1
|
Coradi C, Panis C. Harnessing hematological ratios: prognostic insights for breast cancer management. Clin Transl Oncol 2025; 27:2041-2053. [PMID: 39402419 DOI: 10.1007/s12094-024-03721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Breast cancer is one of the most lethal diseases affecting women globally. Its progression is influenced by various factors, including the immune system's ability to combat cancer cells. While hematological indices have been recognized as valuable biomarkers for monitoring patients with different types of neoplasms, there remains a considerable gap in research concerning their application in breast cancer. MATERIAL AND METHODS To address this, we conducted a systematic review of studies examining hematological indices as prognostic predictors in breast cancer patients. RESULTS The majority of studies demonstrate a significant correlation between these indices and survival outcomes, underscoring their potential utility in patient monitoring. CONCLUSIONS Hematological-based indexes can be valuable tools for monitoring breast cancer, especially those ongoing poor prognosis scenarios.
Collapse
Affiliation(s)
- Carolina Coradi
- Laboratory of Tumor Biology, Centro de Ciências da Saúde, Universidade Estadual do Oeste do Paraná, Rodovia Vitório Traiano, Km2, Francisco Beltrão, Paraná, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, Centro de Ciências da Saúde, Universidade Estadual do Oeste do Paraná, Rodovia Vitório Traiano, Km2, Francisco Beltrão, Paraná, Brazil.
| |
Collapse
|
2
|
Mezoni MF, Campos AGH, Goulart ACA, Federige ACL, de Oliveira Silva AG, Koizumi BY, Matos RO, da Silva Bender F, Padilha GB, da Silva VP, Almeida RF, de Andrade Berny MP, Rech D, Bufalo AC, Panis C. Distinct salivary antioxidant patterns linked to breast cancer molecular subtypes. REVISTA DE SENOLOGÍA Y PATOLOGÍA MAMARIA 2025; 38:100634. [DOI: 10.1016/j.senol.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
4
|
da Silva RGS, Ferreira MO, Komori IMS, Oliveira HRM, Machado MG, Orrutea JFG, Alves FM, dos Santos Jaques H, da Silva JC, de Souza JA, Rech D, Panis C. Brief research report pesticide occupational exposure leads to significant inflammatory changes in normal mammary breast tissue. Front Public Health 2023; 11:1229422. [PMID: 37780419 PMCID: PMC10538633 DOI: 10.3389/fpubh.2023.1229422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Studies have documented the high occurrence of several tumors, including female breast cancer, in populations occupationally exposed to pesticides worldwide. It is believed that in addition to direct DNA damage, other molecular alterations that indicate genomic instability are associated, such as epigenetic modifications and the production of inflammation mediators. The present study characterized the profile of inflammatory changes in the breast tissue of women without cancer occupationally exposed to pesticides. In samples of normal breast tissue collected during biopsy and evaluated as negative for cancer by a pathologist, oxidative stress levels were assessed as inflammatory markers through measurements of lipoperoxides and total antioxidant capacity of the sample (TRAP) by high-sensitivity chemiluminescence, as well as levels of nitric oxide (NOx) metabolites. The levels of inflammation-modulating transcription factors PPAR-γ (peroxisome proliferator-activated receptor gamma) and NF-κB (nuclear factor kappa B) were also quantified, in addition to the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin 12 (IL-12). The levels of lipoperoxides, TRAP, and NOx were significantly lower in the exposed group. On the other hand, PPAR-γ levels were increased in the breast tissue of exposed women, with no variation in NF-κB. There was also a rise of TNF-α in exposed women samples without significant variations in IL-12 levels. These findings suggest an inflammatory signature of the breast tissue associated with pesticide exposure, which may trigger mechanisms related to mutations and breast carcinogenesis.
Collapse
Affiliation(s)
| | - Mariane Okamoto Ferreira
- Laboratory of Tumor Biology, State University of West Paraná, Unioeste, Francisco Beltrão, Paraná, Brazil
| | - Isabella Mitsu Suo Komori
- Laboratory of Tumor Biology, State University of West Paraná, Unioeste, Francisco Beltrão, Paraná, Brazil
| | | | - Murilo Galvani Machado
- Laboratory of Tumor Biology, State University of West Paraná, Unioeste, Francisco Beltrão, Paraná, Brazil
| | | | - Fernanda Mara Alves
- Laboratory of Tumor Biology, State University of West Paraná, Unioeste, Francisco Beltrão, Paraná, Brazil
| | - Hellen dos Santos Jaques
- Laboratory of Tumor Biology, State University of West Paraná, Unioeste, Francisco Beltrão, Paraná, Brazil
| | - Janaína Carla da Silva
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Montreal, Canada
| | - Janoário Athanazio de Souza
- Laboratory of Tumor Biology, State University of West Paraná, Unioeste, Francisco Beltrão, Paraná, Brazil
- Francisco Beltrão Cancer Hospital, Francisco Beltrão, Paraná, Brazil
| | - Daniel Rech
- Laboratory of Tumor Biology, State University of West Paraná, Unioeste, Francisco Beltrão, Paraná, Brazil
- Francisco Beltrão Cancer Hospital, Francisco Beltrão, Paraná, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, Unioeste, Francisco Beltrão, Paraná, Brazil
| |
Collapse
|
5
|
de Borba Cecílio da Silva AP, Santos Jaques HD, Ferronato M, Mara Alves F, Iago Colleto M, Okamoto Ferreira M, Orrutéa JF, Mezzoni M, Soares da Silva RG, Rech D, Panis C. Excess body weight significantly affects systemic and tumor inflammatory status and correlates to poor prognosis parameters in patients with breast cancer. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100059. [PMID: 37228483 PMCID: PMC10205449 DOI: 10.1016/j.crimmu.2023.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Obesity is a pro-inflammatory disease critical for developing breast cancer (BC), which impacts the profiles of systemic inflammatory mediators and determinants of different disease clinical outcomes remains little explored. Methods A total of 195 patients diagnosed with breast cancer were included. Aiming to exclude chemotherapy interference on circulating mediators, samples were collected at diagnosis, out of the treatment period. Patients were classified as normal weight (BMI up to 24.9 kg/m2) or overweight (BMI ≥25.0 kg/m2). Serum levels of IL-4, IL-12, hydroperoxides, and nitric oxide metabolites (NOx) were measured. Also, tumor expression of inducible nitric oxide synthase (iNOS), TGF-β1, CD4+, and CD8+ lymphocytes were evaluated. Results IL-4 levels were significantly increased in the overweight BC group (p = 0.0329), including patients with luminal B subtype (p = 0.0443), presence of lymph node metastases (p = 0.0115) and age of diagnosis below 50 years, (p = 0.0488). IL-12 levels were significantly increased in overweight BC patients with lymph node metastases (p = 0.0115). Hydroperoxides were increased in overweight BC patients (p = 0.0437), including those with tumors smaller than 2 cm (p = 0.05). NOx levels were also increased in overweight BC patients, including those with luminal B disorders (p = 0.0443), high-grade tumors (p = 0.0351) and lymph node metastases (p = 0.0155). The expression of iNOS (p < 0.001) and TCD4+ lymphocytes (p = 0.0378) was significantly investigated in tumor biopsies from overweight BC women. Conclusions These data provide a picture of the influence of excess body weight on inflammatory mediators' systemic and tumoral profiles, especially in patients displaying poor outcome BC.
Collapse
|
6
|
Hojan K, Gerreth K, Procyk D, Mania K, Zalewska A, Maciejczyk M. Redox Status Response of Physical Exercise Training in Women with Breast Cancer during Trastuzumab Therapy. Healthcare (Basel) 2022; 10:2039. [PMID: 36292486 PMCID: PMC9602187 DOI: 10.3390/healthcare10102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
UNLABELLED Trastuzumab is indicated in the adjuvant setting for the early and intermediate stages of breast cancer (BC) positive for epidermal growth factor receptor 2 (HER2). Although HER2 in BC patients tends to disrupt pro-oxidant and inflammatory signaling, the influence of trastuzumab in modulating this process remains unknown. Due to the absence of any chemotherapeutic or chemoprophylactic agents for trastuzumab-induced side effects, this study investigated the potential role of regular physical exercise in modulating the antioxidant defenses, oxidative stress, and nitrosative damage in BC patients during trastuzumab treatment. AIM The study aimed to analyze the relationship between regular physical activity and the redox status in women with BC during trastuzumab therapy. MATERIALS AND METHODS We observed 50 BC patients during trastuzumab therapy in two groups: one that undertook moderately intensive supervised physical exercises, and a second that performed physical activity according to the recommendations for cancer patients, along with a third (control) group of healthy women. RESULTS The antioxidant enzyme and non-enzymatic antioxidant activities were significantly higher in the exercised group compared with the other participants. The concentrations of lipid and protein oxidative damage and nitrosative stress products were significantly higher in both BC groups than in the healthy controls. CONCLUSIONS Trastuzumab treatment stimulates a redox response in BC patients. The results highlight the oxidative imbalance in parallel with regular physical training in women with BC during trastuzumab therapy. Further studies are needed to analyze different intensities and levels of physical training in women with BC during trastuzumab treatment.
Collapse
Affiliation(s)
- Katarzyna Hojan
- Department of Rehabilitation, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
- Department of Occupational Therapy, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland
| | - Karolina Gerreth
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, 70 Bukowska St., 60-812 Poznan, Poland
| | - Danuta Procyk
- Central Labolatory, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Krystian Mania
- Greater Poland Provincial Hospital, 9-14 Juraszow St., 60-479 Poznan, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24A Marii Sklodowskiej-Curie St., 15-276 Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2C Adama Mickiewicza St., 15-022 Bialystok, Poland
| |
Collapse
|
7
|
Feng QZ, Chen XZ, Sun J, Lu MM, Wang Y, Wang Q, Zhang C. Analysis of the Effect of Trastuzumab Combined with Docetaxel on Serum Tumor Markers in the Treatment of HER-2 Positive Breast Cancer and Factors Influencing Therapeutic Efficacy. Cancer Manag Res 2021; 13:8077-8084. [PMID: 34737636 PMCID: PMC8559233 DOI: 10.2147/cmar.s334680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To explore the influence of trastuzumab (TZ) combined with docetaxel (DTX) on serum tumor markers (TMs) in the treatment of human epidermal growth factor receptor 2-positive (HER-2+) breast cancer (BC) and to analyze the factors influencing therapeutic efficacy. Methods Ninety-six patients with HER-2+ BC treated in the First Affiliated Hospital of Anhui University Of Science and Technology from January 2019 to December 2020 were selected. According to different treatment plans, the patients were divided into two arms with 48 cases each. The control group (CG) was treated with DTX, and the research group (RG) was given TZ combined with DTX (TZ+DTX). The two arms were compared regarding the following aspects: curative effects, adverse reaction, alterations of TMs and inflammatory factors (IFs), and quality of life. Logistic regression analysis was performed to analyze the factors affecting the efficacy of patients. Results After treatment, the TMs carcinoembryonic antigen (CEA), carbohydrate antigen (CA)125 and CA15-3 were significantly lower in RG compared with CG. The levels of IFs C-reactive protein (CRP) and tumor necrosis factor-α (TNF-α) were also lower in CG. The overall response rate and the Karnofsky performance status (KPS) score were significantly higher in RG. No evident difference was observed in the total incidence of adverse reactions between the two arms. The high expression of CEA, CA125 and CA15-3 as well as DTX monotherapy increased the risk of adverse prognosis. Conclusion TZ+DTX can effectively improve the clinical efficacy of HER-2+ BC patients and reduce their levels of serum TMs and IFs.
Collapse
Affiliation(s)
- Qi-Zhu Feng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.,Department of Breast Surgery, First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232007, Anhui, People's Republic of China.,School of Continuing Education, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Xian-Zhi Chen
- Department of Breast Surgery, First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232007, Anhui, People's Republic of China
| | - Jie Sun
- Department of General Surgery, First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232007, Anhui, People's Republic of China
| | - Man-Man Lu
- Department of Laboratory Medicine, First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232007, Anhui, People's Republic of China
| | - Yong Wang
- Department of Medical Oncology, First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232007, Anhui, People's Republic of China
| | - Qi Wang
- Department of General Surgery, First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232007, Anhui, People's Republic of China
| | - Chao Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.,School of Continuing Education, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| |
Collapse
|
8
|
Désage AL, Karpathiou G, Peoc’h M, Froudarakis ME. The Immune Microenvironment of Malignant Pleural Mesothelioma: A Literature Review. Cancers (Basel) 2021; 13:3205. [PMID: 34206956 PMCID: PMC8269097 DOI: 10.3390/cancers13133205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive tumour with a poor prognosis, associated with asbestos exposure. Nowadays, treatment is based on chemotherapy with a median overall survival of less than two years. This review highlights the main characteristics of the immune microenvironment in MPM with special emphasis on recent biological advances. The MPM microenvironment is highly infiltrated by tumour-associated macrophages, mainly M2-macrophages. In line with infiltration by M2-macrophages, which contribute to immune suppression, other effectors of innate immune response are deficient in MPM, such as dendritic cells or natural killer cells. On the other hand, tumour infiltrating lymphocytes (TILs) are also found in MPM, but CD4+ and CD8+ TILs might have decreased cytotoxic effects through T-regulators and high expression of immune checkpoints. Taken together, the immune microenvironment is particularly heterogeneous and can be considered as mainly immunotolerant or immunosuppressive. Therefore, identifying molecular vulnerabilities is particularly relevant to the improvement of patient outcomes and the assessment of promising treatment approaches.
Collapse
Affiliation(s)
- Anne-Laure Désage
- Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Georgia Karpathiou
- Pathology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (G.K.); (M.P.)
| | - Michel Peoc’h
- Pathology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (G.K.); (M.P.)
| | - Marios E. Froudarakis
- Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| |
Collapse
|
9
|
African Vegetables ( Clerodendrum volibile Leaf and Irvingia gabonensis Seed Extracts) Effectively Mitigate Trastuzumab-Induced Cardiotoxicity in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9535426. [PMID: 33178389 PMCID: PMC7644299 DOI: 10.1155/2020/9535426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Trastuzumab (TZM) is a humanized monoclonal antibody that has been approved for the clinical management of HER2-positive metastatic breast and gastric cancers but its use is limited by its cumulative dose and off-target cardiotoxicity. Unfortunately, till date, there is no approved antidote to this off-target toxicity. Therefore, an acute study was designed at investigating the protective potential and mechanism(s) of CVE and IGE in TZM-induced cardiotoxicity utilizing cardiac enzyme and oxidative stress markers and histopathological endpoints. 400 mg/kg/day CVE and IGE dissolved in 5% DMSO in sterile water were investigated in Wistar rats injected with 2.25 mg/kg/day/i.p. route of TZM for 7 days, using serum cTnI and LDH, complete lipid profile, cardiac tissue oxidative stress markers assays, and histopathological examination of TZM-intoxicated heart tissue. Results showed that 400 mg/kg/day CVE and IGE profoundly attenuated increases in the serum cTnI and LDH levels but caused no significant alterations in the serum lipids and weight gain pattern in the treated rats. CVE and IGE profoundly attenuated alterations in the cardiac tissue oxidative stress markers' activities while improving TZM-associated cardiac histological lesions. These results suggest that CVE and IGE could be mediating its cardioprotection via antioxidant, free radical scavenging, and antithrombotic mechanisms, thus, highlighting the therapeutic potentials of CVE and IGE in the management of TZM-mediated cardiotoxicity.
Collapse
|
10
|
Cunquero-Tomás AJ, Ávila-Andrade CD, Milara J, Javier K, Iranzo V, Camps C. Safe neoadjuvant trastuzumab-based treatment in HER2 + inflammatory early breast cancer in a glucose 6-phosphate dehydrogenase-deficient postmenopausal woman: A case report and review of the literature. J Oncol Pharm Pract 2019; 26:492-495. [PMID: 31260379 DOI: 10.1177/1078155219858173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Glucose 6-phosphate dehydrogenase (G6PD) is a basic antioxidant pathway for erythrocytes, being its deficiency the most common gene mutation worldwide. As breast cancer is one of the most frequent tumors, many of these patients may present with G6PD deficiency prior treatment without notice. CASE REPORT We present the case of a woman deficient for G6PD with the diagnosis of Stage IIIB (cT4d cN1 cM0) HER2-enriched early breast cancer. MANAGEMENT AND OUTCOME The patient underwent neoadjuvance with trastuzumab and anthracycline-free chemotherapy, based on docetaxel (75 mg/m2, 120 mg) and carboplatin (AUC 5, 560 mg). She did not present hemolytic crisis and no blood transfusions were needed. She achieved a good pathologic response and completed one-year adjuvant trastuzumab without incidences. DISCUSSION Although the role of HER2 and trastuzumab in oxidative stress is not yet completely understood, we suggest that trastuzumab may be a suitable agent for treatment in patients with HER2-enriched breast cancer in a non-oxidative chemotherapy scheme, with acceptable responses and no triggering hemolytic crisis.
Collapse
Affiliation(s)
| | | | - Javier Milara
- Pharmacology Department, Hospital General Universitario Valencia, Valencia, Spain
| | - Karla Javier
- Hemathology Department, Hospital General Universitario Valencia, Valencia, Spain
| | - Vega Iranzo
- Medical Oncology Department, Hospital General Universitario Valencia, Valencia, Spain
| | - Carlos Camps
- Medical Oncology Department, Hospital General Universitario Valencia, Valencia, Spain.,Faculty of Medicine, Universidad de Valencia, Valencia, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
11
|
Collery P. Strategies for the development of selenium-based anticancer drugs. J Trace Elem Med Biol 2018; 50:498-507. [PMID: 29548612 DOI: 10.1016/j.jtemb.2018.02.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Many experimental models demonstrated that inorganic and organic selenium (Se) compounds may have an anticancer activity. However, large clinical studies failed to demonstrate that Se supplementations may prevent the outcome of cancers. Moreover, there are few randomized trials in cancer patients and there is not yet any Se compound recognized as anticancer drug. There is still a need to develop new Se compounds with new strategies. For that, it may be necessary to consider that Se compounds may have a dual role, either as anti-oxidant or as pro-oxidant. Experimental studies demonstrated that it is as pro-oxidant that Se compounds have anticancer effects, even though cancer cells have a pro-oxidant status. The oxidative status differs according to the type of cancer, the stage of the disease and to other parameters. We propose to adapt the doses of the Se compounds to markers of the oxidative stress, but also to markers of angiogenesis, which is strongly related with the oxidative status. A dual role of Se on angiogenesis has also been noted, either as pro-angiogenesis or as anti-angiogenesis. The objective for the development of new Se compounds, having a great selectivity on cancer cells, could be to try to normalize these oxidative and angiogenic markers in cancer patients, with an individual adaptation of doses.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France.
| |
Collapse
|
12
|
Khalil HS, Langdon SP, Goltsov A, Soininen T, Harrison DJ, Bown J, Deeni YY. A novel mechanism of action of HER2 targeted immunotherapy is explained by inhibition of NRF2 function in ovarian cancer cells. Oncotarget 2018; 7:75874-75901. [PMID: 27713148 PMCID: PMC5342785 DOI: 10.18632/oncotarget.12425] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Nuclear erythroid related factor-2 (NRF2) is known to promote cancer therapeutic detoxification and crosstalk with growth promoting pathways. HER2 receptor tyrosine kinase is frequently overexpressed in cancers leading to uncontrolled receptor activation and signaling. A combination of HER2 targeting monoclonal antibodies shows greater anticancer efficacy than the single targeting antibodies, however, its mechanism of action is largely unclear. Here we report novel actions of anti-HER2 drugs, Trastuzumab and Pertuzumab, involving NRF2. HER2 targeting by antibodies inhibited growth in association with persistent generation of reactive oxygen species (ROS), glutathione (GSH) depletion, reduction in NRF2 levels and inhibition of NRF2 function in ovarian cancer cell lines. The combination of antibodies produced more potent effects than single antibody alone; downregulated NRF2 substrates by repressing the Antioxidant Response (AR) pathway with concomitant transcriptional inhibition of NRF2. We showed the antibody combination produced increased methylation at the NRF2 promoter consistent with repression of NRF2 antioxidant function, as HDAC and methylation inhibitors reversed such produced transcriptional effects. These findings demonstrate a novel mechanism and role for NRF2 in mediating the response of cancer cells to the combination of Trastuzumab and Pertuzumab and reinforce the importance of NRF2 in drug resistance and as a key anticancer target.
Collapse
Affiliation(s)
- Hilal S Khalil
- Division of Science, School of Science, Engineering and Technology, Abertay University, Dundee, DD1 1HG, United Kingdom
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Alexey Goltsov
- Division of Science, School of Science, Engineering and Technology, Abertay University, Dundee, DD1 1HG, United Kingdom
| | - Tero Soininen
- Division of Science, School of Science, Engineering and Technology, Abertay University, Dundee, DD1 1HG, United Kingdom
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, United Kingdom
| | - James Bown
- Division of Computing and Mathematics, School of Arts, Media, and Computer Games, Abertay University, Dundee, DD1 1HG, United Kingdom
| | - Yusuf Y Deeni
- Division of Science, School of Science, Engineering and Technology, Abertay University, Dundee, DD1 1HG, United Kingdom
| |
Collapse
|
13
|
Shen M, Sun Q, Wang J, Pan W, Ren X. Positive and negative functions of B lymphocytes in tumors. Oncotarget 2018; 7:55828-55839. [PMID: 27331871 PMCID: PMC5342456 DOI: 10.18632/oncotarget.10094] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/04/2016] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicated that B lymphocytes exerted complex functions in tumor immunity. On the one hand, B lymphocytes can inhibit tumor development through antibody generation, antigen presentation, tumor tissue interaction, and direct killing. On the other hand, B lymphocytes have tumor-promoting functions. A typical type of B lymphocytes, termed regulatory B cells, is confirmed to attenuate immune response in a tumor environment. In this paper, we summarize the current understanding of B-cell functions in tumor immunology, which may shed light on potential therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Meng Shen
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wei Pan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
14
|
Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28698765 DOI: 10.1155/2017/1485283,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS) have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.
Collapse
|
15
|
Teppo HR, Soini Y, Karihtala P. Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1485283. [PMID: 28698765 PMCID: PMC5494102 DOI: 10.1155/2017/1485283] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 01/21/2023]
Abstract
Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS) have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.
Collapse
Affiliation(s)
- Hanna-Riikka Teppo
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ylermi Soini
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
16
|
Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate. Oncotarget 2016; 6:29771-81. [PMID: 26356671 PMCID: PMC4745761 DOI: 10.18632/oncotarget.4833] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/27/2015] [Indexed: 12/24/2022] Open
Abstract
Highlights Background Cu/Zn superoxide dismutases (SODs) like the extracellular SOD3 and cytoplasmic SOD1 regulate cell proliferation by generating hydrogen peroxide (H2O2). This pro-oxidant inactivates essential cysteine residues in protein tyrosine phosphatases (PTP) helping receptor tyrosine kinase activation by growth factor signaling, and further promoting downstream MEK/ERK linked cell proliferation. Disulfiram (DSF), currently in clinical cancer trials is activated by copper chelation, being potentially capable of diminishing the copper dependent activation of MEK1/2 and SOD1/SOD3 and promoting reactive oxygen species (ROS) toxicity. However, copper (Cu) overload may occur when co-administered with DSF, resulting in toxicity and mutagenicity against normal tissue, through generation of the hydroxyl radical (•OH) by the Fenton reaction. Purpose To investigate: a) whether sub-toxic DSF efficacy can be increased without Cu overload against human melanoma cells with unequal BRAF(V600E) mutant status and Her2-overexpressing SKBR3 breast cancer cells, by increasing H2O2from exogenous SOD; b) to compare the anti-tumor efficacy of DSF with that of another clinically used copper chelator, tetrathiomolybdate (TTM) Results a) without copper supplementation, exogenous SOD potentiated sub-toxic DSF toxicity antagonized by sub-toxic TTM or by the anti-oxidant N-acetylcysteine; b) exogenous glucose oxidase, another H2O2 generator resembled exogenous SOD in potentiating sub-toxic DSF. Conclusions potentiation of sub-lethal DSF toxicity by extracellular H2O2 against the human tumor cell lines investigated, only requires basal Cu and increased ROS production, being unrelated to non-specific or TTM copper chelator sequestration. Significance These findings emphasize the relevance of extracellular H2O2 as a novel mechanism to improve disulfiram anticancer effects minimizing copper toxicity.
Collapse
|
17
|
Wang JZ, Zhang YH, Guo XH, Zhang HY, Zhang Y. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol 2016; 36:73-85. [PMID: 27111515 DOI: 10.1016/j.intimp.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Yu-Hua Zhang
- Department of Library, Hebei University of Engineering, Handan 056038, PR China
| | - Xin-Hua Guo
- Department of Medicine, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Hong-Yan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yuan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|
18
|
Shao X, Liu Y, Li Y, Xian M, Zhou Q, Yang B, Ying M, He Q. The HER2 inhibitor TAK165 Sensitizes Human Acute Myeloid Leukemia Cells to Retinoic Acid-Induced Myeloid Differentiation by activating MEK/ERK mediated RARα/STAT1 axis. Sci Rep 2016; 6:24589. [PMID: 27074819 PMCID: PMC4830980 DOI: 10.1038/srep24589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
The success of all-trans retinoic acid (ATRA) in differentiation therapy for patients with acute promyelocytic leukemia (APL) highly encourages researches to apply this therapy to other types of acute myeloid leukemia (AML). However, AML, with the exception of APL, fails to respond to differentiation therapy. Therefore, research strategies to further sensitize cells to retinoids and to extend the range of AMLs that respond to retinoids beyond APLs are urgently needed. In this study, we showed that TAK165, a HER2 inhibitor, exhibited a strong synergy with ATRA to promote AML cell differentiation. We observed that TAK165 sensitized the AML cells to ATRA-induced cell growth inhibition, G0/G1 phase arrest, CD11b expression, mature morphologic changes, NBT reduction and myeloid regulator expression. Unexpectedly, HER2 pathway might not be essential for TAK165-enhanced differentiation when combined with ATRA, while the enhanced differentiation was dependent on the activation of the RARα/STAT1 axis. Furthermore, the MEK/ERK cascade regulated the activation of STAT1. Taken together, our study is the first to evaluate the synergy of TAK165 and ATRA in AML cell differentiation and to assess new opportunities for the combination of TAK165 and ATRA as a promising approach for future differentiation therapy.
Collapse
Affiliation(s)
- Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yujia Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangling Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miao Xian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Can Breast Tumors Affect the Oxidative Status of the Surrounding Environment? A Comparative Analysis among Cancerous Breast, Mammary Adjacent Tissue, and Plasma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:6429812. [PMID: 26697139 PMCID: PMC4677231 DOI: 10.1155/2016/6429812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/04/2015] [Accepted: 08/12/2015] [Indexed: 02/01/2023]
Abstract
In this paper, we investigated the oxidative profile of breast tumors in comparison with their normal adjacent breast tissue. Our study indicates that breast tumors present enhanced oxidative/nitrosative stress, with concomitant augmented antioxidant capacity when compared to the adjacent normal breast. These data indicate that breast cancers may be responsible for the induction of a prooxidant environment in the mammary gland, in association with enhanced TNF-α and nitric oxide.
Collapse
|