 Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Rafael de Cabo
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H Greig
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yung-Hsiao Chiang
- 1 The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei.,2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei.,6 Department of Neurosurgery, Taipei Medical University Hospital, Taipei
| | - Kai-Yun Chen
- 1 The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei.,2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei
| |
Collapse
|
7
|
Dong X, Li X, Li M, Chen M, Fan Q, Wei W. Antiinflammation and Antioxidant Effects of Thalidomide on Pulmonary Fibrosis in Mice and Human Lung Fibroblasts. Inflammation 2018; 40:1836-1846. [PMID: 28730510 DOI: 10.1007/s10753-017-0625-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this study, the potential effects of thalidomide (Thal) on bleomycin (BLM)-induced pulmonary fibrosis were investigated. BALB/C mice model of pulmonary fibrosis induced by an intratracheal instillation of BLM was adopted, and then was intraperitoneally injected with Thal (10, 20, 50 mg/kg) daily for 8 days, while the control and BLM-treated mouse groups were injected with a saline solution. The effects of Thal on pulmonary injury were evaluated by the lung wet/dry weight ratios and histopathological examination. Inflammation of lung tissues was assessed by measuring the levels of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β in bronchoalveolar lavage fluid. Oxidative stress was evaluated by detecting the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) in lung tissue. The results indicated that Thal treatment remarkably attenuated pulmonary fibrosis, oxidative stress, and inflammation in mouse lungs. The antiinflammatory and antioxidant effects of Thal were also found in human lung fibroblasts. Thal administration significantly enhanced the activity of thioredoxin reductase; however, the other enzymes or proteins involved in biologic oxidation-reduction equilibrium were not affected. Our findings indicate that Thal-mediated suppression of pulmonary fibrosis is related to the inhibition of oxidative stress and inflammatory response. In summary, these results may provide a rationale to explore clinical application of Thal for the prevention of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaoying Dong
- Department of Rheumatism and Immunity, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xin Li
- Department of Rheumatism and Immunity, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Minghui Li
- Department of Rheumatism and Immunity, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Ming Chen
- Department of Rheumatism and Immunity, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Qian Fan
- Department of Rheumatism and Immunity, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Wei Wei
- Department of Rheumatism and Immunity, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
8
|
Campos KKD, Araújo GR, Martins TL, Bandeira ACB, Costa GDP, Talvani A, Garcia CCM, Oliveira LAM, Costa DC, Bezerra FS. The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|