1
|
Cheng X, Yan W, Xu J, Wang S, Jin C. Application potential of arecoline hydrobromide for anti-Toxoplasma gondii. Exp Parasitol 2025; 273:108946. [PMID: 40274042 DOI: 10.1016/j.exppara.2025.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Although long-term chewing areca nut may cause cancer, it is very feasible to treat human or livestock diseases in a short period of time. In this study, arecoline hydrobromide (AH), which is extracted from Areca catechu, significantly inhibited the proliferation of tachyzoites ofToxoplasma gondii (T. gondii) in vitro and in vivo. Specially,in vivo AH effectively resisted liver damage originate fromT. gondii. Furthemore, the survival and safety evaluation outcome indicated that AH can prolong survival period of mice infected with T. gondii at non-toxic and side-effect dose. Based on these advantages, AH is a candidate compound with great potential for the treatment of T. gondii infection and it may be used clinically in the future.
Collapse
Affiliation(s)
- Xu Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, Pharmacy of of College, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Weifeng Yan
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, Pharmacy of of College, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jingjie Xu
- Medical of College, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Sihong Wang
- Analysis and Inspection Center, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Chunmei Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, Pharmacy of of College, Yanbian University, Yanji, 133002, Jilin Province, China; Medical of College, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
2
|
Pathak S, Godela R. Nardostachys jatamansi: Phytochemistry, ethnomedicinal uses, and pharmacological activities: A comprehensive review. Fitoterapia 2024; 172:105764. [PMID: 38042505 DOI: 10.1016/j.fitote.2023.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
A member of the Valerianacae family, Nardostachys jatamansi is the smallest, most primitive, perennial, dwarf, hairy, rhizomatous, herbaceous species. It has an enlarged antiquity of usage as ayurvedic medicine, homeopathic medicine, ethnomedicine, and the Indian system of medicine, and is now used in the modern medicine industry. In the ayurvedic medical system, the rhizomes of the plant are used as a bitter tonic, stimulant, antispasmodic, epileptic treatment, and for hysteria. Pharmacological reports on Nardostachys jatamansi revealed its antifungal activity, hepatoprotective activity, central nervous system activity, anticonvulsant activity, neuroprotective activity, antiparkinson's activity, antioxidant activity, antidiabetic activity, tranquilizing activity, antiestrogenic activity furthermore, Jatamansone has also been linked to anti-hypertensive, anti-arrhythmic, anti-asthmatic, nematicidal, and antibacterial effects. This review article's objective is to go over traditional uses, Phytochemistry, Ethnomedicinal Importance, pharmacological activities, precise procedures for variety improvement, protection, and appropriate utilization, and recognize prospects for Nardostachys jatamansi.
Collapse
Affiliation(s)
- Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India.
| | - Ramreddy Godela
- Department of Pharmaceutical Analysis and Quality Assurance, GITAM School of Pharmacy, Rudraram, Sangareddy, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Li J, Yu J, Guo J, Liu J, Wan G, Wei X, Yang X, Shi J. Nardostachys jatamansi and levodopa combination alleviates Parkinson's disease symptoms in rats through activation of Nrf2 and inhibition of NLRP3 signaling pathways. PHARMACEUTICAL BIOLOGY 2023; 61:1175-1185. [PMID: 37559448 PMCID: PMC10416743 DOI: 10.1080/13880209.2023.2244176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/10/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Levodopa combined with traditional Chinese medicine has a synergistic effect on Parkinson's disease (PD). Recently, we demonstrated that Nardostachys jatamansi (D. Don) DC. [syn. Patrinia jatamansi D.Don, N. grandiflora DC.] (Valerianaceae) (NJ) can alleviate PD. OBJECTIVE To explore the synergistic effect of NJ combined with levodopa against PD. MATERIALS AND METHODS The PD model was established by injecting rotenone. Eighty-four Sprague-Dawley rats were randomly divided into seven groups: sham, model, different doses of NJ (0.31, 0.62, or 1.24 g/kg) combined with levodopa (25 mg/kg), and levodopa alone (25 and 50 mg/kg) groups. The synergistic effect of the combination was investigated by pharmacodynamic investigation and detection of expression of nuclear factor erythro2-related factor 2 (Nrf2) and NLR family proteins containing Pyrin-related domain 3 (NLRP3) pathways. RESULTS Compared with the model group, NJ + levodopa (1.24 g/kg + 25 mg/kg) increased the moving distance of PD rats in the open field (2395.34 ± 668.73 vs. 1501.41 ± 870.23, p < 0.01), enhanced the stay time on the rotating rod (84.86 ± 18.15 vs. 71.36 ± 17.53, p < 0.01) and the combination was superior to other treatments. The synergistic effects were related to NJ + levodopa (1.24 g/kg + 25 mg/kg) increasing the neurotransmitter levels by 38.80%-88.67% in PD rats, and inhibiting oxidative stress and NLRP3 pathway by activating Nrf2 pathway. DISCUSSION AND CONCLUSIONS NJ combined with levodopa is a promising therapeutic candidate for PD, which provides a scientific basis for the subsequent clinical combination therapy of levodopa to enhance the anti-PD effect.
Collapse
Affiliation(s)
- Jiayuan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahe Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianyou Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guohui Wan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojia Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinli Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Shuyuan L, Haoyu C. Mechanism of Nardostachyos Radix et Rhizoma-Salidroside in the treatment of premature ventricular beats based on network pharmacology and molecular docking. Sci Rep 2023; 13:20741. [PMID: 38007574 PMCID: PMC10676380 DOI: 10.1038/s41598-023-48277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 11/27/2023] Open
Abstract
To analyse the mechanism of Nardostachyos Radix et Rhizoma-Salidroside in the treatment of Premature Ventricular Brats by using network pharmacology and molecular docking and to provide the basis for developing the use of experimental and clinical traditional Chinese medicine. The chemical compositions of Nardostachyos Radix et Rhizoma and Salidroside were determined, and their related targets were predicted. The disease-related targets were obtained by searching the common disease databases Genecards, OMIM, Drugbank and DisGeNET, and the intersection between the predicted targets and the disease targets was determined. Then using the STRING database to set up the protein‒protein interactions (PPIs) network between Nardostachyos Radix et Rhizoma-Salidroside and the common targets of PVB. An "herb-ingredient-target" network was constructed and analyzed by Cytoscape3.7.2 software. Using the metascape database to analysis the predicted therapeutic targets based on the GO and KEGG. Finally, molecular docking technology was used toconfirm the capacity of the primary active ingredients of the 2 herbs to bind to central targets using the online CB-Dock2 database. 41 active components of Nardostachyos Radix et Rhizoma-Salidroside were detected, with 420 potential targets of action, with a total of 1688 PVB targets, and the top 10 core targets of herb-disease degree values were AKT1, TNF, GAPDH, SRC, PPARG, EGFR, PTGS2, ESR1, MMP9, and STAT3. KEGG analysis indicated that its mechanism may be related to the calcium signalling pathway, cancer signalling pathway, AGE-RAGE signalling pathway and other pathways. Molecular docking suggested that main of the active ingredients of the Nardostachyos Radix et Rhizoma-Salidroside pairs were well bound to the core targets. Based on novel network pharmacology and molecular docking validation research methods, we revealed for the first time the potential mechanism of Nardostachyos Radix et Rhizoma-Salidroside in PVB therapy.
Collapse
Affiliation(s)
- Liu Shuyuan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, ShanDong, People's Republic of China, 250013
| | - Chen Haoyu
- Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, ShanDong, People's Republic of China, 250011.
| |
Collapse
|
5
|
Wang M, Yang TT, Rao Y, Wang ZM, Dong X, Zhang LH, Han L, Zhang Y, Wang T, Zhu Y, Gao XM, Li TX, Wang HY, Xu YT, Wu HH. A review on traditional uses, phytochemistry, pharmacology, toxicology and the analytical methods of the genus Nardostachys. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114446. [PMID: 34339792 DOI: 10.1016/j.jep.2021.114446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of the genus Nardostachys (Caprifoliaceae) have been used for a long history in different cultural systems of medicine, including Chinese, Ayurvedic, Korean folk medicine and Islamic, for treatments of disorders in nervous, digestive, cardiovascular and integumentary systems. AIM OF THE REVIEW This review aims to provide comprehensive information on Nardostachys plants including botany update, traditional uses, data mining of uses in traditional Chinese medicine (TCM) and current Chinese medicinal patents, chemical constituents, pharmacological effects, toxicity and analytical method studies. MATERIALS AND METHODS Studies of the genus Nardostachys were collected via Google Scholar and Baidu Scholar, ScienceDirect, SciFinder, Wiley Online Library, ACS Publications, NLM/NCBI, Web of Science, CNKI, WANFANG DATA, EMBASE, Huabeing database and Traditional Chinese Medicine Resource Network and libraries. Some local books, PhD or MS's dissertations were also included. The literatures cited in this review covered the period from 1962 to March 2021. The Plant List and Kew Herbarium Catalogue databases were used to authenticate the scientific name. RESULTS Botany description of Nardostachys genus is updated. Analysis of the literatures indicates that Nardostachys species are valuable herbs with therapeutic potentials for various disorders. Data mining on ancient TCM prescriptions and current Chinese medicinal patents containing Nardostachys revealed its common compatibility with other herbs in China. Phytochemical studies identified terpenoids and phenolic compounds as the main constituents in the genus Nardostachys and sesquiterpenoids as the major bioactive components. Experimental studies demonstrated that crude extracts, major fractions and the main constituents from Nardostachys species mainly exhibited pharmacological activities on nervous, digestive, cardiovascular and skin systems. Further, in vivo and in vitro toxicological studies demonstrated that Nardostachys plants showed either no or low toxicities, except at high doses. Finally, methods of qualitative and quantitative analyses on chemical constituents of genus Nardostachys were summarized, including TLC/HPTLC, GC and HPLC/UPLC methods, combined with common detectors including PDA, DAD and MS. CONCLUSIONS This review summarizes the progress on phytochemistry, pharmacology, toxicology and analytical methods of the genus Nardostachys. Studies demonstrate traditional uses of the genus Nardostachys, and reveal novel bioactive effects for clinical uses. These achievements expand our knowledge on the genus Nardostachys and its clinical value.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Tian-Tian Yang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Yao Rao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Zhi-Mei Wang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Xueqi Dong
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Li-Hua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Xiu-Mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Tian-Xiang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Hai-Ying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Yan-Tong Xu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Hong-Hua Wu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
6
|
Chemical Analysis of the Ingredients of 20% Aqueous Ethanol Extract of Nardostachys jatamansi through Phytochemical Study and Evaluation of Anti-Neuroinflammatory Component. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5901653. [PMID: 33976703 PMCID: PMC8084687 DOI: 10.1155/2021/5901653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 01/15/2023]
Abstract
Nardostachys spp. have been widely used in Asia as a folk medicine. In particular, the extracts of Nardostachys jatamansi, a species that grows in China, India, and Tibet, have been used to treat mental disorders, hyperlipidemia, hypertension, and convulsions. In this investigation, the potential of 20% aqueous ethanol extract of N. jatamansi (NJ20) as a botanical drug was explored by chemically investigating its constituents and its anti-neuroinflammatory effects on lipopolysaccharide- (LPS-) induced in vitro and in vivo models. Nine secondary metabolites were isolated and identified from NJ20, and quantitative analysis of these metabolites revealed desoxo-narchinol A as the major constituent. In LPS-challenged cells, pretreatment with NJ20 inhibited the LPS-induced excessive production of proinflammatory mediators, such as nitric oxide, prostaglandin E2, interleukin- (IL-) 1β, IL-6, and tumor necrosis factor-α. NJ20 also attenuated the overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2. Additionally, pre-intraperitoneal injection of NJ20 downregulated the mRNA overexpression of IL-1β, IL-6, and iNOS in the prefrontal cortex, hypothalamus, and hippocampus of the LPS-stimulated C57BL/c mouse model. Chemical and biological investigations of NJ20 revealed that it is a potential inhibitor of LPS-induced neuroinflammatory responses in microglial cells and mouse models. The major active constituent of NJ20, desoxo-narchinol A, demonstrated anti-neuroinflammatory effects. Hence, our findings indicate that NJ20 may be a promising herbal mixture for developing a functional product and/or herbal drug for treating neuroinflammatory diseases.
Collapse
|
7
|
Khalilzadeh S, Eftkhar T, Shirbeigi L, Tabarrai M, Toliyat T, Fayazmanesh S, Ghasemi Z, Shamohammadi S. Efficacy of a vaginal tablet as a Persian medicine product on vulvovaginal candidiasis: a double-blind, randomised, placebo-controlled trial. PHARMACEUTICAL BIOLOGY 2020; 58:574-580. [PMID: 32615837 PMCID: PMC8641665 DOI: 10.1080/13880209.2020.1784236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Context: In Persian medicine, topical ingredients such as Rosa damascena Mill. (Rosaceae), are usually recommended for the treatment of uterine diseases. Scientific evaluation of these historical documents can be valuable for finding new potential use in conventional medicine.Objective: This clinical trial was performed to determine whether the use of the 'ward' vaginal tablet, which contains Rosa damascena, Punica granatum L. (Punicaceae), Querqus infectoria Oliv. (Fagaceae), Myrtus communis L. (Myrtaceae) and Nardostachys jatamansi (D.Don) DC. (Caprifoliaceae) could alleviate the symptoms of vulvovaginal candidiasis.Materials and methods: A parallel double-blinded placebo-controlled study was done. Eighteen to fifty-year-old women with vulvovaginal candidiasis were divided into the 'ward' and placebo groups, 46 individuals in each group. The 'ward' group received the 'ward' vaginal tablet containing 200 mg of dried extract. Placebo group received a placebo (composed of corn starch and lactose). One tablet was applied through the vagina for 7 consecutive nights.Results: Two weeks after medication administration, the vaginal discharge sample of patients was re-cultured; 29 patients (63.045%) in the 'ward' group and 6 (13.04%) patients in the placebo group had negative culture (p < 0.001). All clinical symptoms including itching, irritation, and vaginal discharge were significantly reduced in the 'ward' group compared with the placebo group following the intervention and the follow up (p < 0.05).Discussion and conclusions: The findings suggest the 'ward' vaginal tablet could ameliorate vulvovaginal candidiasis. Future larger studies are recommended due to compare the therapeutic effect of the 'ward' vaginal tablet with common treatments.
Collapse
Affiliation(s)
- Somayyeh Khalilzadeh
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Eftkhar
- Department of Obstetrics and Gynecology, Tehran University of Medical Sciences, Tehran, Iran
| | - Laila Shirbeigi
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Tabarrai
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Toliyat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shamim Fayazmanesh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy, Faculty of Pharmacy and Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghasemi
- Medical Mycology of Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Safar Shamohammadi
- Razi Hospital Laboratory, Faculty member in medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wen J, Wu J, Yu H, Fan G, He Y. Correlation analysis between genetic and chemical differences of Nardostachys jatamansi from different habitats in Ganzi Tibetan Autonomous Prefecture, Sichuan Province, China. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Nardosinanone N suppresses LPS-induced macrophage activation by modulating the Nrf2 pathway and mPGES-1. Biochem Pharmacol 2020; 173:113639. [DOI: 10.1016/j.bcp.2019.113639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
|
10
|
Dhiman N, Bhattacharya A. Nardostachys jatamansi (D.Don) DC.-Challenges and opportunities of harnessing the untapped medicinal plant from the Himalayas. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112211. [PMID: 31533076 DOI: 10.1016/j.jep.2019.112211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nardostachys jatamansi (D.Don) DC. (family Caprifoliaceae) is prized in the Chinese, Tibetan, Nepalese, Bhutanese, Indian and Japanese systems of medicine. Its medicinal properties are well documented in ancient literature such as the Ayurvedic classics, the Old Testament, Ben-Cao- Shi-Yi, and Homer's Iliad. The plant is critically endangered and found in the alpine and sub-alpine regions of the Himalayas. AIM OF THE STUDY Our study aims to show the challenges and opportunities of harnessing the untapped pharmaceutical resources of N. jatamansi. Another aim is to explore the possibilities of translating ethnobotanical information into health benefit applications. MATERIALS AND METHODS The sources of information used in the study are government reports, dissertations, books, research articles and databases like Science-Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, and ACS Publications on N. jatamansi. RESULTS AND DISCUSSION In the study, we have examined and discussed reports on phytochemicals present in the plant, their structure, biological activity, pharmacological properties of extracts derived from plant parts, isolated compounds, and commercially available products from the plant. We have identified and discussed ambiguities and confusions about the plant's nomenclature and geographical distribution, and highlighted various studies that failed to discuss this issue. We analyzed the links between various reports on ethnobotanical information as well as studies on phytochemistry and pharmacologyconfirming the therapeutic properties of N. jatamansi. However, in many of these findings which had used dried samples, there was an uncanny resemblance between the phytochemical profiles and biological activities of N. jatamansi and Valeriana jatamansi Jones ex Roxb. (another genus from family, Caprifoliaceae). Since both the species share identical vernacular names, a possible reason could be that the samples may not have been of two separate species. Other limitations of different studies were the use of out-dated techniques for phytochemical profiling, absence of toxicology studies using animal models and clinical trials using human subjects. CONCLUSIONS Analysis of various studies revealed a confusion about the botanical nomenclature of the plants and their geographical distributions. Absence of proper markers for identification of correct samples and improperly conducted studies on N. jatamansi were found to be the major hurdles to the use of ethnobotanical information and research findings into applications for human health. Development of markers using molecular, chemical and pharmacognosy based approaches for plant authentication and, in vitro propagation of authenticated material for easy availability of genuine plant material are the possible solutions to the problems identified.
Collapse
Affiliation(s)
- Nisha Dhiman
- Division of Biotechnology, CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Amita Bhattacharya
- Division of Biotechnology, CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
11
|
Choi JW, Shin JY, Jo IJ, Kim DG, Song HJ, Yoon CS, Oh H, Kim YC, Bae GS, Park SJ. 8α-Hydroxypinoresinol isolated from Nardostachys jatamansi ameliorates cerulein-induced acute pancreatitis through inhibition of NF-κB activation. Mol Immunol 2019; 114:620-628. [PMID: 31542607 DOI: 10.1016/j.molimm.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition of the pancreas, with no specific treatment available. We have previously reported that Nardostachys jatamansi (NJ) ameliorates cerulein-induced AP. However, the specific compound responsible for this inhibitory effect has not been identified. Therefore, in the present study, we focused on a single compound, 8α-hydroxypinoresinol (HP), from NJ. The aim of this study was to determine the effect of HP on the development of pancreatitis in mice and to explore the underlying mechanism(s). AP was induced by the injection of cerulein (50 μg/kg/h) for 6 h. HP (0.5, 5 or 10 mg/kg, i.p.) was administered 1 h prior to and 1, 3 or 5 h after the first cerulein injection, with vehicle- and DMSO-treated groups as controls. Blood samples were collected to determine serum levels of amylase, lipase, and cytokines. The pancreas was removed for morphological examination, myeloperoxidase (MPO) assays, cytokine assays, and assessment of nuclear factor (NF)-κB activation. The lungs were removed for morphological examination and MPO assays. Administration of HP dramatically improved pancreatic damage and pancreatitis-associated lung damage and also reduced amylase and lipase activities in serum. Moreover, administration of HP reduced the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the pancreas and serum during AP. In addition, the administration of HP inhibited degradation of inhibitory κ-Bα (Iκ-Bα), NF-κB p65 translocation into nucleus and NF-κB binding activity in the pancreas. Our results suggest that HP exerted therapeutic effects on pancreatitis and these beneficial effects may be due to the inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Ji-Won Choi
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Joon Yeon Shin
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Il-Joo Jo
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea; Division of Beauty Sciences, School of Natural sciences, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Dong-Gu Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Chi-Su Yoon
- Korea Research Institute of Bioscience & Biotechnology, Yeongudanjiro 30, Cheongju, Chungbuk 28116, South Korea
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea; Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea.
| | - Sung-Joo Park
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea.
| |
Collapse
|
12
|
Rehman T, Ahmad S. Nardostachys chinensis
Batalin: A review of traditional uses, phytochemistry, and pharmacology. Phytother Res 2019; 33:2622-2648. [DOI: 10.1002/ptr.6447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Tayyeba Rehman
- University College of Conventional Medicine, Faculty of Pharmacy and Alternative MedicineThe Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Saeed Ahmad
- University College of Conventional Medicine, Faculty of Pharmacy and Alternative MedicineThe Islamia University of Bahawalpur Bahawalpur Pakistan
- Department of Pharmacy, Faculty of Pharmacy and Alternative MedicineThe Islamia University of Bahawalpur Bahawalpur Pakistan
| |
Collapse
|
13
|
Nardochinoid B Inhibited the Activation of RAW264.7 Macrophages Stimulated by Lipopolysaccharide through Activating the Nrf2/HO-1 Pathway. Molecules 2019; 24:molecules24132482. [PMID: 31284554 PMCID: PMC6650925 DOI: 10.3390/molecules24132482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Nardochinoid B (NAB) is a new compound isolated from Nardostachys chinensis. Although our previous study reported that the NAB suppressed the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated RAW264.7 cells, the specific mechanisms of anti-inflammatory action of NAB remains unknown. Thus, we examined the effects of NAB against LPS-induced inflammation. In this study, we found that NAB suppressed the LPS-induced inflammatory responses by restraining the expression of inducible nitric oxide synthase (iNOS) proteins and mRNA instead of cyclooxygenase-2 (COX-2) protein and mRNA in RAW264.7 cells, implying that NAB may have lower side effects compared with nonsteroidal anti-inflammatory drugs (NSAIDs). Besides, NAB upregulated the protein and mRNA expressions of heme oxygenase (HO)-1 when it exerted its anti-inflammatory effects. Also, NAB restrained the production of NO by increasing HO-1 expression in LPS-stimulated RAW264.7 cells. Thus, it is considered that the anti-inflammatory effect of NAB is associated with an induction of antioxidant protein HO-1, and thus NAB may be a potential HO-1 inducer for treating inflammatory diseases. Moreover, our study found that the inhibitory effect of NAB on NO is similar to that of the positive drug dexamethasone, suggesting that NAB has great potential for developing new drugs in treating inflammatory diseases.
Collapse
|
14
|
Liquid Chromatography-Tandem Mass Spectrometry of Desoxo-Narchinol a and Its Pharmacokinetics and Oral Bioavailability in Rats and Mice. Molecules 2019; 24:molecules24112037. [PMID: 31141964 PMCID: PMC6600332 DOI: 10.3390/molecules24112037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 01/31/2023] Open
Abstract
Desoxo-narchinol A is one of the major active constituents from Nardostachys jatamansi, which has been reported to possess various pharmacological activities, including anti-inflammatory, antioxidant, and anticonvulsant activity. A simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of desoxo-narchinol A in two different biological matrices, i.e., rat plasma and mouse plasma, using sildenafil as an internal standard (IS). The method involved simple protein precipitation with acetonitrile and the analyte was separated by gradient elution using 100% acetonitrile and 0.1% formic acid in water as a mobile phase. The MS detection was performed with a turbo electrospray in positive ion mode. The lower limit of quantification was 10 ng/mL in both rat and mouse plasma. Intra- and inter-day accuracies were in the ranges of 97.23-104.54% in the rat plasma and 95.90-110.11% in the mouse plasma. The precisions were within 8.65% and 6.46% in the rat and mouse plasma, respectively. The method was applied to examine the pharmacokinetics of desoxo-narchinol A, and the oral bioavailability of desoxo-narchinol A was 18.1% in rats and 28.4% in mice. The present results may be useful for further preclinical and clinical studies of desoxo-narchinol A.
Collapse
|
15
|
Bae GS, Kim DG, Jo IJ, Choi SB, Kim MJ, Shin JY, Kim DU, Song HJ, Joo M, Park SJ. Heme oxygenase-1 induced by desoxo-narchinol-A attenuated the severity of acute pancreatitis via blockade of neutrophil infiltration. Int Immunopharmacol 2019; 69:225-234. [PMID: 30738992 DOI: 10.1016/j.intimp.2019.01.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/07/2023]
Abstract
Heme oxygenase-1 (HO-1) has an anti-inflammatory action in acute pancreatitis (AP). However, its mechanism of action and natural compounds/drugs to induce HO-1 in pancreas are not well understood. In this study, we investigated the regulatory mechanisms of HO-1 during AP using desoxo-narchinol-A (DN), the natural compound inducing HO-1 in the pancreas. Female C57/BL6 Mice were intraperitoneally injected with supramaximal concentrations of cerulein (50 μg/kg) hourly for 6 h to induce AP. DMSO or DN was administered intraperitoneally, then mice were sacrificed 6 h after the final cerulein injection. Administration of DN increased pancreatic HO-1 expression through activation of activating protein-1, mediated by mitogen-activated protein kinases. Furthermore, DN treatment reduced the pancreatic weight-to-body weight ratio as well as production of digestive enzymes and pro-inflammatory cytokines. Inhibition of HO-1 by tin protoporphyrin IX abolished the protective effects of DN on pancreatic damage. Additionally, DN treatment inhibited neutrophil infiltration into the pancreas via regulation of chemokine (C-X-C motif) ligand 2 (CXCL2) by HO-1. Our results suggest that DN is an effective inducer of HO-1 in the pancreas, and that HO-1 regulates neutrophil infiltration in AP via CXCL2 inhibition.
Collapse
Affiliation(s)
- Gi-Sang Bae
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Dong-Goo Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Il-Joo Jo
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, South Korea; Division of Beauty Sciences, School of Natural Sciences, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Sun-Bok Choi
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Myoung-Jin Kim
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Joon Yeon Shin
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Dong-Uk Kim
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Ho-Joon Song
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Yangsan 50621, South Korea
| | - Sung-Joo Park
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, South Korea.
| |
Collapse
|
16
|
Pharmacokinetic study comparing pure desoxo-narchinol A and nardosinonediol with extracts from Nardostachys jatamansi. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:152-158. [DOI: 10.1016/j.jchromb.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022]
|
17
|
Luo JF, Shen XY, Lio CK, Dai Y, Cheng CS, Liu JX, Yao YD, Yu Y, Xie Y, Luo P, Yao XS, Liu ZQ, Zhou H. Activation of Nrf2/HO-1 Pathway by Nardochinoid C Inhibits Inflammation and Oxidative Stress in Lipopolysaccharide-Stimulated Macrophages. Front Pharmacol 2018; 9:911. [PMID: 30233360 PMCID: PMC6131578 DOI: 10.3389/fphar.2018.00911] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The roots and rhizomes of Nardostachys chinensis have neuroprotection and cardiovascular protection effects. However, the specific mechanism of N. chinensis is not yet clear. Nardochinoid C (DC) is a new compound with new skeleton isolated from N. chinensis and this study for the first time explored the anti-inflammatory and anti-oxidant effect of DC. The results showed that DC significantly reduced the release of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW264.7 cells. The expression of pro-inflammatory proteins including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were also obviously inhibited by DC in LPS-activated RAW264.7 cells. Besides, the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also remarkably inhibited by DC in LPS-activated RAW264.7 cells. DC also suppressed inflammation indicators including COX-2, PGE2, TNF-α, and IL-6 in LPS-stimulated THP-1 macrophages. Furthermore, DC inhibited the macrophage M1 phenotype and the production of reactive oxygen species (ROS) in LPS-activated RAW264.7 cells. Mechanism studies showed that DC mainly activated nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, increased the level of anti-oxidant protein heme oxygenase-1 (HO-1) and thus produced the anti-inflammatory and anti-oxidant effects, which were abolished by Nrf2 siRNA and HO-1 inhibitor. These findings suggested that DC could be a new Nrf2 activator for the treatment and prevention of diseases related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xiu-Yu Shen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chon Kit Lio
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jian-Xin Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun-Da Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Xie
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Kim KW, Yoon CS, Kim YC, Oh H. Desoxo-narchinol A and Narchinol B Isolated from Nardostachys jatamansi Exert Anti-neuroinflammatory Effects by Up-regulating of Nuclear Transcription Factor Erythroid-2-Related Factor 2/Heme Oxygenase-1 Signaling. Neurotox Res 2018; 35:230-243. [PMID: 30168019 DOI: 10.1007/s12640-018-9951-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
Abstract
We previously reported that desoxo-narchinol A and narchinol B from Nardostachys jatamansi DC (Valerianaceae) inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein in lipopolysaccharide (LPS)-stimulated BV2 and primary microglial cells. In this study, we aimed to elucidate the molecular mechanism underlying the anti-neuroinflammatory effects of desoxo-narchinol A and narchinol B. These two compounds inhibited the nuclear factor (NF)-κB pathway, by repressing the phosphorylation and degradation of inhibitor kappa B (IκB)-α, nuclear translocation of the p65/p50 heterodimer, and DNA-binding activity of the p65 subunit. Furthermore, both compounds induced heme oxygenase-1 (HO-1) protein expression, which was mediated by the activation of nuclear transcription factor erythroid-2-related factor 2 (Nrf2). Activation of the Nrf2/HO-1 pathway by desoxo-narchinol A was shown to be regulated by increased phosphorylation of p38 and extracellular signal-regulated kinase (ERK), whereas only p38 was involved in narchinol B-induced activation of the Nrf2/HO-1 pathway. In addition, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling was also involved in the activation of HO-1 by desoxo-narchinol A and narchinol B. These compounds also increased the phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine-9 residue, following phosphorylation of Akt. The anti-neuroinflammatory effect of desoxo-narchinol A and narchinol B was partially blocked by a selective HO-1 inhibitor, suggesting that this effect is partly mediated by HO-1 induction. In addition, both compounds also induced HO-1 protein expression in rat-derived primary microglial cells, which was correlated with their anti-neuroinflammatory effects in LPS-stimulated primary microglial cells. In conclusion, desoxo-narchinol A and narchinol B are potential candidates for the development of preventive agents for the regulation of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Chi-Su Yoon
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
19
|
Shen XY, Qin DP, Zhou H, Luo JF, Yao YD, Lio CK, Li HB, Dai Y, Yu Y, Yao XS. Nardochinoids A–C, Three Dimeric Sesquiterpenoids with Specific Fused-Ring Skeletons from Nardostachys chinensis. Org Lett 2018; 20:5813-5816. [DOI: 10.1021/acs.orglett.8b02511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiu-Yu Shen
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Da-Peng Qin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, China
| | - Jin-Fang Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, China
| | - Yun-Da Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, China
| | - Chon-Kit Lio
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, China
| | - Hai-Bo Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Sheng Yao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
20
|
Ko W, Park JS, Kim KW, Kim J, Kim YC, Oh H. Nardosinone-Type Sesquiterpenes from the Hexane Fraction of Nardostachys jatamansi Attenuate NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated BV2 Microglial Cells. Inflammation 2018; 41:1215-1228. [DOI: 10.1007/s10753-018-0768-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Yoon CS, Kim KW, Lee SC, Kim YC, Oh H. Anti-neuroinflammatory effects of sesquiterpenoids isolated from Nardostachys jatamansi. Bioorg Med Chem Lett 2018; 28:140-144. [DOI: 10.1016/j.bmcl.2017.11.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/24/2023]
|
22
|
Le VNH, Khong TQ, Na MK, Kim KT, Kang JS. An optimized HPLC-UV method for quantitatively determining sesquiterpenes in Nardostachyos Radix et Rhizoma. J Pharm Biomed Anal 2017; 145:406-413. [PMID: 28728067 DOI: 10.1016/j.jpba.2017.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/09/2017] [Accepted: 06/17/2017] [Indexed: 11/24/2022]
Abstract
Nardostachyos Radix et Rhizoma (NR), the root and rhizome from either Nardostachys jatamansi Batal or Nardostachys jatamansi DC, is known to have biological functions including neuro-protective and anti-pancreatitis activity. The main bioactive compounds within NR are all classified as sesquiterpenes, and include desoxo-narchinol A, nardosinonediol, and nardosinone. Although NR is a valuable herb that is widely used in many Asian countries, robust quality control protocols for NR are still in question, especially those that can analyze the three main active compounds. Current quantitative methods within the Chinese Pharmacopoeic use nardosinone as a marker compounds. One compound cannot represent a complicated matrix, and is thus insufficient to control the quality of this herbal medicine. Moreover, there are no high-performance liquid chromatography (HPLC) methods that can simultaneously analyze desoxo-narchinol A (DA), nardosinonediol (NE), and nardosinone (ND) within NR. This study aimed to establish an efficient quality control protocol by developing an analytical method that simultaneously detects the three sesquiterpenes with HPLC using response surface methodology (RSM) to optimize sample preparation. Optimized HPLC conditions included a mobile phase of 0.1% formic acid in water (A), and a 0.1% formic acid in acetonitrile (B) under an elution program of 20% B-80% B for 30min at 254nm. The method was well validated, demonstrating satisfactory linearity, accuracy, precision, recovery, repeatability, and stability. Optimized conditions for creating the analytical sample were predicted by RSM using a Box-Behnken design. These conditions included reflux at 70°C for 3h using 24.98% ethanol as the extraction solvent (solvent: solid ratio=78.81mL/g). The relationship between the results between predicted and experimental conditions was well correlated, and varied between 96.48%-102.11%. Thus, our developed HPLC method, paired with optimized sample preparation conditions, accurately quantified all three sesquiterpenes, and may thus be a prospective means of controlling the quality of NR.
Collapse
Affiliation(s)
- Vu Ngoc Han Le
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Trong Quan Khong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Kyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Tae Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
23
|
Six new sesquiterpenoids from Nardostachys chinensis Batal. Fitoterapia 2017; 119:75-82. [DOI: 10.1016/j.fitote.2017.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/13/2023]
|