1
|
Xue X, Zhang P, Cao Y, Liu Y, Yang B, Wang Y, Dong Q. Costunolide nanosuspension loaded in dissolvable microneedle arrays for atopic dermatitis treatment. Int J Pharm 2025; 675:125566. [PMID: 40204042 DOI: 10.1016/j.ijpharm.2025.125566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/18/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Transdermal drug delivery systems (TDDS) have garnered increasing attention due to their potential to overcome the limitations of the traditional oral route. This study developed a novel transdermal delivery system integrating costunolide nanosuspension (COS-NS) with dissolvable microneedles (DMN) to address the poor aqueous solubility and bioavailability of COS for atopic dermatitis (AD) treatment. COS-NS was prepared via antisolvent precipitation, stabilized with PVP K30 and SDS, and freeze-dried with mannitol (COS NS-M), yielding nanoparticles (203.42 ± 1.99 nm) with enhanced solubility (388.61 ± 9.35 μg/mL) and cumulative release (93.00 ± 2.92 % over 24 h). COS NS-M was incorporated into hyaluronic acid-based DMN (COS-DMN), demonstrating robust mechanical strength (0.12 N/needle) and efficient epidermal penetration (630 µm depth, 95 % success rate in mice skin). Pharmacokinetic studies in rats revealed superior transdermal performance for COS-DMN, achieving a Cmax of 26.30 ± 3.49 ng/mL and AUC0-24h of 210.80 ± 8.15 h·ng/mL, outperforming oral administration. In the 2,4-Dinitrochlorobenzene (DNCB)-induced AD mice model, COS-DMN (less than 10 % of the oral dose) significantly reduced skin thickness, pruritus scores, and inflammatory cytokines (IgE, TNF-α, IL-13) Histological and molecular analyses confirmed attenuated epidermal hyperplasia and inflammatory infiltration. These findings highlight COS-DMN as a minimally invasive, high-efficacy platform for transdermal delivery of hydrophobic therapeutics, offering a promising strategy for AD management.
Collapse
Affiliation(s)
- Xulong Xue
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Panyanghu Road, Tianjin 301617, China; Military Medical Sciences Academy, Academy of Military Sciences, No. 1 Dali Road, Tianjin 300050, China
| | - Pengcheng Zhang
- Military Medical Sciences Academy, Academy of Military Sciences, No. 1 Dali Road, Tianjin 300050, China
| | - Yang Cao
- Military Medical Sciences Academy, Academy of Military Sciences, No. 1 Dali Road, Tianjin 300050, China
| | - Ying Liu
- Military Medical Sciences Academy, Academy of Military Sciences, No. 1 Dali Road, Tianjin 300050, China
| | - Bo Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Panyanghu Road, Tianjin 301617, China; Military Medical Sciences Academy, Academy of Military Sciences, No. 1 Dali Road, Tianjin 300050, China
| | - Yang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Panyanghu Road, Tianjin 301617, China.
| | - Qingyang Dong
- Military Medical Sciences Academy, Academy of Military Sciences, No. 1 Dali Road, Tianjin 300050, China.
| |
Collapse
|
2
|
Shin Y, Kim J, Song Y, Kim S, Kong H. Efficacy of Laurus nobilis L. for Tight Junction Protein Imbalance in Leaky Gut Syndrome. Nutrients 2024; 16:1250. [PMID: 38732497 PMCID: PMC11085348 DOI: 10.3390/nu16091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Laurus nobilis L. (LNL) belongs to the evergreen Lauraceae family. It is native to the Mediterranean and widely distributed in the southern United States, Europe, and the Middle East. LNL is rich in active ingredients of the sesquiterpene lactone series and has been reported to have antioxidant, anti-inflammatory, and anticancer effects. And parthenolide, known as a sesquiterpene lactone-based compound, inhibits the activation of lipopolysaccharide-binding protein (LBP), which is a major trigger for leaky gut syndrome. However, the effectiveness of LNL in improving the state of increased intestinal permeability has not yet been reported. Therefore, we demonstrated the efficacy of LNL, which is known to be rich in parthenolide, in improving intestinal permeability induced by IL-13. We investigated the improvement in permeability and analyzed major tight junction proteins (TJs), permeability-related mechanisms, weight and disease activity indices, and corresponding cytokine mechanisms. LNL maintained TJs homeostasis and clinical improvement by reducing increased claudin-2 through the inhibition of IL-13/STAT6 activation in TJ-damaged conditions. These results are expected to be effective in preventing leaky gut syndrome through the TJ balance and to further improve intestinal-related diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Yelim Shin
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (Y.S.); (J.K.); (Y.S.); (S.K.)
| | - Jiyeon Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (Y.S.); (J.K.); (Y.S.); (S.K.)
- KOSA BIO Inc., 272, Namyangju-si 12106, Republic of Korea
| | - Youngcheon Song
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (Y.S.); (J.K.); (Y.S.); (S.K.)
- PADAM Natural Material Research Institute, Sahmyook University, Seoul 01795, Republic of Korea
| | - Sangbum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (Y.S.); (J.K.); (Y.S.); (S.K.)
| | - Hyunseok Kong
- PADAM Natural Material Research Institute, Sahmyook University, Seoul 01795, Republic of Korea
- College of Animal Resources Science, Seoul 01795, Republic of Korea
| |
Collapse
|
3
|
Lu C, Li X, Du W, Zhang X, Li Y, Hu C, Mao Z, Zhang Y, Wang R. Exploration of costunolide derivatives as potential anti-inflammatory agents for topical treatment of atopic dermatitis by inhibiting MAPK/NF-κB pathways. Bioorg Chem 2024; 143:107054. [PMID: 38157670 DOI: 10.1016/j.bioorg.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Atopic dermatitis (AD) is a common inflammatory disease and it is very difficult to treat. In the present work, a series of costunolide derivatives have been prepared, and in vitro and in vivo anti-inflammatory activities have evaluated. The results showed that most derivatives displayed good inhibition of NO generation with low cytotoxicity, and 7d could inhibit the phosphorylation of P38, P65 NF-κB and IκB-α in LPS-induced RAW264.7 model. The in vivo researches showed that 7d could improve skin injury symptoms, decrease Th2-type cytokine levels, inhibit HIS levels, alleviate scratching and repaire the damaged skin barrier through the inhibition of phosphorylation of MAPK and NF-κB signaling pathways on MC903-induced AD model. Therefore, costunolide derivatives may be new potent anti-AD agents for further study.
Collapse
Affiliation(s)
- Cheng Lu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xiaoyi Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Wenxia Du
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xiao Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yanping Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Chunyan Hu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| | - Yi Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| |
Collapse
|
4
|
Aundhia C, Parmar G, Talele C, Sadhu P, Sen AK, Rana P. Potential of Natural Products as Therapeutic Agents for Inflammatory Diseases. Antiinflamm Antiallergy Agents Med Chem 2024; 23:149-163. [PMID: 38984571 DOI: 10.2174/0118715230307969240614102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Inflammation is a complex biological response that plays a pivotal role in various pathological conditions, including inflammatory diseases. The search for effective therapeutic agents has led researchers to explore natural products due to their diverse chemical composition and potential therapeutic benefits. This review comprehensively examines the current state of research on natural products as potential therapeutic agents for inflammatory diseases. The article discusses the antiinflammatory properties of various natural compounds, their mechanisms of action, and their potential applications in managing inflammatory disorders. Additionally, formulation and delivery systems, challenges and future prospects in this field are also highlighted.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Piyushkumar Sadhu
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ashim Kumar Sen
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Pramojeeta Rana
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| |
Collapse
|
5
|
BAP31 affects macrophage polarization through regulating helper T cells activation. J Mol Histol 2022; 53:843-855. [PMID: 36018529 DOI: 10.1007/s10735-022-10095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
Previously, we reported that B cell receptor associated protein 31 (BAP31) is a positive regulator on T-cells activation. Helper T cells [cluster of differentiation 4+ (CD4+) T cells] can regulate macrophage activation in adaptive immune response against pathogens. In this study, we elucidate that M1 and M2 macrophages polarization is significantly suppressed in Lck Cre-BAP31flox/flox mice or the co-culture system of CD4+ T cells from Lck Cre-BAP31flox/flox mice and macrophages from WT mice. It means that BAP31 may affect the regulation of CD4+ T cells on macrophages. Further studies suggest that BAP31 deficiency significantly reduce the expressions of T helper 1 (Th1)/ Th2/ Th17/ Th9/ Th22/ Treg cells-related cytokines and transcription factors. The inhibition of macrophages activation caused by BAP31 knockdown is due to the reduction of IFN-γ and IL-4 secreted by Th1 and Th2 cells. BAP31 also affects the levels of early activation markers (CD69 and CD25) of CD4+ T cells. Moreover, BAP31 deficiency downregulates the expression of TCRαβ-CD3 complex, and the adaptor proteins p-Zap70, p-Lck, and p-Lat in TCR signaling pathway. These results demonstrate that BAP31 deficiency inhibits TCR/CD3-mediated activation in CD4+ T cells and adversely affects macrophages polarization. These findings establish a theoretical foundation for the study of BAP31 in immunotherapy.
Collapse
|
6
|
Fateh ST, Fateh ST, Shekari F, Mahdavi M, Aref AR, Salehi-Najafabadi A. The Effects of Sesquiterpene Lactones on the Differentiation of Human or Animal Cells Cultured In-Vitro: A Critical Systematic Review. Front Pharmacol 2022; 13:862446. [PMID: 35444549 PMCID: PMC9014292 DOI: 10.3389/fphar.2022.862446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
Cellular differentiation is pivotal in health and disease. Interfering with the process of differentiation, such as inhibiting the differentiation of adipocytes and inducing the differentiation of cancer cells, is considered a therapeutic approach. Sesquiterpene lactones, primarily found in plants, have been attracted attention as differentiating/dedifferentiating agents tested on various human or animal cells. However, a consensus on sesquiterpene lactones’ effects and their mechanism of action is required. In this sense, through a systematic review, we have investigated the differentiating/dedifferentiating effects of sesquiterpene lactones on human or animal cells. 13 different cell lines originated from humans, mice, and rats, in addition to the effects of a total of 21 sesquiterpene lactones, were evaluated in the included studies. These components had either inducing, inhibiting, or no effect on the cells, mediating their effects through JAK-STAT, PI3K-Akt, mitogen-activated protein kinases, NFκB, PPARγ pathways. Although nearly all inducing and inhibiting effects were attributed to cancerous and normal cells, respectively, this is likely a result of a biased study design. Few studies reported negative results along with others, and no study was found reporting only negative results. As a result, not only are the effects and mechanism of action of sesquiterpene lactones not vivid but our knowledge and decisions are also misconducted. Moreover, there is a significant knowledge gap regarding the type of evaluated cells, other sesquiterpene lactones, and the involved signaling pathways. In conclusion, sesquiterpene lactones possess significant effects on differentiation status, leading to potentially efficient therapy of obesity, osteoporosis, and cancer. However, reporting negative results and further investigations on other cells, sesquiterpene lactones, and signaling pathways are highly suggested to pave the path of sesquiterpene lactones to the clinic more consciously.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Amir Salehi-Najafabadi
- Department of Microbiology, School of Biology, University College of Science, University of Tehran, Tehran, Iran.,Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Mao J, Zhan H, Meng F, Wang G, Huang D, Liao Z, Chen M. Costunolide protects against alcohol-induced liver injury by regulating gut microbiota, oxidative stress and attenuating inflammation in vivo and in vitro. Phytother Res 2022; 36:1268-1283. [PMID: 35084790 DOI: 10.1002/ptr.7383] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
Costunolide (cos) derived from the roots of Dolomiaea souliei (Franch.), which belongs to the Dolomiaea genus in the family Compositae, exert the anti-inebriation effect mainly by inhibiting the absorption of alcohol in the gastrointestinal tract. However, the protective effect of cos against alcohol-induced liver injury (ALI) remains obscure. The present study was aimed to evaluate the hepatoprotective effects of cos (silymarin was used as positive control) against ALI and its potential mechanisms. MTT was used to examine the effect of cos on the cell viability of L-02 cells. Plasma was separated from blood that used to test the levels of TNF-α, IL-6 and IL-12, and LPS while serum separated from blood which used to detect the level of ALT and AST. Liver tissues were obtained for histopathological examination and western blot analysis. Fresh mice feces samples were collected for the detection of bacterial composition. Cos exhibited protective effect against alcoholic-induced liver injury by regulating gut microbiota capacities (higher relative abundance of Firmicutes and Actinobacteria while lower in Bacteroidetes and Proteobacteria), adjusting oxidative stress (reduced the activities of MDA and ROS while promoted SOD, GSH and GSH-PX in L-02 cells) and attenuating inflammation (decreased the levels of ALT, AST, LPS, IL-6, IL-12 and TNF-α) via LPS-TLR4-NF-κB p65 signaling pathway, which might be an active therapeutic agent for treatment of ALI.
Collapse
Affiliation(s)
- Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Honghong Zhan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Dan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Xu C, Huang X, Lei X, Jin Z, Wu M, Liu X, Huang Y, Zhao X, Xiong Y, Sun J, Duan X, Wang J. Costunolide-Induced Apoptosis via Promoting the Reactive Oxygen Species and Inhibiting AKT/GSK3β Pathway and Activating Autophagy in Gastric Cancer. Front Cell Dev Biol 2021; 9:722734. [PMID: 34869312 PMCID: PMC8633576 DOI: 10.3389/fcell.2021.722734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Costunolide (Cos) is a sesquiterpene lactone extracted from chicory. Although it possesses anti-tumor effects, the underlying molecular mechanism against gastric cancer cells remains unclear. This study aimed to explore the effect and potential mechanism of Cos on gastric cancer. Methods: The effect of Cos on HGC-27 and SNU-1 proliferation was detected by CCK-8 and clone formation assay. The changes in cell apoptosis were determined using Hoechst 33258 and tunel staining. The morphology of autophagy was analyzed by autophagosomes with the electron microscope and LC3-immunofluorescence with the confocal microscope. The related protein levels of the cell cycle, apoptosis, autophagy and AKT/GSK3β pathway were determined by Western blot. The anti-tumor activity of Cos was evaluated by subcutaneously xenotransplanting HGC-27 into Balb/c nude mice. The Ki67 and P-AKT levels were examined by immunohistochemistry. Results: Cos significantly inhibited HGC-27 and SNU-1 growth and induced cell cycle arrest in the G2/M phase. Cos activated intrinsic apoptosis and autophagy through promoting cellular reactive oxygen species (ROS) levels and inhibiting the ROS-AKT/GSK3β signaling pathway. Moreover, preincubating gastric carcinoma cells with 3-methyladenine (3-MA), a cell-autophagy inhibitor, significantly alleviated the effects of Cos in inducing cell apoptosis. Conclusion: Cos induced apoptosis of gastric carcinoma cells via promoting ROS and inhibiting AKT/GSK3β pathway and activating pro-death cell autophagy, which may be an effective strategy to treat gastric cancer.
Collapse
Affiliation(s)
- Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Wu
- Department of Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiao Liu
- Department of Graduate School, Xi'an Medical University, Xi'an, China.,Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yubin Huang
- Department of Graduate School, Xi'an Medical University, Xi'an, China.,Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yue Xiong
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jianhua Wang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
9
|
Huang Z, Wei C, Yang K, Yu Z, Wang Z, Hu H. Aucklandiae Radix and Vladimiriae Radix: A systematic review in ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114372. [PMID: 34186101 DOI: 10.1016/j.jep.2021.114372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aucklandiae Radix (AR) and Vladimiriae Radix (VR), as commonly used traditional Chinese herbal medicine, were widely used in the treatment of gastrointestinal diseases. The two herbal medicines were warm, pungent and bitter. They entered the spleen, stomach, large intestine and gallbladder meridians, and had the effect of promoting qi circulation to relieve pain. It is usually used for chest and hypochondrium, abdominal fullness and pain, tenesmus, indigestion, and warming the middle to harmonize the stomach in clinically. AIM OF THIS REVIEW To provide a reference for the identification of traditional use, the material basis of efficacy and preclinical research between AR and VR, this review systematically summarized the similarities and differences in ethnopharmacology, phytochemistry and modern pharmacology. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine, master's thesis, doctoral thesis. RESULTS In the plateau areas of Sichuan Province, VR used to be regarded as substitute or local habit for AR, which is regularly used for chest, abdominal fullness and pain, diarrhea, and other related diseases. In Chinese Pharmacopoeia (ChP) 2020 edition, 145 prescription preparations with AR were collected, such as Xianglian Wan, Muxiang Shunqi Wan, Liuwei Muxiang San. However, only one prescription preparation (Jiuxiang Zhitong Wan) contained VR. Additionally, 237 and 254 chemical components were separately isolated and identified from AR and VR, 69 kinds of compounds were common among them, and the significant differences were presented in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids. Moreover, Costunolide (COS) and Dehydrocostus lactone (DEH), two main research objects of modern pharmacology, showed multiple pharmacological activities. Not only could they inhibit the activity of some cancer cells (such as breast cancer and leukemia cells), but they regulated the levels of various inflammatory factors (including TNF-α, NF-κB, IL-1β, IL-6) and repressed the growth and reproduction of various microorganisms (like Helicobacter pylori, Staphylococcus aureus). CONCLUSION COS and DEH as the common active components, provide a certain basis for local medicine about the substitution of VR for AR in Sichuan province of China in the past. In addition, the sesquiterpenoids are the main common compounds in AR and VR by collecting and collating a large number of literature and various data websites. Furthermore, AR and VR have significant differences in ethnopharmacology and phytochemistry, especially in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids, and are probably viewed as reference of a separate list of AR and VR in Chinese Pharmacopoeia.
Collapse
Affiliation(s)
- Zecheng Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Chunlei Wei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ke Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ziwei Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan, Chengdu, 610106, China.
| | - Huiling Hu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| |
Collapse
|
10
|
Abstract
Costunolide, a natural sesquiterpene lactone, has multiple pharmacological activities such as neuroprotection or induction of apoptosis and eryptosis. However, the effects of costunolide on pro-survival factors and enzymes in human erythrocytes, e.g. glutathione and glucose-6-phosphate dehydrogenase (G6PDH) respectively, have not been studied yet. Our aim was to determine the mechanisms underlying costunolide-induced eryptosis and to reverse this process. Phosphatidylserine exposure was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry, and intracellular glutathione [GSH]i from high performance liquid chromatography. The oxidized status of intracellular glutathione and enzyme activities were measured by spectrophotometry. Treatment of erythrocytes with costunolide dose-dependently enhanced the percentage of annexin-V-binding cells, decreased the cell volume, depleted [GSH]i and completely inhibited G6PDH activity. The effects of costunolide on annexin-V-binding and cell volume were significantly reversed by pre-treatment of erythrocytes with the specific PKC-α inhibitor chelerythrine. The latter, however, had no effect on costunolide-induced GSH depletion. Costunolide induces eryptosis, depletes [GSH]i and inactivates G6PDH activity. Furthermore, our study reveals an inhibitory effect of chelerythrine on costunolide-induced eryptosis, indicating a relationship between costunolide and PKC-α. In addition, chelerythrine acts independently of the GSH depletion. Understanding the mechanisms of G6PDH inhibition accompanied by GSH depletion should be useful for development of anti-malarial therapeutic strategies or for synthetic lethality-based approaches to escalate oxidative stress in cancer cells for their sensitization to chemotherapy and radiotherapy.
Collapse
|
11
|
Li X, Liu Q, Yu J, Zhang R, Sun T, Jiang W, Hu N, Yang P, Luo L, Ren J, Wang Q, Wang Y, Yang Q. Costunolide ameliorates intestinal dysfunction and depressive behaviour in mice with stress-induced irritable bowel syndrome via colonic mast cell activation and central 5-hydroxytryptamine metabolism. Food Funct 2021; 12:4142-4151. [PMID: 33977961 DOI: 10.1039/d0fo03340e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional bowel disease, associated with a high risk of depression and anxiety. The brain-gut axis plays an important role in the pathophysiological changes involved in IBS; however, an effective treatment for the same is lacking. The natural compound costunolide (COS) has been shown to exert gastroprotective, enteroprotective, and neuroprotective effects, but its therapeutic effects in IBS are unclear. Our study explored the effect of COS on intestinal dysfunction and depressive behaviour in stress-induced IBS mice. Mice were subjected to chronic unpredictable mild stress to trigger IBS, and some were administered COS. Behavioural tests, histochemical assays, western blotting, and measurement of 5-hydroxytryptamine (5-HT) levels in the colon and hippocampus were applied to monitor the physiological and molecular consequences of COS treatment in IBS mice. COS administration relieved intestinal dysfunction and depression-like behaviours in IBS mice. Improvements in low-grade colon inflammation and intestinal mucosal permeability, inhibition of the activation of mast cells, upregulation of colonic Occludin expression, and downregulation of Claudin 2 expression were also observed. COS was also found to upregulate GluN2A, BDNF, p-ERK1/2, and p-CREB expression and 5-HT levels in hippocampal cells but inhibited 5-HT metabolism. Molecular docking showed that COS could form hydrogen bonds with the serotonin transporter (SERT) to affect the reuptake of 5-HT in the intercellular space. In conclusion, COS alleviates intestinal dysfunction and depressive behaviour in stress-induced IBS mice by inhibiting mast cell activation in the colon and regulating 5-HT metabolism in the central nervous system.
Collapse
Affiliation(s)
- Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Jiaoyan Yu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Ruitao Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Wei Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Na Hu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Peng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Li Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Jing Ren
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Qinhui Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Yan Wang
- Department of Gastroenterology and Endoscopy Center, No. 986 Hospital, Air Force Medical University, Xi'an, 710054 China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
12
|
Sesquiterpene lactones of Aucklandia lappa: Pharmacology, pharmacokinetics, toxicity, and structure–activity relationship. CHINESE HERBAL MEDICINES 2021; 13:167-176. [PMID: 36117502 PMCID: PMC9476744 DOI: 10.1016/j.chmed.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
|
13
|
Huang H, Park S, Zhang H, Park S, Kwon W, Kim E, Zhang X, Jang S, Yoon D, Choi SK, Yi JK, Kim SH, Dong Z, Lee MH, Ryoo Z, Kim MO. Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:114. [PMID: 33785035 PMCID: PMC8010944 DOI: 10.1186/s13046-021-01895-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Enugyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Soyoung Jang
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbuk-do Livestock Research Institute, Yeongju, South Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Korea
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, 58245, Republic of Korea.
| | - Zaeyoung Ryoo
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
14
|
Wang Y, Zhao Y, Xue F, Nan X, Wang H, Hua D, Liu J, Yang L, Jiang L, Xiong B. Nutritional value, bioactivity, and application potential of Jerusalem artichoke ( Helianthus tuberosus L.) as a neotype feed resource. ACTA ACUST UNITED AC 2020; 6:429-437. [PMID: 33364459 PMCID: PMC7750793 DOI: 10.1016/j.aninu.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/25/2022]
Abstract
The large-scale development of herbivorous animal husbandry in China has increased the demand for forage products. However, due to scarce land resources and poor soil quality, forage is in short supply. In particular, high-quality forage in China heavily relies on imports. The contradiction between supply and demand for forage grass products is increasingly notable. Therefore, the development of indigenous new forage resources with a strong ecological adaptability and a high nutritional value is a key to solving this problem. Jerusalem artichoke (JA, Helianthus tuberosus L.), a perennial herb of the genus Helianthus, has advantageous growth traits such as resistance to salinity, barrenness, drought, cold, and disease. The contents of crude protein, crude fiber, and calcium in the optimal harvest period of forage-type JA straw are comparable to those of alfalfa hay at the full bloom stage and the straw of ryegrass and corn at the mature stage. Inulin in JA tubers is a functional ingredient that has prebiotic effects in the gastrointestinal tract of monogastric animals and young ruminants. In addition, some bioactive substances (e.g. flavonoids, phenolic acids, sesquiterpenes, polysaccharides, and amino acids) in JA leaves and flowers have antibacterial, anti-inflammatory, and antioxidant functions as well as toxicities to cancer cells. These functional ingredients may provide effective alternatives to antibiotics used in livestock production. In this review, we summarized the potentials of JA as a feed ingredient from the aspects of nutritional value and fermenting characteristics of the straw, the functions of physiological regulation and disease prevention of inulin in the tubers, and bioactive substances in the leaves and flowers.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguang Xue
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Engineering Research Center of Feed Development, Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
15
|
Xue R, Deng C, Cao H, Zhang K, Lu T, Mao C. Quality assessment of raw and baked Aucklandia lappa Decne. by color measurement and fingerprint analysis. J Sep Sci 2020; 43:3017-3026. [PMID: 32459392 DOI: 10.1002/jssc.202000308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022]
Abstract
Aucklandia lappa Decne. has been used as a traditional Chinese herb for thousands of years in treating various kinds of disorders. According to the Chinese Pharmacopoeia, there are two kinds of processed products, raw and baked Aucklandia lappa Decne., which have different therapeutic effect in clinical application. In this study, based on color measurement and fingerprint analysis, the method to assess the quality of these two processed products was established. In color measurement, the reference ranges of color parameters (L* , a* , and b* ), standard color difference values, and mathematical prediction functions of these two processed products were obtain after the color was measured by a spectrophotometer. Meanwhile, high-performance liquid chromatography fingerprints of these two processed products were established, where there were 12 peaks recognized as the common peaks in both processed products, in which two peaks were identified as costunolide and dehydrocostus lactone, and these two processed products were classified with chemometrics analysis subsequently. Furthermore, the correlation between color parameters and sample compositions was explored and the contents of costunolide and dehydrocostus lactone were determined simultaneously by high-performance liquid chromatography. Consequently, an integral method including color measurement, high-performance liquid chromatography fingerprint with chemometrics analysis, and quantitative determination was established.
Collapse
Affiliation(s)
- Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Chang Deng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Honghong Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Kewei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
16
|
Wei M, Li J, Qiu J, Yan Y, Wang H, Wu Z, Liu Y, Shen X, Su C, Guo Q, Pan Y, Zhang P, Zhang J. Costunolide induces apoptosis and inhibits migration and invasion in H1299 lung cancer cells. Oncol Rep 2020; 43:1986-1994. [PMID: 32236584 PMCID: PMC7160540 DOI: 10.3892/or.2020.7566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
Costunolide being a sesquiterpene lactone, is known to have anticancer properties. The present study investigated the anticancer effects of costunolide against the H1299 human non‑small‑cell lung cancer (NSCLC) cell line. Inhibition of cell viability by costunolide was assessed via a MTT assay. Furthermore, the apoptotic rate was detected using Annexin V/propidium iodide labeling. A colony forming cell assay was performed to investigate the antiproliferative effects of costunolide. Wound healing and Transwell assays were performed to determine the inhibitory effects of costunolide on migration and invasion, respectively. Western blot analysis was undertaken to determine protein expression, and reverse transcription‑quantitative PCR was performed to assess mRNA expression levels. The results demonstrated that costunolide inhibited the viability of H1299 cells, with a half maximal inhibitory concentration value of 23.93±1.67 µM and induced cellular apoptosis in a dose‑dependent manner. Furthermore, the colony formation, migrative and invasive abilities of the H1299 cells were inhibited in a dose‑ or time‑dependent manner. The protein expression levels of E‑cadherin increased and those of N‑cadherin decreased following treatment with costunolide, which suggested that costunolide inhibited epithelial‑to‑mesenchymal transition. The mRNA levels of B‑Raf, E‑cadherin, N‑cadherin, integrins α2 and β1, as well as matrix metalloproteinases 2 were also found to be regulated costunolide. These findings indicate the potential of costunolide in the treatment of NSCLC.
Collapse
Affiliation(s)
- Minyan Wei
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jiajun Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jianhua Qiu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yanyan Yan
- Department of Pharmacology, Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Medical College, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Hui Wang
- Department of Thoracic Surgery, Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Zengbao Wu
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yun Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaoyun Shen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Chaoyue Su
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Qiaoru Guo
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yanrui Pan
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Peiquan Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
17
|
Xie F, Zhang H, Zheng C, Shen XF. Costunolide improved dextran sulfate sodium-induced acute ulcerative colitis in mice through NF-κB, STAT1/3, and Akt signaling pathways. Int Immunopharmacol 2020; 84:106567. [PMID: 32413737 DOI: 10.1016/j.intimp.2020.106567] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022]
Abstract
Costunolide (CTL) is the major sesquiterpene lactone from Radix Aucklandiae, which is widely used on the treatment of gastrointestinal diseases. However, the therapeutic effect of costunolide in ulcerative colitis (UC) is still unknown. Herein, we sought to evaluate the therapeutic effects and underlying mechanisms of costunolide on UC. ICR mice were intraperitoneally administered with costunolide (10 mg/kg) for 10 days. Beginning on the 4th day of drug administration, acute colitis was induced by feeding 4% dextran sulfate sodium (DSS) for additional 7 days. Costunolide markedly attenuated DSS-induced body weight loss, colonic shortening, elevation in disease activity index, and pathological damage of colon, and decreased the number of CD4+ T cells in colon tissues. Furthermore, costunolide significantly inhibited myeloperoxidase (MPO) activity and nitric oxide (NO) level in colon tissues in DSS-exposed mice. Meanwhile, costunolide also suppressed DSS-induced expression of induced nitric oxide synthase (iNOS), interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in both mRNA and protein levels. Mechanistically, costunolide repressed the phosphorylation of nuclear factor kappa-B (NF-κB) p65 and degradation of inhibitor of NF-κB (IκB), as well as the excessive activation of signal transducers and activators of transcription 1/3 (STAT1/3) and serine/threonine protein kinase Akt (Akt) in colon tissues in DSS-challenged mice. These findings successfully demonstrated that costunolide ameliorated DSS-induced murine acute colitis by suppressing inflammation through inactivation of NF-κB, STAT1/3, and Akt pathways. These results also suggested that costunolide may be a potential therapeutic agent for the treatment of acute UC.
Collapse
Affiliation(s)
- Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao-Fei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
18
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
19
|
Qiburi Q, Ganbold T, Bao Q, Da M, Aoqier A, Temuqile T, Baigude H. Bioactive components of ethnomedicine Eerdun Wurile regulate the transcription of pro-inflammatory cytokines in microglia. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112241. [PMID: 31533078 DOI: 10.1016/j.jep.2019.112241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/25/2019] [Accepted: 09/14/2019] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Mongolian medicine Eerdun Wurile (EW) has remarkable neural recovery effect, and has been playing a key role in the clinical treatment of neurological disorders including ischemic stroke in Inner Mongolia Autonomous Region of China. The preliminary pharmacological studies in animal suggested that EW regulates the expression of trophic factors in brain lesion and may also balance the polarization of activated microglia (Gaowa et al., 2018). AIM OF THE STUDY The pool of leading bioactive chemicals underlying the therapeutic effects of EW has not been identified. Therefore, the mechanism of action of EW is poorly understood. This study was aimed to identify the major group of compounds that contribute to the inhibition of neuroinflammation during stroke recovery through regulation of microglia polarization. MATERIALS AND METHODS The extracts of EW in different solvents were evaluated for their inhibitory ability of cytokine (IP-10) expression in LPS stimulated BV2 cells. The most effective extract (of petroleum ether extract) was further separated to 18 fractionations on a semi-preparative HPLC column, which were assess for the IP-10 down-regulation efficiency by RT-qPCR. The potent isolate was further fractionated in 12 fractions, which showed fewer peaks. The fraction 6 from this isolates, which remarkably down-regulates cytokines expression including IP-10, TNFα and IL-1β, was analyzed on UPLC-qTOF MS. The key chemicals were measured for their cytokine inhibition in BV2 cells and mouse primary microglia. RESULTS After two consecutive fractionating by preparative HPLC, petroleum ether extraction of EW gave 12 fractions with relatively distinctive chromatograms. A particular fraction (fraction 6) preserved the inhibitory effects on expression of pro-inflammatory cytokines including IP-10, TNFα, IL-1β and iNOS. The result of UPLC-qTOF MS analysis showed that the fraction contains 21 chemicals including costunolide, alantolactone, myristicin and linolenic acid, which significantly down-regulate the expression of key pro-inflammatory cytokines in LPS stimulated BV2 cells as well as mouse primary microglia. CONCLUSION Collectively our data suggest that the bioactive chemical pool which is responsible for the therapeutic effects of EW can be extracted in petroleum ether, and fractionated to a relatively small multiple components. Such components include known anti-inflammatory chemicals, which may contribute to the possible microglia polarization in brain lesion during the recovery of ischemic stroke.
Collapse
Affiliation(s)
- Qiburi Qiburi
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China
| | - Tsogzolmaa Ganbold
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China
| | - Qingming Bao
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China
| | - Man Da
- International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia, 010021, PR China
| | - Aoqier Aoqier
- International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia, 010021, PR China
| | - Temuqile Temuqile
- International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia, 010021, PR China
| | - Huricha Baigude
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China.
| |
Collapse
|
20
|
Ge MX, Liu HT, Zhang N, Niu WX, Lu ZN, Bao YY, Huang R, Yu DK, Shao RG, He HW. Costunolide represses hepatic fibrosis through WW domain-containing protein 2-mediated Notch3 degradation. Br J Pharmacol 2019; 177:372-387. [PMID: 31621893 DOI: 10.1111/bph.14873] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE This study investigates the antifibrotic activities and potential mechanisms of costunolide (COS), a natural sesquiterpene compound. EXPERIMENTAL APPROACH Rats subjected to bile duct ligation and mice challenged with CCl4 were used to study the antifibrotic effects of COS in vivo. Mouse primary hepatic stellate cells (pHSCs) and human HSC line LX-2 also served as an in vitro liver fibrosis models. The expression of fibrogenic genes and signaling proteins in the neurogenic locus notch homologue protein 3 (Notch3)-hairy/enhancer of split-1 (HES1) pathway was examined using western blot and/or real-time PCR. Notch3 degradation was analysed using immunofluorescence and coimmunoprecipitation. KEY RESULTS In animals, COS administration attenuated hepatic histopathological injury and collagen accumulation and reduced the expression of fibrogenic genes. COS time- and dose-dependently suppressed the levels of fibrotic markers in LX-2 cells and mouse pHSCs. Mechanistic studies showed COS destabilized Notch3 and subsequently inhibited the Notch3-HES1 pathway, thus inhibiting HSC activation. Furthermore, COS blocked the WW domain-containing protein 2 (WWP2)/protein phosphatase 1G (PPM1G) interaction and enhanced the effect of WWP2 on Notch3 degradation. CONCLUSIONS AND IMPLICATIONS COS exerted potent antifibrotic effects in vitro and in vivo by disrupting the WWP2/PPM1G complex, promoting Notch3 degradation and inhibiting the Notch3/HES1 pathway. This indicates that COS may be a potential therapeutic candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Mao-Xu Ge
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Tao Liu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Na Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Xiao Niu
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen-Ning Lu
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Yang Bao
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Huang
- Department of digestive surgery, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, China
| | - Dong-Ke Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rong-Guang Shao
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Wei He
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Costunolide-A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20122926. [PMID: 31208018 PMCID: PMC6627852 DOI: 10.3390/ijms20122926] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Sesquiterpene lactones constitute a major class of bioactive natural products. One of the naturally occurring sesquiterpene lactones is costunolide, which has been extensively investigated for a wide range of biological activities. Multiple lines of preclinical studies have reported that the compound possesses antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Many of these bioactivities are supported by mechanistic details, such as the modulation of various intracellular signaling pathways involved in precipitating tissue inflammation, tumor growth and progression, bone loss, and neurodegeneration. The key molecular targets of costunolide include, but are not limited to, intracellular kinases, such as mitogen-activated protein kinases, Akt kinase, telomerase, cyclins and cyclin-dependent kinases, and redox-regulated transcription factors, such as nuclear factor-kappaB, signal transducer and activator of transcription, activator protein-1. The compound also diminished the production and/expression of proinflammatory mediators, such as cyclooxygenase-2, inducible nitric oxide synthase, nitric oxide, prostaglandins, and cytokines. This review provides an overview of the therapeutic potential of costunolide in the management of various diseases and their underlying mechanisms.
Collapse
|
22
|
Singireesu SSNR, Misra S, Mondal SK, Yerramsetty S, Sahu N, K SB. Costunolide induces micronuclei formation, chromosomal aberrations, cytostasis, and mitochondrial-mediated apoptosis in Chinese hamster ovary cells. Cell Biol Toxicol 2017; 34:125-142. [PMID: 28914393 DOI: 10.1007/s10565-017-9411-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022]
Abstract
Costunolide (CE) is a sesquiterpene lactone well-known for its antihepatotoxic, antiulcer, and anticancer activities. The present study focused on the evaluation of the cytogenetic toxicity and cellular death-inducing potential of CE in CHO cells, an epithelial cell line derived from normal ovary cells of Chinese hamster. The cytotoxic effect denoting MTT assay has shown an IC50 value of 7.56 μM CE, where 50% proliferation inhibition occurs. The oxidative stress caused by CE was confirmed based on GSH depletion induced cell death, conspicuously absent in N-acetylcysteine (GSH precursor) pretreated cells. The evaluation of genotoxic effects of CE using cytokinesis block micronucleus assay and chromosomal aberration test has shown prominent induction of binucleated micronucleated cells and aberrant metaphases bearing chromatid and chromosomal breaks, indicating CE's clastogenic and aneugenic potential. The apoptotic death in CE treated cells was confirmed by an increase in the number of cells in subG1 phase, exhibiting chromatin condensation and membranous phosphatidylserine translocation. The apoptosis induction follows mitochondrial mediation, evident from an increase in the BAX/Bcl-2 ratio, caspase-3/7 activity, and mitochondrial membrane permeability. CE also induces cytostasis in addition to apoptosis, substantiated by the reduced cytokinetic (replicative indices) and mitotic (mitotic indices and histone H3 Ser-10 phosphorylation) activities. Overall, the cellular GSH depletion and potential genotoxic effects by CE led the CHO cells to commit apoptosis and lowered cell division. The observed sensitivity of CHO cells doubts unintended adverse effects of CE on normal healthy cells, suggesting higher essentiality of further studies in order to establish its safety efficacy in therapeutic explorations.
Collapse
Affiliation(s)
| | - Sunil Misra
- Genetic Toxicology Laboratory, Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sujan Kumar Mondal
- Biomaterials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Suresh Yerramsetty
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Nivedita Sahu
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Suresh Babu K
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| |
Collapse
|