1
|
Jin SE, Seo CS, Jeon WY, Oh YJ, Shin HK, Jeong HG, Ha H. Evodiae Fructus extract suppresses inflammatory response in HaCaT cells and improves house dust mite-induced atopic dermatitis in NC/Nga mice. Sci Rep 2024; 14:472. [PMID: 38172219 PMCID: PMC10764943 DOI: 10.1038/s41598-023-50257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
This study was conducted to assess the effect of Evodiae Fructus 70% ethanol extract (EFE) on the pathology of atopic dermatitis using in vitro and in vivo models. The major compounds in EFE were identified by ultra-performance liquid chromatography with tandem mass spectrometry as rutaecarpine, evodiamine, evodol, dehydroevodiamine, limonin, synephrine, evocarpine, dihydroevocarpine, and hydroxyevodiamine. EFE significantly decreased chemokine levels in tumor necrosis factor-α/interferon-γ-stimulated HaCaT cells. In house dust mite-treated NC/Nga mice, topical application of EFE significantly decreased the dermatitis score, epidermal hyperplasia and thickening, mast cell infiltration, and plasma levels of histamine and corticosterone. Thymic stromal lymphopoietin, CD4+ T cells, interleukin-4, and intercellular adhesion molecule-1 expression in the lesioned skin was reduced in the treated mice. The mechanism of EFE was elucidated using transcriptome analysis, followed by experimental validation using Western blotting in HaCaT cells. EFE down-regulated the activation of Janus kinase (JAK)-signal transducers and activators of transcription (STAT) and mitogen-activated protein kinases (MAPK) signaling pathways in HaCaT cells. EFE improves atopic dermatitis-like symptoms by suppressing inflammatory mediators, cytokines, and chemokines by regulating the JAK-STAT and MAPK signaling pathways, suggesting its use as a potential agent for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Seong Eun Jin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Woo-Young Jeon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Yong Jin Oh
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hyeun-Kyoo Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Hyekyung Ha
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
2
|
Sun J, Luo J, Ma R, Lin J, Fang L. Effects of microwave and plastic content on the sulfur migration during co-pyrolysis of biomass and plastic. CHEMOSPHERE 2023; 314:137680. [PMID: 36584830 DOI: 10.1016/j.chemosphere.2022.137680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In order to reduce the risks of sulfur-containing contaminants present in biofuels, the effects of microwave and content of hydrogen donor on the cracking of C-S bonds and the migration of sulfur were studied by co-pyrolysis of biomass and plastic. The synergistic mechanism of microwave and hydrogen donor was explored from the perspective of deducing the evolution of sulfur-containing compounds based on microwave thermogravimetric analysis. By combining temperature-weight curves, it was found that microwaves and hydrogen radicals promoted the cracking of sulfur-containing compounds and increased the mass loss of biomass during pyrolysis. The mixing ratio of hydrogen donor (plastic) was the key parameter resulting in the removal of sulfur from oil. By adjusting the mixing ratio, the yield of co-pyrolyzed oil was three times higher than that of cow dung pyrolysis alone and the relative removal rate of sulfur reached 73.67%. The relative content of sulfur in the oil was reduced by 73.77% due to the escape of sulfur-containing gases (H2S, COS and C2H5SH) and the formation of sulfate crystals in the char. Microwave selectively heated sulfur-containing organics and hydrogen radicals stimulated the breaking of C-S bonds, which improved the cracking efficiency of the oil. This breaking will provide a theoretical and technological reference for the environmentally friendly treatment of biomass and biofuels.
Collapse
Affiliation(s)
- Jiaman Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lin Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
3
|
Yan M, Jin S, Wang Z, Xia T, Liu Y, Chang Q. Limonin counteracts obesity by activating thermogenesis in brown and white adipose tissues. J Funct Foods 2023; 100:105393. [DOI: 10.1016/j.jff.2022.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
4
|
Kurhan F, Akın M. A New Hope in Alzheimer's Disease Psychosis: Pimavanserin. Curr Alzheimer Res 2023; 20:403-408. [PMID: 37641988 DOI: 10.2174/1567205020666230825124922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023]
Abstract
Alzheimer's disease (AD) ranks first among the causes of dementia worldwide. AD can develop a psychotic manifest at a significant rate. AD prognosis worsens by added psychosis clinic. There is no treatment approved by the United States Food and Drug Administration (FDA) among antipsychotics for Alzheimer's disease Psychosis (ADP). However, pimavanserine, an atypical antipsychotic, has been approved by the FDA for Parkinson's psychosis. It is predicted that pimavanserin, a new antipsychotic, will fill an important gap in this area. In clinical trials, it appears to be effective in the treatment of delusions and hallucinations at psychosis in both Parkinson's and AD. In this systematic review, we evaluated the analysis of current literature data on pimavanserin used in ADP. We searched the existing literature on clinical studies on pimavanserin therapy used in ADP. Data were determined by systematically searching PubMed, MEDLINE, EMBASE, and Google Scholar until December 2022. A total of 35 citations were found and uploaded on the Mendeley program. Abstracts and full texts of literature data were examined. Pimavanserin was observed, and satisfactory results were obtained in treating ADP. Pimavanserin has a unique mechanism of action. Pimavanserin, an atypical antipsychotic drug, has a low affinity for 5-HT2C receptors and has selective 5-HT2A reverse agonist/antagonist action. Pimavanserin has no clinically significant affinity for dopaminergic, histaminergic, muscarinic or adrenergic receptors. This agent may also achieve significant positive results in resistant psychosis treatments.
Collapse
Affiliation(s)
- Faruk Kurhan
- Department of Psychiatry, Faculty of Medicine, Van Yuzuncu Yil University, 65100, Van, Turkey
| | - Mustafa Akın
- Department of Psychiatry, Faculty of Medicine, Van Yuzuncu Yil University, 65100, Van, Turkey
| |
Collapse
|
5
|
Shu G, Dai C, Yusuf A, Sun H, Deng X. Limonin relieves TGF-β-induced hepatocyte EMT and hepatic stellate cell activation in vitro and CCl 4-induced liver fibrosis in mice via upregulating Smad7 and subsequent suppression of TGF-β/Smad cascade. J Nutr Biochem 2022; 107:109039. [PMID: 35533902 DOI: 10.1016/j.jnutbio.2022.109039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Liver fibrosis is a pathological process as a result of intrahepatic deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) of hepatocytes and activation of hepatic stellate cells (HSCs) both play important roles in the etiology of liver fibrosis. Here, we found that limonin repressed transforming growth factor-β1 (TGF-β)-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. In both kinds of cells, limonin suppressed TGF-β-provoked Smad2/3 C-terminal phosphorylation and subsequent nuclear translocation. Transcription of Smad2/3-downstream genes was in turn reduced. However, limonin exerted few effects on Smad2/3 phosphorylation at linker region. Mechanistically, limonin increased Smad7 at mRNA level in both AML-12 and LX-2 cells. Knockdown of Smad7 abrogated inhibitory effects of limonin on TGF-β-induced EMT in AML-12 cells and activation of LX-2 cells. Further studies revealed that limonin alleviated mouse liver fibrosis induced by CCl4. In livers of model mice, limonin upregulated Smad7 and declined C-terminal phosphorylation and nuclear translocation of Smad2/3. Transcription of Smad2/3-responsive genes was also attenuated. Our findings indicated that limonin inhibits TGF-β-induced EMT of hepatocytes and activation of HSCs in vitro and CCl4-induced liver fibrosis in mice. Upregulated Smad7 which suppresses Smad2/3-dependent gene transcription is implicated in the hepatoprotective activity of limonin.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Li M, Wang C. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the fruit of Tetradium ruticarpum: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113231. [PMID: 32758577 DOI: 10.1016/j.jep.2020.113231] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Tetradium ruticarpum (FTR) known as Tetradii fructus or Evodiae fructus (Wu-Zhu-Yu in Chinese) is a versatile herbal medicine which has been prescribed in Chinese herbal formulas and recognized in Japanese Kampo. FTR has been clinically used to treat various diseases such as headache, vomit, diarrhea, abdominal pain, dysmenorrhea and pelvic inflammation for thousands of years. AIM OF THE REVIEW The present paper aimed to provide comprehensive information on the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, drug interaction and toxicology of FTR in order to build up a foundation on the mechanism of ethnopharmacological uses as well as to explore the trends and perspectives for further studies. MATERIALS AND METHODS This review collected the literatures published prior to July 2020 on the phytochemistry, pharmacology, pharmacokinetics and toxicity of FTR. All relevant information on FTR was gathered from worldwide accepted scientific search engines and databases, including Web of Science, PubMed, Elsevier, ACS, ResearchGate, Google Scholar, and Chinese National Knowledge Infrastructure (CNKI). Information was also obtained from local books, PhD. and MSc. Dissertations as well as from Pharmacopeias. RESULTS FTR has been used as an herbal medicine for centuries in East Asia. A total of 165 chemical compounds have been isolated so far and the main chemical compounds of FTR include alkaloids, terpenoids, flavonoids, phenolic acids, steroids, and phenylpropanoids. Crude extracts, processed products (medicinal slices) and pure components of FTR exhibit a wide range of pharmacological activities such as antitumor, anti-inflammatory, antibacterial, anti-obesity, antioxidant, insecticide, regulating central nervous system (CNS) homeostasis, cardiovascular protection. Furthermore, bioactive components isolated from FTR can induce drug interaction and hepatic injury. CONCLUSIONS Therapeutic potential of FTR has been demonstrated with the pharmacological effects on cancer, inflammation, cardiovascular diseases, CNS, bacterial infection and obesity. Pharmacological and pharmacokinetic studies of FTR mostly focus on its main active alkaloids. Further in-depth studies on combined medication and processing approaches mechanisms, pharmacological and toxic effects not limited to the alkaloids, and toxic components of FTR should be designed.
Collapse
Affiliation(s)
- Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
7
|
Limonin: A Review of Its Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2019; 24:molecules24203679. [PMID: 31614806 PMCID: PMC6832453 DOI: 10.3390/molecules24203679] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 01/15/2023] Open
Abstract
Limonin is a natural tetracyclic triterpenoid compound, which widely exists in Euodia rutaecarpa (Juss.) Benth., Phellodendron chinense Schneid., and Coptis chinensis Franch. Its extensive pharmacological effects have attracted considerable attention in recent years. However, there is no systematic review focusing on the pharmacology, toxicity, and pharmacokinetics of limonin. Therefore, this review aimed to provide the latest information on the pharmacology, toxicity, and pharmacokinetics of limonin, exploring the therapeutic potential of this compound and looking for ways to improve efficacy and bioavailability. Limonin has a wide spectrum of pharmacological effects, including anti-cancer, anti-inflammatory and analgesic, anti-bacterial and anti-virus, anti-oxidation, liver protection properties. However, limonin has also been shown to lead to hepatotoxicity, renal toxicity, and genetic damage. Moreover, limonin also has complex impacts on hepatic metabolic enzyme. Pharmacokinetic studies have demonstrated that limonin has poor bioavailability, and the reduction, hydrolysis, and methylation are the main metabolic pathways of limonin. We also found that the position and group of the substituents of limonin are key in affecting pharmacological activity and bioavailability. However, some issues still exist, such as the mechanism of antioxidant activity of limonin not being clear. In addition, there are few studies on the toxicity mechanism of limonin, and the effects of limonin concentration on pharmacological effects and toxicity are not clear, and no researchers have reported any ways in which to reduce the toxicity of limonin. Therefore, future research directions include the mechanism of antioxidant activity of limonin, how the concentration of limonin affects pharmacological effects and toxicity, finding ways to reduce the toxicity of limonin, and structural modification of limonin—one of the key methods necessary to enhance pharmacological activity and bioavailability.
Collapse
|
8
|
Ouyang Z, Wang X, Meng Q, Feng L, Sun Y, Wu X, Xu Q. Suppression of adenosine monophosphate-activated protein kinase selectively triggers apoptosis in activated T cells and ameliorates immune diseases. Biochem Biophys Res Commun 2017; 487:223-229. [PMID: 28412370 DOI: 10.1016/j.bbrc.2017.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
Deficient apoptosis of activated T cells can result in immunological disorders. Molecules associated with energy and metabolisms are suggested to be involved in pathogenesis of immune diseases, but remain uninvestigated. In the present study we reported that glibenclamide exerted a new pharmacological effect on inflammatory responses by selectively triggering apoptosis of activated T cells. Glibenclamide demonstrated an inhibition on activated T lymphocytes, whereas showed no toxicity in the naive cells. This effect was mainly related with its ability to facilitate apoptosis in activated T cells with an up-regulation of cleaved-caspases and cleaved-PARP. Glibenclamide enhanced Fas expression and suppressed the expression of antiapoptotic cellular FLICE-inhibitory protein. The underlying mechanism of glibenclamide was not associated with its classical inhibitory effect on ATP-sensitive potassium channels, but due to a unique suppression on the phosphorylation of 5' adenosine monophosphate-activated protein kinase, which was augmented during T cell activation. An in vivo experiment further demonstrated that glibenclamide ameliorated T-cell-mediated contact hypersensitivity in mice. Altogether, these results suggest that AMPK inhibition by glibenclamide can regulate the survival and death of T lymphocytes and be beneficial for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Zijun Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Xingqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Qianqian Meng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Lili Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| |
Collapse
|
9
|
Herath KHINM, Bing SJ, Cho J, Kim A, Kim GO, Lee JC, Jee Y. Citrus hallabong [(Citrus unshiu × C. sinensis) × C. reticulata)] exerts potent anti-inflammatory properties in murine splenocytes and TPA-induced murine ear oedema model. PHARMACEUTICAL BIOLOGY 2016; 54:2939-2950. [PMID: 27333995 DOI: 10.1080/13880209.2016.1194865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Hallabong [(Citrus unshiu × C. sinensis) X C. reticulata)] (Rutaceae) is a hybrid citrus cultivated in temperate regions of South Korea. Its fruit is well-known for pharmacological properties. OBJECTIVE This study examined the anti-inflammatory effect of 80% ethanol extract of Hallabong (HE) on concanavalin A (Con A)-stimulated splenocytes and mouse oedema model induced by 12-O-tetradecanoylphorbal acetate (TPA). MATERIALS AND METHODS Murine splenocytes treated with HE were stimulated with Con A (10 μg/mL, for 24 h) were evaluated for T-cell population and production of inflammatory cytokines IL-2, IL-4 and IFN-γ. Anti-inflammatory effect of topically applied HE (100 μg/20 μL) on TPA (4 μg/20 μL/ear)-induced ear oedema was investigated in mouse model. RESULTS HE-treated Con A-stimulated murine splenocytes showed a marked decrease in CD44/CD62L+ memory T-cell population, an important marker for anti-inflammatory activity, and a significant inhibition in the production of IL-2 and IFN-γ. HE treatment had reduced the mouse skin oedema (47%) and myeloperoxidase (MPO) activity significantly (40%) in TPA-challenged tissues. More importantly, immunohistochemical localization revealed the suppressed (p < 0.05) expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX2). HE decreased the infiltration of CD3+ T cells and F4/80+ macrophages to the site of inflammation and a topical application of HE significantly suppressed the expression of TNF-α (20.2%). DISCUSSION AND CONCLUSION A topical application of HE can exert a potential anti-inflammatory effect and HE can be explored further as a putative alternative therapeutic agent for inflammatory oedema.
Collapse
Affiliation(s)
| | - So Jin Bing
- a Department of Veterinary Medicine and Veterinary Medical Research Institute , Jeju National University , Jeju , Korea
| | - Jinhee Cho
- a Department of Veterinary Medicine and Veterinary Medical Research Institute , Jeju National University , Jeju , Korea
| | - Areum Kim
- b Department of Advanced Convergence Technology & Science , Jeju National University , Jeju , Korea
| | - Gi-Ok Kim
- c Jeju Diversity Research Institute, Jeju Technopark , Seogwipo , Korea
| | - Jong-Chul Lee
- c Jeju Diversity Research Institute, Jeju Technopark , Seogwipo , Korea
| | - Youngheun Jee
- a Department of Veterinary Medicine and Veterinary Medical Research Institute , Jeju National University , Jeju , Korea
- b Department of Advanced Convergence Technology & Science , Jeju National University , Jeju , Korea
| |
Collapse
|
10
|
Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-Inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T Lymphocytes. J Invest Dermatol 2016; 136:1636-1646. [DOI: 10.1016/j.jid.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
|
11
|
Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice. Toxicol Appl Pharmacol 2016; 303:21-29. [DOI: 10.1016/j.taap.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/14/2016] [Accepted: 05/08/2016] [Indexed: 12/25/2022]
|
12
|
Wang X, Wu X, Zhang A, Wang S, Hu C, Chen W, Shen Y, Tan R, Sun Y, Xu Q. Targeting the PDGF-B/PDGFR-β Interface with Destruxin A5 to Selectively Block PDGF-BB/PDGFR-ββ Signaling and Attenuate Liver Fibrosis. EBioMedicine 2016; 7:146-56. [PMID: 27322468 PMCID: PMC4909612 DOI: 10.1016/j.ebiom.2016.03.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/12/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
PDGF-BB/PDGFR-ββ signaling plays very crucial roles in the process of many diseases such as liver fibrosis. However, drug candidates with selective affinities for PDGF-B/PDGFR-β remain deficient. Here, we identified a natural cyclopeptide termed destruxin A5 that effectively inhibits PDGF-BB-induced PDGFR-β signaling. Interestingly and importantly, the inhibitory mechanism is distinct from the mechanism of tyrosine kinase inhibitors because destruxin A5 does not have the ability to bind to the ATP-binding pocket of PDGFR-β. Using Biacore T200 technology, thermal shift technology, microscale thermophoresis technology and computational analysis, we confirmed that destruxin A5 selectively targets the PDGF-B/PDGFR-β interaction interface to block this signaling. Additionally, the inhibitory effect of destruxin A5 on PDGF-BB/PDGFR-ββ signaling was verified using in vitro, ex vivo and in vivo models, in which the extent of liver fibrosis was effectively alleviated by destruxin A5. In summary, destruxin A5 may represent an efficacious and more selective inhibitor of PDGF-BB/PDGFR-ββ signaling.
Collapse
Affiliation(s)
- Xingqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Aihua Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Shiyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Chunhui Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| |
Collapse
|
13
|
Wang X, Wang S, Hu C, Chen W, Shen Y, Wu X, Sun Y, Xu Q. A new pharmacological effect of levornidazole: Inhibition of NLRP3 inflammasome activation. Biochem Pharmacol 2015. [PMID: 26212544 DOI: 10.1016/j.bcp.2015.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Levornidazole, which was originally used to inhibit anaerobic and protozoal infections, is currently known to possess a novel pharmacological effect. In this study, we investigated the possible modulation by levornidazole of NOD-like receptor protein 3 (NLRP3) inflammasome-mediated IL-1β and IL-18 release from macrophages. The NLRP3 inflammasome could be activated by lipopolysaccharide (LPS) plus ATP or monosodium urate (MSU) in PMA-pretreated THP-1 macrophages. Surprisingly, an in vitro study showed that levornidazole suppressed IL-1β and IL-18 secretion by blocking the activation of the NLRP3 inflammasome. However, dextrornidazole barely suppressed the NLRP3 inflammasome. Levornidazole displays activity similar to that of dextrornidazole against clinical anaerobic bacteria, and they possess the same pharmacokinetic properties. Moreover, both of these compounds were unable to ameliorate T cell-mediated inflammation. Therefore, we used the widely applied NLRP3 inflammasome-related models of dextran sodium sulfate (DSS)-induced colitis and LPS-induced endotoxin shock to confirm the novel pharmacological effect of levornidazole in vivo. The in vivo studies verified the novel activity of levornidazole because the inhibition of NLRP3 inflammasome by levornidazole contributed to a better ameliorating effect than that of dextrornidazole in the in vivo models tested. Furthermore, this inhibitory effect of levornidazole was found to be at least partially achieved by decreasing the mitochondrial ROS generation without inhibiting NF-κB activation. In summary, these data describe a new pharmacological effect of levornidazole as an inhibitor of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xingqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Shiyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Chunhui Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| |
Collapse
|