1
|
Shang D, Chen Y, Sun D. Umbilical cord-derived mesenchymal stem cells combined with kaempferol synergistically promote repair of damaged endometrium by modulating JAK2/STAT3 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04056-4. [PMID: 40266305 DOI: 10.1007/s00210-025-04056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Intrauterine adhesion (IUA) is a disease caused by endometrial damage without effective treatments. Stem cell therapy has been initiated as a new attempt to repair and regenerate injured tissues. However, the therapeutic efficacy of stem cell therapy is limited. Kaempferol is a natural flavonoid with various beneficial effects. In this study, our goal is to investigate the roles of kaempferol combined with umbilical cord-derived mesenchymal stem cells (UCMSCs) in IUA. UCMSCs were collected from human umbilical cords. The multilineage differentiation potential of human UCMSCs was evaluated by Oil Red O staining, Alizarin Red S staining, and Alcian Blue staining. The phenotype profile of human UCMSCs was assessed by flow cytometry. CCK-8 and Transwell assays were performed to detect cell viability and migration. The IUA rat model was established. Histological changes were examined by hematoxylin-eosin staining and Masson staining. Gene expression was evaluated by western blotting and immunofluorescence. Kaempferol (10 μM) promoted the migration and proliferation of human UCMSCs in vitro. Additionally, kaempferol/UCMSCs combination treatment recovered endometrial injury and inhibited endometrial fibrosis and epithelial-mesenchymal transition occurrence in IUA rat models. Mechanistically, kaempferol/UCMSCs combination treatment inhibited JAK2/STAT3 pathway. Kaempferol/UCMSCs combination treatment can promote the repair of damaged endometrium by decreasing endometrial fibrosis. The inactivation of JAK2/STAT3 pathway is greatly responsible for the protective effect of kaempferol/UCMSCs combination treatment.
Collapse
Affiliation(s)
- Di Shang
- Ultrasound Diagnosis Department, Hubei Maternal and Child Health Hospital, Wuhan, 430070, China
| | - Yuru Chen
- Training Base of Hubei Maternal and Child Health Hospital, Hubei University of Medicine, Wuhan, 442000, China
| | - Dongyan Sun
- Department of Medical Affairs, Hubei Maternal and Child Health Hospital, No.745 Wuluo Road, Hongshan District, Wuhan, 430070, China.
| |
Collapse
|
2
|
Liu X, Pan F, Sha C, Wang Z, Liu G, Wang H, Ling S, Huang K. Fuzi decoction ameliorates intervertebral disc degeneration through ferroptosis modulation by suppressing NF-κB pathway. Int Immunopharmacol 2025; 148:114155. [PMID: 39874850 DOI: 10.1016/j.intimp.2025.114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND AND OBJECTIVES Intervertebral disc degeneration (IVDD) is a complex condition that necessitates the development of novel therapeutic strategies. The objective of this study was to investigate the therapeutic potential of Fuzi decoction (FZD) in the treatment of IVDD by examining its bioactive components, target genes, molecular interactions, pathways, and therapeutic efficacy. METHODS Bioactive ingredients with an oral bioavailability (OB) of ≥ 30 % and drug likeness (DL) of ≥ 0.18 were identified using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Target genes associated with IVDD were retrieved from various databases, and a Venn diagram was employed to determine the common targets between IVDD and FZD. Subsequent network analyses, including ingredient-target-disease networks and protein-protein interaction (PPI) networks, were constructed. Functional enrichment analyses, such as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), were conducted to delineate the biological processes, pathways, and potential mechanisms. Molecular docking was utilized to validate the interactions between FZD ingredients and target genes. In vitro assays using nucleus pulposus cells (NPCs) evaluated the effects of FZD-containing serum (FCS) on extracellular matrix (ECM) degradation, ferroptosis, and NF-κB pathway modulation. Additionally, rat models were used to confirm the therapeutic effects of FZD on IVDD. RESULTS FZD was found to contain 77 bioactive ingredients and 108 related targets, with 101 common targets identified between IVDD and FZD. Network analyses pinpointed key ingredients and targets, with a particular focus on PTGS2 and IL1B as central to IVDD. Enrichment analyses revealed pathways related to reactive oxygen species and NF-κB signaling. Molecular docking confirmed robust interactions between core ingredients and target proteins. Pharmacological findings were substantiated by in vitro and in vivo experiments, demonstrating that FCS alleviated IL-1β-induced ECM degradation and ferroptosis by inhibiting the NF-κB pathway in NPCs. CONCLUSIONS FZD demonstrates efficacy in alleviating IVDD by regulating ECM degradation and ferroptosis through the suppression of the NF-κB signaling pathway. These findings suggest that FZD may be a promising therapeutic agent for the treatment of IVDD, offering insights into its multifaceted mechanisms and molecular interactions for potential clinical application.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Orthopaedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200070 China
| | - Feng Pan
- Department of Orthopaedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200070 China
| | - Chunhe Sha
- Department of Orthopaedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200070 China
| | - Zhiqing Wang
- Department of Orthopaedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200070 China
| | - Guohui Liu
- Department of Orthopaedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200070 China
| | - Hua Wang
- Department of Orthopaedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200070 China
| | - Shiyong Ling
- Department of Orthopaedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200070 China
| | - Kai Huang
- Department of Orthopaedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200070 China.
| |
Collapse
|
3
|
Messeha SS, Fidudusola FF, Gendy S, Latinwo LM, Odewumi CO, Soliman KFA. Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis. Nutrients 2025; 17:267. [PMID: 39861398 PMCID: PMC11767473 DOI: 10.3390/nu17020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP. Aging is significantly associated with an abnormal ratio of oxidant/antioxidant and modified nuclear factor erythroid-derived two related factor2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway. OS adversely affects bone health by promoting osteoclastic (bone resorbing) activity and impairing osteoblastic (bone-forming cells). Nrf2 is critical in controlling OS and various cellular processes. The expression of Nrf2 is linked to multiple age-related diseases, including OP, and Nrf2 deficiency leads to unbalanced bone formation/resorption and a consequent decline in bone mass. Various drugs are available for treating OP; however, long-term uses of these medicines are implicated in diverse illnesses such as cancer, cardiovascular, and stroke. At the same time, multiple categories of natural products, in particular flavonoids, were proposed as safe alternatives with antioxidant activity and substantial anti-osteoporotic effects.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Fidara F. Fidudusola
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Lekan M. Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Caroline O. Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
4
|
Sirlam M, Leutcha PB, Sado Nouemsi GR, Zafar H, Tegha HF, Sema DK, Tsague Tankeu VF, Nganso Ditchou YO, Poka M, Demana PH, Atia-Tul-Wahab, Choudhry MI, Siwe Noundou X, Meli Lannang A. Two new flavonoids from the leaves of Garcinia smeathmannii, in vitro and in silico anti-inflammatory potentials. Fitoterapia 2024; 179:106273. [PMID: 39461568 DOI: 10.1016/j.fitote.2024.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Garcinia smeathmannii is a well-known plant for its uses in the effective treatment of intestinal parasites, skin eruptions and skin burns. The dichloromethane-methanol (2:3) crude extract of the leaves of G. smeathmannii led to the isolation and characterization of twenty compounds (1-20) using chromatographic and spectroscopic techniques. Extracts and compounds were screened in vitro for their anti-inflammatory (ROS), antiglycation and antileishmanial (L. tropica) activities. Compounds were also screened for their in silico anti-inflammatory activities using Maestro 4.2.1 software with the co-crystal complex structures of the ovine oCOX-1: meloxicam (PDB Id: 4O1Z) and murine mCOX-2: meloxicam (PDB Id: 4M11) proteins. An unprecedented flavonol (1) and a flavone dimer (2) together with eighteen known compounds (3-20) were characterized. All the tested samples in vitro revealed no antiglycation and antileishmanial activities. Beside, extracts revealed moderate anti-inflammatory activities (IC50 ranging from 24.1 ± 2.0 to 34.7 ± 0.8 μg/mL). Only compound (13) revealed an anti-inflammatory activity which was 9.33 times more active than the reference (Ibuprofen, IC50 = 11.2 ± 1.9 μg/mL) with IC50 of 1.2 ± 0.0 μg/mL. Compounds (2-9, 11-13 and 19-20) were docked and the docking scores were ranging from -10.178 to -6.119 (kcal/mol) which were in agreement with the experimental anti-inflammatory activity. These results are in agreement with the traditional uses of the leave of G. smeathmannii as cataplasm for skin eruption and as analgesic agent.
Collapse
Affiliation(s)
- Moïse Sirlam
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Peron Bosco Leutcha
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Guy Raphael Sado Nouemsi
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon; Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, Ngaoundéré, P.O. Box 454, Cameroon
| | - Humaira Zafar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hycienth Fung Tegha
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Denis Kehdinga Sema
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | | | | | - Madan Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa.
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa.
| | - Atia-Tul-Wahab
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhry
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa.
| | - Alain Meli Lannang
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, Ngaoundéré, P.O. Box 454, Cameroon.
| |
Collapse
|
5
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
6
|
Li Z, Liang S, Cui X, Shen C, Xu Z, Chen W, Wu M, Liang C, Liu J, Huang J, Li W. Network pharmacology- and molecular docking-based investigation on the mechanism of action of Si-ni San in the treatment of depression combined with anxiety and experimental verification in adolescent rats. Front Psychiatry 2024; 15:1414242. [PMID: 39247617 PMCID: PMC11378754 DOI: 10.3389/fpsyt.2024.1414242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Background The incidence rate of adolescent depression and anxiety has been increasing since the outbreak of COVID-19, which there are no effective therapeutic drugs available. Si-ni San is commonly used in traditional Chinese medicine for the treatment of depression-like as well as anxiety-like behavior, but its mechanism for treating depression combined with anxiety during adolescence is not yet clear. Methods Network pharmacology was used to explore potential drug molecules and related targets, molecular docking and molecular dynamics (MD) simulation were used to evaluate the interaction between the potential drug molecules and related targets, and a model of anxiety combined with depression in adolescent rats as well as the following behavioral tests and molecular biology tests were used to verify the results from network pharmacology and molecular docking. Results As a result, 256 active ingredients of Si-ni San and 1128 potential targets were screened out. Among them, quercetin, Luteolin, kaempferol, 7-Methoxy-2-methyl isoflavone, formononetin showed to be the most potential ingredients; while STAT3, IL6, TNF, AKT1, AKT1, TP53, IL1B, MAPK3, VEGFA, CASP3, MMP9 showed to be the most potential targets. AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway and TNF signaling pathway, which are involved in anti-inflammation processes, showed to be the most probable pathways regulated by Si-ni San. Molecular docking and MD simulation between the compounds to inflammation-associated targets revealed good binding abilities of quercetin, Luteolin, kaempferol, nobiletin and formononetin to PTGS2 and PPARγ. In the experiment with adolescent rats, Si-ni San markedly suppressed early maternal separation (MS) combined with adolescent chronic unpredictable mild stress (CUMS)-induced depression combined with anxiety. The qPCR results further indicated that Si-ni San regulated the oxidative stress and inflammatory response. Conclusion This study demonstrates that adolescent anxiety- and depression-like behavior induced by MS combined CUMS can be ameliorated by Si-ni San by improved inflammation in hippocampus via targeting TNF pathway and Nrf2 pathway, helping to reveal the mechanism of Si-ni San in treating adolescent depression combined with anxiety.
Collapse
Affiliation(s)
- Zhiping Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shimin Liang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xulan Cui
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chongkun Shen
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zaibin Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Chen
- Rehabilitation Center Massage Clinic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingan Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Liang
- Deparment of Acupuncture, Haikou Hospital of Traditional Chinese Medicine, Haikou, China
| | - Jinman Liu
- Department of Encephalopathy, Affiliated Jiangmen Traditional Chinese Medicine (TCM) Hospital of Ji'nan University, Jiangmen, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Tang R, Lin L, Liu Y, Li H. Bibliometric and visual analysis of global publications on kaempferol. Front Nutr 2024; 11:1442574. [PMID: 39221164 PMCID: PMC11362042 DOI: 10.3389/fnut.2024.1442574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Kaempferol, a flavonoid found in numerous foods and medicinal plants, offers a range of health benefits such as anti-inflammatory, antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective effects. Methods Herein, a bibliometric and visual analysis of global publications on kaempferol was performed to map the evolution of frontiers and hotspots in the field. Using the search string TS = kaempferol, bibliometric data for this analysis was extracted from the Web of Science Core Collection database and analyzed using the VOSviewer, CiteSpace, and Scimago Graphica software. Results As a result, by February 26, 2024, 11,214 publications were identified, comprising articles (n = 10,746, 96%) and review articles (n = 468, 4%). Globally, the annual number of kaempferol publications surpassed 100 per year since 2000, exceeded 500 per year since 2018, and further crossed the threshold of 1,000 per year starting in 2022. The major contributing countries were China, the United States of America, and India, while the top three institutes of the citations of kaempferol were the Chinese Academy of Sciences, Consejo Superio de Investigaciones Cientficas, and Uniersidade do Porto. These publications were mainly published in agricultural and food chemistry journals, food chemistry, and phytochemistry. Discussion The keywords frequently mentioned include phenolic compounds, antioxidant activity, flavonoids, NF-kappa B, inflammation, bioactive compounds, etc. Anti-inflammation, anti-oxidation, and anti-cancer have consistently been the focus of kaempferol research, while cardiovascular protection, neuroprotection, antiviral, and anti-bacterial effects have emerged as recent highlights. The field of kaempferol research is thriving.
Collapse
Affiliation(s)
- Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| |
Collapse
|
8
|
Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroudi A, Rahmani AH. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules 2024; 29:2007. [PMID: 38731498 PMCID: PMC11085411 DOI: 10.3390/molecules29092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fadiyah A. Alharbi
- Department of Obstetrics/Gynecology, Maternity and Children’s Hospital, Buraydah 52384, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
9
|
Dong Q, Ren G, Li Y, Hao D. Network pharmacology analysis and experimental validation to explore the mechanism of kaempferol in the treatment of osteoporosis. Sci Rep 2024; 14:7088. [PMID: 38528143 DOI: 10.1038/s41598-024-57796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Osteoporosis (OP) is a prevalent global disease characterized by bone mass loss and microstructural destruction, resulting in increased bone fragility and fracture susceptibility. Our study aims to investigate the potential of kaempferol in preventing and treating OP through a combination of network pharmacology and molecular experiments. Kaempferol and OP-related targets were retrieved from the public database. A protein-protein interaction (PPI) network of common targets was constructed using the STRING database and visualized with Cytoscape 3.9.1 software. Enrichment analyses for GO and KEGG of potential therapeutic targets were conducted using the Hiplot platform. Molecular docking was performed using Molecular operating environment (MOE) software, and cell experiments were conducted to validate the mechanism of kaempferol in treating OP. Network pharmacology analysis identified 54 overlapping targets between kaempferol and OP, with 10 core targets identified. The primarily enriched pathways included atherosclerosis-related signaling pathways, the AGE/RAGE signaling pathway, and the TNF signaling pathway. Molecular docking results indicated stable binding of kaempferol and two target proteins, AKT1 and MMP9. In vitro cell experiments demonstrated significant upregulation of AKT1 expression in MC3T3-E1 cells (p < 0.001) with kaempferol treatment, along with downregulation of MMP9 expression (p < 0.05) compared to the control group. This study predicted the core targets and pathways of kaempferol in OP treatment using network pharmacology, and validated these findings through in vitro experiments, suggesting a promising avenue for future clinical treatment of OP.
Collapse
Affiliation(s)
- Qi Dong
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Physical Medicine and Rehabilitation, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Guoxia Ren
- Department of Physical Medicine and Rehabilitation, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Yanzhao Li
- Department of Traditional Chinese Medicine, First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Dingjun Hao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Yang S, Jing S, Wang S, Jia F. From drugs to biomaterials: a review of emerging therapeutic strategies for intervertebral disc inflammation. Front Cell Infect Microbiol 2024; 14:1303645. [PMID: 38352058 PMCID: PMC10861683 DOI: 10.3389/fcimb.2024.1303645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic low back pain (LBP) is an increasingly prevalent issue, especially among aging populations. A major underlying cause of LBP is intervertebral disc degeneration (IDD), often triggered by intervertebral disc (IVD) inflammation. Inflammation of the IVD is divided into Septic and Aseptic inflammation. Conservative therapy and surgical treatment often fail to address the root cause of IDD. Recent advances in the treatment of IVD infection and inflammation range from antibiotics and small-molecule drugs to cellular therapies, biological agents, and innovative biomaterials. This review sheds light on the complex mechanisms of IVD inflammation and physiological and biochemical processes of IDD. Furthermore, it provides an overview of recent research developments in this area, intending to identify novel therapeutic targets and guide future clinical strategies for effectively treating IVD-related conditions.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shanxi Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fajing Jia
- Department of General Practice, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
11
|
Tang X, Huang Y, Fang X, Tong X, Yu Q, Zheng W, Fu F. Cornus officinalis: a potential herb for treatment of osteoporosis. Front Med (Lausanne) 2023; 10:1289144. [PMID: 38111697 PMCID: PMC10725965 DOI: 10.3389/fmed.2023.1289144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decline in bone mass, bone mineral density, and deterioration of bone microstructure. It is prevalent among the elderly, particularly postmenopausal women, and poses a substantial burden to patients and society due to the high incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine (TCM) has long been utilized for OP prevention and treatment. In contrast to conventional approaches such as hormone replacement therapy, TCM offers distinct advantages such as minimal side effects, low toxicity, excellent tolerability, and suitability for long-term administration. Extensive experimental evidence supports the efficacy of kidney-tonifying TCM, exemplified by formulations based on the renowned herb Cornus officinalis and its bioactive constituents, including morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this review, we provide a comprehensive elucidation of the underlying pathological principles governing OP, with particular emphasis on bone marrow mesenchymal stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of vascular and immune systems, all of which critically influence bone homeostasis. Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM formulations and Cornus officinalis-derived active constituents are discussed. In conclusion, this review aims to enhance understanding of the pharmacological mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, specifically focusing on Cornus officinalis, and seeks to explore more efficacious and safer treatment strategies for OP.
Collapse
Affiliation(s)
- Xinyun Tang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuxin Huang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuanying Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qian Yu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
12
|
Gao W, Bao J, Zhang Y, He D, Zhang L, Zhang J, Pan H, Wang D. Injectable kaempferol-loaded fibrin glue regulates the metabolic balance and inhibits inflammation in intervertebral disc degeneration. Sci Rep 2023; 13:20001. [PMID: 37968507 PMCID: PMC10651831 DOI: 10.1038/s41598-023-47375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023] Open
Abstract
To construct an injectable fibrin glue system loaded with kaempferol (FG@F) to improve the bioavailability of kaempferol and observe its efficacy in the treatment of intervertebral disc degeneration (IVDD). Kaempferol-loaded fibrin glue was first synthesized in advance. Subsequently, the materials were characterized by various experimental methods. Then, nucleus pulposus cells (NPCs) were stimulated with lipopolysaccharide (LPS) to establish a degenerative cell model, and the corresponding intervention treatment was conducted to observe the effect in vitro. Finally, the tail disc of rats was punctured to establish a model of IVDD, and the therapeutic effect of the material in vivo was observed after intervertebral disc injection. The FG@F system has good injectability, sustained release and biocompatibility. This treatment reduced the inflammatory response associated with IVDD and regulated matrix synthesis and degradation. Animal experimental results showed that the FG@F system can effectively improve needle puncture-induced IVDD in rats. The FG@F system has better efficacy than kaempferol or FG alone due to its slow release and mechanical properties. The drug delivery and biotherapy platform based on this functional system might also serve as an alternative therapy for IVDD.
Collapse
Affiliation(s)
- Wenshuo Gao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, People's Republic of China
| | - Jianhang Bao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
- Department of Orthopaedics, Yiwu Central Hospital, Yiwu, 322000, Zhejiang, People's Republic of China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jun Zhang
- Department of General Surgery, Institute of Orthopaedics and Traumatology, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang, People's Republic of China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang, People's Republic of China.
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang, People's Republic of China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Zou X, Zhang X, Han S, Wei L, Zheng Z, Wang Y, Xin J, Zhang S. Pathogenesis and therapeutic implications of matrix metalloproteinases in intervertebral disc degeneration: A comprehensive review. Biochimie 2023; 214:27-48. [PMID: 37268183 DOI: 10.1016/j.biochi.2023.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common disorder that affects the spine and is a major cause of lower back pain (LBP). The extracellular matrix (ECM) is the structural foundation of the biomechanical properties of IVD, and its degradation is the main pathological characteristic of IDD. Matrix metalloproteinases (MMPs) are a group of endopeptidases that play an important role in the degradation and remodeling of the ECM. Several recent studies have shown that the expression and activity of many MMP subgroups are significantly upregulated in degenerated IVD tissue. This upregulation of MMPs results in an imbalance of ECM anabolism and catabolism, leading to the degradation of the ECM and the development of IDD. Therefore, the regulation of MMP expression is a potential therapeutic target for the treatment of IDD. Recent research has focused on identifying the mechanisms by which MMPs cause ECM degradation and promote IDD, as well as on developing therapies that target MMPs. In summary, MMP dysregulation is a crucial factor in the development of IDD, and a deeper understanding of the mechanisms involved is needed to develop effective biological therapies that target MMPs to treat IDD.
Collapse
Affiliation(s)
- Xiaosong Zou
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Lin Wei
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
14
|
Xiao J, Han Q, Yu Z, Liu M, Sun J, Wu M, Yin H, Fu J, Guo Y, Wang L, Ma Y. Morroniside Inhibits Inflammatory Bone Loss through the TRAF6-Mediated NF-κB/MAPK Signalling Pathway. Pharmaceuticals (Basel) 2023; 16:1438. [PMID: 37895909 PMCID: PMC10609728 DOI: 10.3390/ph16101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is a chronic inflammatory disease that severely affects quality of life. Cornus officinalis is a Chinese herbal medicine with various bioactive ingredients, among which morroniside is its signature ingredient. Although anti-bone resorption drugs are the main treatment for bone loss, promoting bone anabolism is more suitable for increasing bone mass. Therefore, identifying changes in bone formation induced by morroniside may be conducive to developing effective intervention methods. In this study, morroniside was found to promote the osteogenic differentiation of bone marrow stem cells (BMSCs) and inhibit inflammation-induced bone loss in an in vivo mouse model of inflammatory bone loss. Morroniside enhanced bone density and bone microstructure, and inhibited the expression of IL6, IL1β, and ALP in serum (p < 0.05). Furthermore, in in vitro experiments, BMSCs exposed to 0-256 μM morroniside did not show cytotoxicity. Morroniside inhibited the expression of IL6 and IL1β and promoted the expression of the osteogenic transcription factors Runx2 and OCN. Furthermore, morroniside promoted osteocalcin and Runx2 expression and inhibited TRAF6-mediated NF-κB and MAPK signaling, as well as osteoblast growth and NF-κB nuclear transposition. Thus, morroniside promoted osteogenic differentiation of BMSCs, slowed the occurrence of the inflammatory response, and inhibited bone loss in mice with inflammatory bone loss.
Collapse
Affiliation(s)
- Jirimutu Xiao
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Mongolia Medicine, Inner Mongolia Medical University, Hohhot 010110, China
| | - Qiuge Han
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziceng Yu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
| | - Mao Wu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; (M.W.); (H.Y.)
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; (M.W.); (H.Y.)
| | - Jingyue Fu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; (M.W.); (H.Y.)
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.X.); (Q.H.); (Z.Y.); (M.L.); (J.S.); (J.F.); (Y.G.)
- School of Chinese Medicine · School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; (M.W.); (H.Y.)
| |
Collapse
|
15
|
Nisar A, Jagtap S, Vyavahare S, Deshpande M, Harsulkar A, Ranjekar P, Prakash O. Phytochemicals in the treatment of inflammation-associated diseases: the journey from preclinical trials to clinical practice. Front Pharmacol 2023; 14:1177050. [PMID: 37229273 PMCID: PMC10203425 DOI: 10.3389/fphar.2023.1177050] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in biomedical research have demonstrated that inflammation and its related diseases are the greatest threat to public health. Inflammatory action is the pathological response of the body towards the external stimuli such as infections, environmental factors, and autoimmune conditions to reduce tissue damage and improve patient comfort. However, when detrimental signal-transduction pathways are activated and inflammatory mediators are released over an extended period of time, the inflammatory process continues and a mild but persistent pro-inflammatory state may develop. Numerous degenerative disorders and chronic health issues including arthritis, diabetes, obesity, cancer, and cardiovascular diseases, among others, are associated with the emergence of a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as non-steroidal drugs, are extensively used against different inflammatory conditions, they show undesirable side effects upon long-term exposure, at times, leading to life-threatening consequences. Thus, drugs targeting chronic inflammation need to be developed to achieve better therapeutic management without or with a fewer side effects. Plants have been well known for their medicinal use for thousands of years due to their pharmacologically active phytochemicals belonging to diverse chemical classes with a number of these demonstrating potent anti-inflammatory activity. Some typical examples include colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol), bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These phytochemicals often act via regulating molecular mechanisms that synergize the anti-inflammatory pathways such as increased production of anti-inflammatory cytokines or interfere with the inflammatory pathways such as to reduce the production of pro-inflammatory cytokines and other modulators to improve the underlying pathological condition. This review describes the anti-inflammatory properties of a number of biologically active compounds derived from medicinal plants, and their mechanisms of pharmacological intervention to alleviate inflammation-associated diseases. The emphasis is given to information on anti-inflammatory phytochemicals that have been evaluated at the preclinical and clinical levels. Recent trends and gaps in the development of phytochemical-based anti-inflammatory drugs have also been included.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Vyavahare
- Shatayu Ayurved and Research Centre, Solapur, Maharashtra, India
| | - Manasi Deshpande
- Department of Dravyagun Vigyan, College of Ayurved, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Abhay Harsulkar
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
- Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, University Health Sciences Center, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
16
|
Elfawy LA, Ng CY, Amirrah IN, Mazlan Z, Wen APY, Fadilah NIM, Maarof M, Lokanathan Y, Fauzi MB. Sustainable Approach of Functional Biomaterials-Tissue Engineering for Skin Burn Treatment: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:ph16050701. [PMID: 37242483 DOI: 10.3390/ph16050701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Burns are a widespread global public health traumatic injury affecting many people worldwide. Non-fatal burn injuries are a leading cause of morbidity, resulting in prolonged hospitalization, disfigurement, and disability, often with resulting stigma and rejection. The treatment of burns is aimed at controlling pain, removing dead tissue, preventing infection, reducing scarring risk, and tissue regeneration. Traditional burn wound treatment methods include the use of synthetic materials such as petroleum-based ointments and plastic films. However, these materials can be associated with negative environmental impacts and may not be biocompatible with the human body. Tissue engineering has emerged as a promising approach to treating burns, and sustainable biomaterials have been developed as an alternative treatment option. Green biomaterials such as collagen, cellulose, chitosan, and others are biocompatible, biodegradable, environment-friendly, and cost-effective, which reduces the environmental impact of their production and disposal. They are effective in promoting wound healing and reducing the risk of infection and have other benefits such as reducing inflammation and promoting angiogenesis. This comprehensive review focuses on the use of multifunctional green biomaterials that have the potential to revolutionize the way we treat skin burns, promoting faster and more efficient healing while minimizing scarring and tissue damage.
Collapse
Affiliation(s)
- Loai A Elfawy
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ibrahim N Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adzim Poh Yuen Wen
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Ding G, Mu-Guo S. Inhibition of Wnt11 impairs the osteogenesis and aggravates the inflammatory response of human mesenchymal stem cells under LPS-induced inflammatory condition. Biochem Biophys Res Commun 2023; 661:82-88. [PMID: 37087802 DOI: 10.1016/j.bbrc.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
In infectious bone defect, osteogenesis is very particularly important for treating. Currently, mesenchymal stem cells (MSCs) become a promising treatment protocol in clinical practice. In infectious environment, lipopolysaccharide (LPS) not only affects the osteogenic differentiation of MSCs, but also incurs inflammatory reaction from the host or cells and prompts the secretion of inflammatory cytokines. Wnt11 plays an important role of enhancing osteogenic ability of MSCs in treating bone infectious animal model in vivo. However, whether Wnt11 enhances the osteogenic capacity or influences the inflammatory reaction under inflammatory condition mediated by LPS in vitro remains unknown. In this study, we investigated the role of Wnt11 on the osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) and the effect on the inflammatory reaction induced by LPS. Effects of Wnt11 on the osteogenic capacity of BM-MSCs and on the inhibition of inflammatory reaction induced by LPS were evaluated by Wnt11 RNAi assay, Alizarin staining, quantitative RT-PCR test, ALP activity test and ELISA assays. The results showed inhibiting Wnt11 expression exacerbated the expression of osteogenic differentiation related genes and decreased the mineral deposits formation. Moreover, inhibiting Wnt11 expression also exacerbated the inflammatory factors release, indicating Wnt11 might play an important role of enhancing the osteogenic differentiation of BM-MSCs and inhibiting the inflammatory reaction induced by LPS.
Collapse
Affiliation(s)
- Gao Ding
- Department of Orthopaedics, Meizhou People's Hospital, Meizhou, Guangdong Province, China
| | - Song Mu-Guo
- Kunming Medical University, Kunming, 650032, China; Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China.
| |
Collapse
|
18
|
Li XY, Luo YT, Wang YH, Yang ZX, Shang YZ, Guan QX. Anti-inflammatory effect and antihepatoma mechanism of carrimycin. World J Gastroenterol 2023; 29:2134-2152. [PMID: 37122599 PMCID: PMC10130968 DOI: 10.3748/wjg.v29.i14.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND New drugs are urgently needed for the treatment of liver cancer, a feat that could be feasibly accomplished by finding new therapeutic purposes for marketed drugs to save time and costs. As a new class of national anti-infective drugs, carrimycin (CAM) has strong activity against gram-positive bacteria and no cross resistance with similar drugs. Studies have shown that the components of CAM have anticancer effects. AIM To obtain a deeper understanding of CAM, its distribution, metabolism and anti-inflammatory effects were assessed in the organs of mice, and its mechanism of action against liver cancer was predicted by a network pharmacology method. METHODS In this paper, the content of isovaleryl spiramycin III was used as an index to assess the distribution and metabolism of CAM and its effect on inflammatory factors in various mouse tissues and organs. Reverse molecular docking technology was utilized to determine the target of CAM, identify each target protein based on disease type, and establish a target protein-disease type network to ascertain the effect of CAM in liver cancer. Then, the key action targets of CAM in liver cancer were screened by a network pharmacology method, and the core targets were verified by molecular docking and visual analyses. RESULTS The maximum CAM concentration was reached in the liver, kidney, lung and spleen 2.5 h after intragastric administration. In the intestine, the maximum drug concentration was reached 0.5 h after administration. In addition, CAM significantly reduced the interleukin-4 (IL-4) levels in the lung and kidney and especially the liver and spleen; moreover, CAM significantly reduced the IL-1β levels in the spleen, liver, and kidney and particularly the small intestine and lung. CAM is predicted to regulate related pathways by acting on many targets, such as albumin, estrogen receptor 1, epidermal growth factor receptor and caspase 3, to treat cancer, inflammation and other diseases. CONCLUSION We determined that CAM inhibited inflammation. We also predicted the complex multitargeted effects of CAM that involve multiple pathways and the diversity of these effects in the treatment of liver cancer, which provides a basis and direction for further clinical research.
Collapse
Affiliation(s)
- Xiu-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Ting Luo
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yan-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Zhi-Xin Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Zhou Shang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Qing-Xia Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
19
|
Deep Eutectic Solvent-Based Microwave-Assisted Extraction for the Extraction of Seven Main Flavonoids from Ribes mandshuricum (Maxim.) Kom. Leaves. SEPARATIONS 2023. [DOI: 10.3390/separations10030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Flavonoids exhibit many biological properties, so it is very important to find an efficient and green method to extract them from plant materials. In this paper, DES-MAE (deep eutectic solvent-based microwave-assisted extraction) technique was developed to extract the seven major active flavonoids from Ribes mandshuricum leaves, namely, trifolin, isoquercetin, rutin, astragalin, quercetin, hyperoside, and kaempferol. After the completion of the extraction process, macroporous adsorption resin was used for the purification of seven flavonoids. The BBD (Box–Behnken design) method combined with RSM (response surface methodology) was applied to acquire the optimal operating conditions of DES-MAE. The optimal parameters were: temperature: 54 °C, time: 10 min, extraction solvent: choline chloride/lactic acid with a 1:2 mass ratio, water content: 25%, and liquid/solid ratio: 27 mL/g. The yields of the seven target flavonoids were 4.78, 2.57, 1.25, 1.15, 0.34, 0.32, and 0.093 mg/g DW (dry weight), respectively. The direct purification of trifolin, isoquercetin, rutin, astragalin, quercetin, hyperoside, and kaempferol in DES-MAE solution was achieved by using macroporous resin X-5. The recoveries were 87.02%, 81.37%, 79.64%, 87.13%, 97.36%, 88.08%, and 99.39%, respectively. The results showed that DES-MAE followed by MRCC (macroporous resin column chromatography) represents a promising approach to extracting and separating active components from plants.
Collapse
|
20
|
Moorthy T, Hathim B M, NagaMahesh C H M, Anburaj G, Ahmed SSSJ, Gopinath V, Munuswamy-Ramanujam G, Rao SK, Kamath MS. Controlled release of kaempferol from porous scaffolds augments in-vitro osteogenesis in human osteoblasts. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
21
|
Wang X, Tan Y, Liu F, Wang J, Liu F, Zhang Q, Li J. Pharmacological network analysis of the functions and mechanism of kaempferol from Du Zhong in intervertebral disc degeneration (IDD). J Orthop Translat 2023; 39:135-146. [PMID: 36909862 PMCID: PMC9999173 DOI: 10.1016/j.jot.2023.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 03/14/2023] Open
Abstract
Background Senescence and apoptosis of the nucleus pulposus cells (NPCs) are essential components of the intervertebral disc degeneration (IDD) process. Senescence and anti-apoptosis treatments could be effective ways to delay or even stop disc degeneration. IDD has been treated with Eucommia ulmoides Oliver (Du Zhong, DZ) and its active ingredients. However, the roles and mechanisms of DZ in NPC apoptosis and senescence remain unclear. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to select the main active ingredients of DZ with the threshold of oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.2. GSE34095 contained expression profile of degenerative intervertebral disc tissues and non-degenerative intervertebral disc tissues were downloaded for different expression genes analysis. The disease targets genes of IDD were retrieved from GeneCards. The online tool Metascape was used for functional enrichment annotation analysis. The specific effects of the ingredient on IL-1β treated NPC cell proliferation, cell senescence, reactive oxygen species (ROS) accumulation and cell apoptosis were determined by CCK-8, SA-β-gal staining, flowcytometry and western blot assays. Results A total of 8 active compounds of DZ were found to meet the threshold of OB ≥ 30% and DL ≥ 0.2 with 4151 drug targets. After the intersection of 879 IDD disease targets obtained from GeneCards and 230 DEGs obtained from the IDD-related GSE dataset, a total of 13 hub genes overlapped. According to functional enrichment annotation analysis by Metascape, these genes showed to be dramatically enriched in AGE-RAGE signaling, proteoglycans in cancer, wound healing, transmembrane receptor protein tyrosine kinase signaling, MAPK cascades, ERK1/2 cascades, PI3K/Akt signaling pathway, skeletal system, etc. Disease association analysis by DisGeNET indicated that these genes were significantly associated with IDD, intervertebral disc disease, skeletal dysplasia, and other diseases. Active ingredients-targets-signaling pathway networks were constructed by Cytoscape, and kaempferol was identified as the hub active compound of DZ. In the IL-1β-induced IDD in vitro model, kaempferol treatment significantly improved IL-1β-induced NPC cell viability suppression and senescence. In addition, kaempferol treatment significantly attenuated IL-1β-induced ROS accumulation and apoptosis. Furthermore, kaempferol treatment partially eliminated IL-1β-induced decreases in aggrecan, collagen II, SOX9, and FN1 levels and increases in MMP3, MMP13, ADAMTS-4, and ADAMTS-5. Moreover, kaempferol treatment significantly relieved the promotive effects of IL-1β stimulation upon p38, JNK, and ERK1/2 phosphorylation. ERK1/2 inhibitor PD0325901 further enhanced the effect of kaempferol on the inhibition of ERK1/2 phosphorylation, downregulation of MMP3 and ADAMTS-4 expression, and upregulation of aggrecan and collagen II expressions. Conclusion Kaempferol has been regarded as the major active compound of DZ, protecting NPCs from IL-1β-induced damages through promoting cell viability, inhibiting cell senescence and apoptosis, increasing ECM production, and decreasing ECM degradation. MAPK signaling pathway may be involved. The translational poteintial of this article This study provides in vitro experimental data support for the pharmacological effects of kaempferol in treating IDD, and lays a solid experimental foundation for its future clinical application in IDD treatment.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yanlin Tan
- PET/CT Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fusheng Liu
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingyu Wang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fubin Liu
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Qianshi Zhang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jing Li
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
22
|
Jiang W, Xiang X, Song M, Shen J, Shi Z, Huang W, Liu H. An all-silk-derived bilayer hydrogel for osteochondral tissue engineering. Mater Today Bio 2022; 17:100485. [PMID: 36388458 PMCID: PMC9660579 DOI: 10.1016/j.mtbio.2022.100485] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Osteochondral repair remains a challenge in clinical practice nowadays despite extensive advances in tissue engineering. The insufficient recruitment of endogenous cells in the early stage and incomplete cell differentiation in the later stage constitute the major difficulty of osteochondral repair. Here, a novel all-silk-derived multifunctional biomaterial platform for osteochondral engineering is reported. The bilayer methacrylated silk fibroin (SilMA) hydrogel was fabricated through stratified photocuring as the basic provisional matrix for tissue regeneration. Platelet-rich plasma (PRP) incorporation promoted the migration and pre-differentiation of the bone marrow mesenchymal stem cells (BMSCs) in the early stage of implantation. The long-term regulation of BMSCs chondrogenesis and osteogenesis was realized by the stratified anchoring of the silk fibroin (SF) microspheres respectively loaded with Kartogenin (KGN) and berberine (BBR) in the hydrogel. The composite hydrogels were further demonstrated to promote BMSCs chondrogenic and osteogenic differentiation under an inflammatory microenvironment and to achieve satisfying cartilage and subchondral bone regeneration with great biocompatibility after 8 weeks of implantation. Since all the components used are readily available and biocompatible and can be efficiently integrated via a simple process, this composite hydrogel scaffold has tremendous potential for clinical use in osteochondral regeneration.
Collapse
|
23
|
Zhou M, Abid M, Cao S, Zhu S. Progress of Research into Novel Drugs and Potential Drug Targets against Porcine Pseudorabies Virus. Viruses 2022; 14:v14081753. [PMID: 36016377 PMCID: PMC9416328 DOI: 10.3390/v14081753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies virus (PRV) is the causative agent of pseudorabies (PR), infecting most mammals and some birds. It has been prevalent around the world and caused huge economic losses to the swine industry since its discovery. At present, the prevention of PRV is mainly through vaccination; there are few specific antivirals against PRV, but it is possible to treat PRV infection effectively with drugs. In recent years, some drugs have been reported to treat PR; however, the variety of anti-pseudorabies drugs is limited, and the underlying mechanism of the antiviral effect of some drugs is unclear. Therefore, it is necessary to explore new drug targets for PRV and develop economic and efficient drug resources for prevention and control of PRV. This review will focus on the research progress in drugs and drug targets against PRV in recent years, and discuss the future research prospects of anti-PRV drugs.
Collapse
Affiliation(s)
- Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road Pirbright, Woking, Surrey GU24 0NF, UK
| | - Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
- Correspondence: (S.C.); (S.Z.)
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
- Correspondence: (S.C.); (S.Z.)
| |
Collapse
|
24
|
Hussain Y, Khan H, Alsharif KF, Hayat Khan A, Aschner M, Saso L. The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules 2022; 27:4145. [PMID: 35807387 PMCID: PMC9268049 DOI: 10.3390/molecules27134145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Kaempferol is a natural flavonoid, which has been widely investigated in the treatment of cancer, cardiovascular diseases, metabolic complications, and neurological disorders. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor involved in mediating carcinogenesis and other ailments, playing an important role in regulating oxidative stress. The activation of Nrf2 results in the expression of proteins and cytoprotective enzymes, which provide cellular protection against reactive oxygen species. Phytochemicals, either alone or in combination, have been used to modulate Nrf2 in cancer and other ailments. Among them, kaempferol has been recently explored for its anti-cancer and other anti-disease therapeutic efficacy, targeting Nrf2 modulation. In combating cancer, diabetic complications, metabolic disorders, and neurological disorders, kaempferol has been shown to regulate Nrf2 and reduce redox homeostasis. In this context, this review article highlights the current status of the therapeutic potential of kaempferol by targeting Nrf2 modulation in cancer, diabetic complications, neurological disorders, and cardiovascular disorders. In addition, we provide future perspectives on kaempferol targeting Nrf2 modulation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amjad Hayat Khan
- Department of Allied Health Sciences, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10463, USA;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
25
|
Systematic Elaboration of the Pharmacological Targets and Potential Mechanisms of ZhiKe GanCao Decoction for Preventing and Delaying Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8786052. [PMID: 35497916 PMCID: PMC9054440 DOI: 10.1155/2022/8786052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
Background ZhiKe GanCao Decoction (ZKGCD) is a commonly used traditional Chinese medicine in the clinical treatment of intervertebral disc degeneration (IDD). However, its active ingredients and mechanism of action remain unclear. This study aims to propose the systematic mechanism of ZKGCD action on IDD based on network pharmacology, molecular docking, and enrichment analysis. Methods Firstly, the common target genes between ZKGCD and IDD were identified through relevant databases. Secondly, the protein-protein interaction (PPI) network of common genes was constructed and further analyzed to determine the core active ingredients and key genes. Thirdly, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of common genes were performed. Finally, the stability of the binding between core active ingredients and key genes was verified by molecular docking analysis. Results “Intersecting genes-active components” network consists of 154 active ingredients and 133 common genes. The ten key genes are AKT1, TNF, IL6, TP53, IL1B, JUN, CASP3, STAT3, MMP9, and MAPK3. Meanwhile, quercetin (Mol000098), luteolin (Mol000006), and kaempferol (Mol000422) are the most important core active ingredients. The main signal pathways selected by KEGG enrichment analysis includes AGE-RAGE signaling pathway in diabetic complications (hsa04933), TNF signaling pathway (hsa04668), IL-17 signaling pathway (hsa04657), cellular senescence (hsa04218), apoptosis (hsa04210), and PI3K-Akt signaling pathway (hsa04151), which are mainly involved in inflammation, apoptosis, senescence, and autophagy. Conclusion This study provides a basis for further elucidating the mechanism of action of ZKGCD in the treatment of IDD and offers a new perspective on the conversion of the active ingredient in ZKGCD into new drugs for treating IDD.
Collapse
|
26
|
Bushen Jianpi Quyu Formula Alleviates Myelosuppression of an Immune-Mediated Aplastic Anemia Mouse Model via Inhibiting Expression of the PI3K/AKT/NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9033297. [PMID: 35463076 PMCID: PMC9023145 DOI: 10.1155/2022/9033297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
Bushen Jianpi Quyu Formula (BSJPQYF), an experienced formula, has been used to treat aplastic anemia (AA) more than three decades. To determinate the effect of BSJPQYF on AA, we constructed an immune-mediated AA mouse model. All mice were divided into four groups: control, model, low dose (0.85 g/mL), and high dose (1.7 g/mL BSJPQYF) group. They were administered with different concentrations of BSJPQYF or normal saline for 14 days. Besides, components of BSJPQYF were analyzed by electrospray ionization and mass spectrometry (ESI-MS). Subsequently, mouse peripheral blood and femurs were collected, and bone marrow mesenchymal stem cells (BMSCs) were isolated by fluorescence-activated cell sorting (FACS). Among them, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and interferon-γ (IFN-γ) were measured by ELISA assay, PI3K, AKT, p-AKT, NF-κB, p-NF-κB, TNF-α, and cleaved caspase-3 proteins were detected by western blot. Compared with standard compounds, we identified three compounds of BSJPQYF, namely, icariin, kaempferol and tanshinone iia, as potentially effective compounds for the treatment of AA. Through an in vivo study, we found the administration of BSJPQYF in high dose for 14 days could significantly increase peripheral blood count and bone marrow (BM) cells, meanwhile decrease TNF-α, TGF-β, and IFN-γ levels. Besides, it could suppress the protein expression of PI3K and the phosphorylation of AKT and NF-κB to restrict the protein expression of TNF-α, eventually reduce the protein expression of cleaved caspase-3. This study demonstrated the therapeutic effects of BSJPQYF in AA, which could alleviate myelosuppression through inhibiting the expression of the PI3K/AKT/NF-κB signaling pathway.
Collapse
|
27
|
Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, Li A, Qin S. The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells. Front Pharmacol 2022; 13:849513. [PMID: 35462886 PMCID: PMC9019748 DOI: 10.3389/fphar.2022.849513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in developing bone tissue engineered constructs due to their osteogenic and chondrogenic differentiation potential. MSC-based tissue engineered constructs are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and directional differentiation. Flavonoids are a secondary metabolite, widely existed in nature and have many biological activities. For a long time, researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro cell experiments, animal studies. In recent years the regulatory effects of flavonoids on mesenchymal stem cells (MSCs) differentiation have been received increasingly attention. Recent studies revealed flavonoids possess the ability to modulate self-renewal and differentiation potential of MSCs. In order to facilitate further research on MSCs osteogenic differentiation of flavonoids, we surveyed the literature published on the use of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological activities as well as the underlying mechanisms, aimed to explore their promising therapeutic application in bone disorders and bone tissue engineered constructs.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yang Luo
- School of Physical Education, Southwest University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guowei Huang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Herbal Formula Modified Bu-Shen-Huo-Xue Decoction Attenuates Intervertebral Disc Degeneration via Regulating Inflammation and Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4284893. [PMID: 35154344 PMCID: PMC8828322 DOI: 10.1155/2022/4284893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
Objective This study aims to clarify the potential mechanism of modified Bu-Shen-Huo-Xue decoction (MBSHXD) in treating intervertebral disc degeneration (IDD) with methods of network pharmacology and molecular docking. Methods An MBSHXD and IDD-related common target gene set was established through TCMSP, UniProt, and two disease gene databases. GO and KEGG enrichment analysis and protein-protein interaction (PPI) networks were performed through the R platform and STRING to discover the potential mechanism. Molecular docking between the active ingredients and the core genes is used to calculate the binding energy. Results A total of 147 active ingredients and 79 common genes (including 10 core genes, TNF, VEGFA, IL6, MAPK3, AKT1, MAPK8, TP53, JUN, MMP9, and CXCL8) were identified. The results of GO and KEGG enrichment analysis showed that MBSHXD plays an essential role in regulating inflammation and oxidative stress. The meaningful pathways are the AGE-RAGE signaling pathway in diabetic complications, the IL-17 signaling pathway, the TNF signaling pathway, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and apoptosis. In addition, the PPI network and molecular docking further demonstrated the roles that nine bioactive ingredients of MBSHXD play in IDD treatment through their interference with core target proteins. Conclusion This study reveals that MBSHXD has the characteristics of a “multi-component, multi-target, and multi-pathway” in the treatment of IDD by regulating inflammation and oxidative stress, and network pharmacology may provide a feasible method to verify the molecular mechanism of MBSHXD for IDD by combining with molecular docking.
Collapse
|
29
|
Research on the Mechanism of Kaempferol for Treating Senile Osteoporosis by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6741995. [PMID: 35154351 PMCID: PMC8831051 DOI: 10.1155/2022/6741995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Abstract
Kaempferol (KP), as a natural anti-inflammatory compound, has been reported to have curative effects on alleviating senile osteoporosis (SOP), which is an inflammation-related musculoskeletal disease, but the molecular mechanisms remain unclear due to scanty relevant studies. We predicted the targets of KP and SOP, and the common targets of them were subsequently used to carry out PPI analysis. Moreover, we adopted GO and KEGG enrichment analysis and molecular docking to explore potential mechanisms of KP against SOP. There were totally 152 KP-related targets and 978 SOP-related targets, and their overlapped targets comprised 68 intersection targets. GO enrichment analysis showed 1529 biological processes (p < 0.05), which involved regulation of inflammatory response, oxidative stress, regulation of bone resorption and remodeling, osteoblast and osteoclast differentiation, etc. Moreover, KEGG analysis revealed 146 items including 44 signaling pathways (p < 0.05), which were closely linked to TNF, IL-17, NF-kappa B, PI3K-Akt, MAPK, estrogen, p53, prolactin, VEGF, and HIF-1 signaling pathways. By means of molecular docking, we found that kaempferol is bound with the key targets' active pockets through some connections such as hydrogen bond, pi-alkyl, pi-sigma, pi-pi Stacked, pi-pi T-shaped, and van der Waals, illustrating that kaempferol has close combination with the key targets. Collectively, various targets and pathways involve in the process of kaempferol treatment against SOP through regulating inflammatory response, oxidative stress, bone homeostasis, etc. Moreover, our study first reported that kaempferol may regulate core targets' expression with involvement of inflammatory response, oxidative stress, and bone homeostasis, thus treating SOP.
Collapse
|
30
|
Rivera-Tovar PR, Pérez-Manríquez J, Mariotti-Celis MS, Escalona N, Pérez-Correa JR. Adsorption of low molecular weight food relevant polyphenols on cross-linked agarose gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. Front Endocrinol (Lausanne) 2021; 12:779638. [PMID: 34887836 PMCID: PMC8649804 DOI: 10.3389/fendo.2021.779638] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids are polyphenolic compounds spotted in various fruits, vegetables, barks, tea plants, and stems and many more natural commodities. They have a multitude of applications through their anti-inflammatory, anti-oxidative, anti-carcinogenic properties, along with the ability to assist in the stimulation of bone formation. Bone, a rigid connective body tissue made up of cells embedded in a mineralised matrix is maintained by an assemblage of pathways assisting osteoblastogenesis and osteoclastogenesis. These have a significant impact on a plethora of bone diseases. The homeostasis between osteoblast and osteoclast formation decides the integrity and structure of the bone. The flavonoids discussed here are quercetin, kaempferol, icariin, myricetin, naringin, daidzein, luteolin, genistein, hesperidin, apigenin and several other flavonoids. The effects these flavonoids have on the mitogen activated protein kinase (MAPK), nuclear factor kappa β (NF-kβ), Wnt/β-catenin and bone morphogenetic protein 2/SMAD (BMP2/SMAD) signalling pathways, and apoptotic pathways lead to impacts on bone remodelling. In addition, these polyphenols regulate angiogenesis, decrease the levels of inflammatory cytokines and play a crucial role in scavenging reactive oxygen species (ROS). Considering these important effects of flavonoids, they may be regarded as a promising agent in treating bone-related ailments in the future.
Collapse
Affiliation(s)
| | | | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | | |
Collapse
|
32
|
Pharmacological Mechanism of Danggui-Sini Formula for Intervertebral Disc Degeneration: A Network Pharmacology Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5165075. [PMID: 34805401 PMCID: PMC8601842 DOI: 10.1155/2021/5165075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Background Intervertebral disc degeneration (IVDD) is the most significant cause of low back pain, the sixth-largest disease burden globally, and the leading cause of disability. This study is aimed at investigating the molecular biological mechanism of Danggui-Sini formula (DSF) mediated IVDD treatment. Methods A potential gene set for DSF treatment of IVDD was identified through TCMSP, UniProt, and five disease gene databases. A protein interaction network of common targets between DSF and IVDD was established by using the STRING database. GO and KEGG enrichment analyses were performed using the R platform to discover the potential mechanism. Moreover, AutoDock Vina was used to verify molecular docking and calculate the binding energy. Results A total of 119 active ingredients and 136 common genes were identified, including 10 core genes (AKT1, IL6, ALB, TNF, VEGFA, TP53, MAPK3, CASP3, JUN, and EGF). Enrichment analysis results showed that the therapeutic targets of DSF for diseases mainly focused on the AGE-RAGE signaling pathway involved in diabetic complications, IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, apoptosis, cellular senescence, PI3K-Akt signaling pathway, and FoxO signaling pathway. These biological processes are induced mainly in response to oxidative stress and reactive oxygen species and the regulation of apoptotic signaling pathways. Molecular docking showed that there was a stable affinity between the core genes and the key components. Conclusions The combination of network pharmacology and molecular docking provides a practical way to analyze the molecular biological mechanism of DSF-mediated IVDD treatment, which confirms the “multicomponent, multitarget and multipathway” characteristics of DSF and provides an essential theoretical basis for clinical practice.
Collapse
|
33
|
Lee HS, Lee IH, Kang K, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacological Dissection of the Mechanisms of Eucommiae Cortex-Achyranthis Radix Combination for Intervertebral Disc Herniation Treatment. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eucommiae cortex (EC) and Achyranthis radix (AR) are herbal medicines widely used in combination for the treatment of intervertebral disc herniation (IDH). The mechanisms of action of the herbal combination have not been understood from integrative and comprehensive points of view. By adopting network pharmacological methodology, we aimed to investigate the pharmacological properties of the EC-AR combination as a therapeutic agent for IDH at a systematic molecular level. Using the pharmacokinetic information for the chemical ingredients of the EC-AR combination obtained from the comprehensive herbal drug-associated databases, we determined its 31 bioactive ingredients and 68 IDH-related therapeutic targets. By analyzing their enrichment for biological functions, we observed that the targets of the EC-AR combination were associated with the regulation of angiogenesis; cytokine and chemokine activity; oxidative and inflammatory stress responses; extracellular matrix organization; immune response; and cellular processes such as proliferation, apoptosis, autophagy, differentiation, migration, and activation. Pathway enrichment investigation revealed that the EC-AR combination may target IDH-pathology-associated signaling pathways, such as those of cellular senescence and chemokine, neurotrophin, TNF, MAPK, toll-like receptor, and VEGF signaling, to exhibit its therapeutic effects. Collectively, these data provide mechanistic insights into the pharmacological activity of herbal medicines for the treatment of musculoskeletal diseases such as IDH.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Minho Jung
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, 67, Dolma-ro, Bundang-gu, Seongnam 13586, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
34
|
Tang K, Su W, Huang C, Wu Y, Wu X, Lu H. Notoginsenoside R1 suppresses inflammatory response and the pyroptosis of nucleus pulposus cells via inactivating NF-κB/NLRP3 pathways. Int Immunopharmacol 2021; 101:107866. [PMID: 34588155 DOI: 10.1016/j.intimp.2021.107866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 11/28/2022]
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of low back pain. Notoginsenoside R1 (NR1) is widely applied in the treatment of bone disorders, including IVDD. The present study aimed to investigate the effects of NR1 on the development of IVDD and the potential mechanisms. AF puncture was performed to establish IVDD rat model. Histology changes were analyzed by hematoxylin and eosin (H&E) staining. mRNA expressions were determined using qRT-PCR. Protein expressions were detected with western blot. Cellular functions were detected by MTT, EdU, flow cytometry, and TUNEL assays. The results showed that NR1 suppressed AF puncture induced IVDD, restored intervertebral disc (IVD) function, and suppressed mechanical hyperalgesia and thermal hyperalgesia. Moreover, NR1 promoted the release of extracellular matrix (ECM) in vivo and in vitro, and decreased the mRNA expressions of proinflammation cytokines. Additionally, NR1 inactivated NF-κB/NLRP3 pathways, improved cellular functions of nucleus pulposus cells (NPCs), and suppressed cell pyroptosis, which was reversed by NLRP3 activation. Taken together, NR1 may protect against IVDD via suppressing NF-κB/NLRP3 pathways. This may provide a novel therapy for IVDD.
Collapse
Affiliation(s)
- Kai Tang
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Wanhan Su
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Chunhui Huang
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Yiqi Wu
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Xiuming Wu
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Haichuan Lu
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China.
| |
Collapse
|
35
|
Hua R, Zou J, Ma Y, Wang X, Chen Y, Li Y, Du J. Psoralidin prevents caffeine-induced damage and abnormal differentiation of bone marrow mesenchymal stem cells via the classical estrogen receptor pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1245. [PMID: 34532382 PMCID: PMC8421924 DOI: 10.21037/atm-21-3153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Background Caffeine is broadly present in tea, coffee, and cocoa, and is commonly consumed. The bone microenvironment might be damaged by excessive caffeine, which has been shown to exert negative effects on human health. In this study, we sought to determine whether excessive caffeine could damage the biological functions of bone marrow mesenchymal stem cells (BMSCs) and induce bone loss in mice, and further investigate effective therapeutic methods. Methods BMSCs were treated with different concentrations of caffeine (0.01, 0.05, 0.1, 0.5, and 1.0 mM) for 48 h. Cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were performed to detect the cell viability, proliferation, migration, and pluripotency of BMSCs, respectively. Alizarin red S (ARS) staining, alkaline phosphatase (ALP) staining, oil red O (ORO) staining, and qRT-PCR assay were applied to assess the osteogenic and adipogenic differentiation of BMSCs. BMSCs were treated with caffeine and further exposed to different concentrations of psoralidin (PL) (0.01, 0.1, 1, and 10 µM) for 48 h. Micro-computed tomography (µCT) scanning was used to evaluate the bone mass of mice. 7α-(7-((4,4,5,5,5-Pentafluoropentyl)-sulfiny)nonyl)estra-1,3,5(10)-triene-3,17β-diol (ICI 182,780, ICI) was applied to examine whether the classical estrogen receptor (ER) pathway was involved. Results The CCK-8 assay, colony formation assay, wound healing assay, and qRT-PCR analysis indicated that caffeine (0.01, 0.05, 0.1, 0.5, 1.0 mM) attenuated the cell viability, proliferation, migration and pluripotency of BMSCs, respectively, in a concentration-dependent manner. Caffeine treatment inhibited osteogenic differentiation but promoted adipogenic differentiation of BMSCs in a dose-dependent manner. Furthermore, ARS staining, ALP staining, ORO staining, and qRT-PCR assay showed that excessive caffeine induced bone loss and osteoporosis (OP) in mice by regulating the osteogenesis and adipogenesis of BMSCs. Also, PL treatment could reverse the caffeine-induced dysfunctions and aberrant differentiation of BMSCs via the ER pathway. Conclusions Our results revealed a novel molecular mechanism for the therapeutic effects of PL in treating excessive caffeine-induced OP, which might shed new light on the clinical application of PL for caffeine-related OP.
Collapse
Affiliation(s)
- Rong Hua
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Jilong Zou
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Ma
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Xiaomei Wang
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Yao Chen
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Suzhou Research Institute, Shandong University, Suzhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
36
|
Wang Z, Ding X, Cao F, Zhang X, Wu J. Bone Mesenchymal Stem Cells Promote Extracellular Matrix Remodeling of Degenerated Nucleus Pulposus Cells via the miR-101-3p/EIF4G2 Axis. Front Bioeng Biotechnol 2021; 9:642502. [PMID: 34513803 PMCID: PMC8429483 DOI: 10.3389/fbioe.2021.642502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
The etiology of lumbocrural pain is tightly concerned with intervertebral disk degeneration (IDD). Bone mesenchymal stem cell (BMSC)-based therapy bears potentials for IDD treatment. The properties of microRNA (miRNA)-modified BMSCs may be altered. This study investigated the role and mechanism of BMSCs promoting extracellular matrix (ECM) remodeling of degenerated nucleus pulposus cells (NPCs) via the miR-101-3p/EIF4G2 axis. NPCs were collected from patients with IDD and lumbar vertebral fracture (LVF). The expressions of miR-101-3p and ECM-related proteins, Collagen-I (Col-I) and Collagen-II (Col-II), were detected using the reverse transcription-quantitative polymerase chain reaction. The expressions of Col-I and Col-II, major non-collagenous component Aggrecan, and major catabolic factor Matrix metalloproteinase-13 (MMP-13) were detected using Western blotting. BMSCs were cocultured with degenerated NPCs from patients with IDD. Viability and apoptosis of NPCs were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. After the degenerated NPCs were transfected with the miR-101-3p inhibitor, the expressions of ECM-related proteins, cell viability, and apoptosis were detected. The targeting relationship between miR-101-3p and EIF4G2 was verified. Functional rescue experiments verified the effects of miR-101-3p and EIF4G2 on ECM remodeling of NPCs. Compared with the NPCs of patients with LVF, the degenerated NPCs of patients with IDD showed downregulated miR-101-3p, Col-II, and Aggrecan expressions and upregulated MMP-13 and Col-I expressions. BMSCs increased the expressions of miR-101-3p, Aggrecan, and Col-II, and decreased the expressions of MMP-13 and Col-I in degenerated NPCs. BMSCs enhanced NPC viability and repressed apoptosis. Downregulation of miR-101-3p suppressed the promoting effect of BMSCs on ECM remodeling. miR-101-3p targeted EIF4G2. Downregulation of EIF4G2 reversed the inhibiting effect of the miR-101-3p inhibitor on ECM remodeling. In conclusion, BMSCs increased the miR-101-3p expression in degenerated NPCs to target EIF4G2, thus promoting the ECM remodeling of NPCs.
Collapse
Affiliation(s)
- Zeng Wang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xiaolin Ding
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Feifei Cao
- Department of Out-Patient, Tai'an Central Hospital Branch, Tai'an, China
| | - Xishan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Jingguo Wu
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
37
|
Natural Products of Pharmacology and Mechanisms in Nucleus Pulposus Cells and Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9963677. [PMID: 34394398 PMCID: PMC8357477 DOI: 10.1155/2021/9963677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain (LBP), which severely reduces the quality of life and imposes a heavy financial burden on the families of affected individuals. Current research suggests that IDD is a complex cell-mediated process. Inflammation, oxidative stress, mitochondrial dysfunction, abnormal mechanical load, telomere shortening, DNA damage, and nutrient deprivation contribute to intervertebral disc cell senescence and changes in matrix metabolism, ultimately causing IDD. Natural products are widespread, structurally diverse, afford unique advantages, and exhibit great potential in terms of IDD treatment. In recent years, increasing numbers of natural ingredients have been shown to inhibit the degeneration of nucleus pulposus cells through various modes of action. Here, we review the pharmacological effects of natural products on nucleus pulposus cells and the mechanisms involved. An improved understanding of how natural products target signalling pathways will aid the development of anti-IDD drugs. This review focuses on potential IDD drugs.
Collapse
|
38
|
Sun Q, Tian FM, Liu F, Fang JK, Hu YP, Lian QQ, Zhou Z, Zhang L. Denosumab alleviates intervertebral disc degeneration adjacent to lumbar fusion by inhibiting endplate osteochondral remodeling and vertebral osteoporosis in ovariectomized rats. Arthritis Res Ther 2021; 23:152. [PMID: 34049577 PMCID: PMC8161944 DOI: 10.1186/s13075-021-02525-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
Background Although adjacent segmental intervertebral disc degeneration (ASDD) is one of the most common complications after lumbar fusion, its exact mechanism remains unclear. As an antibody to RANKL, denosumab (Dmab) effectively reduces bone resorption and stimulates bone formation, which can increase bone mineral density (BMD) and improve osteoporosis. However, it has not been confirmed whether Dmab has a reversing or retarding effect on ASDD. Methods Three-month-old female Sprague-Dawley rats that underwent L4–L5 posterolateral lumbar fusion (PLF) with spinous-process wire fixation 4 weeks after bilateral ovariectomy (OVX) surgery were given Dmab 4 weeks after PLF surgery (OVX+PLF+Dmab group). In addition, the following control groups were defined: Sham, OVX, PLF, and OVX+PLF (n=12 each). Next, manual palpation and X-ray were used to evaluate the state of lumbar fusion. The bone microstructure in the lumbar vertebra and endplate as well as the disc height index (DHI) of L5/6 was evaluated by microcomputed tomography (μCT). The characteristic alterations of ASDD were identified via Safranin-O green staining. Osteoclasts were detected using tartrate-resistant acid phosphatase (TRAP) staining, and the biomechanical properties of vertebrae were evaluated. Aggrecan (Agg), metalloproteinase-13 (MMP-13), and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) expression in the intervertebral disc were detected by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) analysis. In addition, the expression of CD24 and Sox-9 was assessed by immunohistochemistry. Results Manual palpation showed clear evidence of the fused segment’s immobility. Compared to the OVX+PLF group, more new bone formation was observed by X-ray examination in the OVX+PLF+Dmab group. Dmab significantly alleviated ASDD by retaining disc height index (DHI), decreasing endplate porosity, and increasing vertebral biomechanical properties and BMD. TRAP staining results showed a significantly decreased number of active osteoclasts after Dmab treatment, especially in subchondral bone and cartilaginous endplates. Moreover, the protein and mRNA expression results in discs (IVDs) showed that Dmab not only inhibited matrix degradation by decreasing MMP-13 and ADAMTS-4 but also promoted matrix synthesis by increasing Agg. Dmab maintained the number of notochord cells by increasing CD24 but reducing Sox-9. Conclusions These results suggest that Dmab may be a novel therapeutic target for ASDD treatment.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Fang Liu
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jia-Kang Fang
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yun-Peng Hu
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Qiang-Qiang Lian
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Zhuang Zhou
- Department of Bone and Soft Tissue Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, 361 Zhongshan ERoad, Hebei, 050000, Shijiazhuang, People's Republic of China.
| |
Collapse
|
39
|
Zhou R, Chen F, Liu H, Zhu X, Wen X, Yu F, Shang G, Qi S, Xu Y. Berberine ameliorates the LPS-induced imbalance of osteogenic and adipogenic differentiation in rat bone marrow-derived mesenchymal stem cells. Mol Med Rep 2021; 23:350. [PMID: 33760123 PMCID: PMC7974461 DOI: 10.3892/mmr.2021.11989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) from oral pathogenic bacteria is an important factor leading to alveolar bone absorption and the implant failure. The present study aimed to evaluate the modulation of berberine hydrochloride (BBR) on the LPS-mediated osteogenesis and adipogenesis imbalance in rat bone marrow-derived mesenchymal stem cells (BMSCs). Cell viability, osteoblastic and adipogenic differentiation levels were measured using the Cell Counting Kit-8 assay, alkaline phosphatase (ALP) staining and content assay, and oil red O staining, respectively. Reverse transcription-quantitative PCR and immunoblotting were used to detect the related gene and protein expression levels. In undifferentiated cells, BBR increased the mRNA expression levels of the osteoblastic genes (Alp, RUNX family transcription factor 2, osteocalcin and secreted phosphoprotein 1) but not the adipogenic genes (fatty acid binding protein 4, Adipsin and peroxisome proliferator-activated receptorγ). LPS-induced osteoblastic gene downregulation, adipogenic gene enhancement and NF-κB activation were reversed by BBR treatment. In osteoblastic differentiated cells, decreased ALP production by LPS treatment was recovered with BBR co-incubation. In adipogenic differentiated cells, LPS-mediated lipid accumulation was decreased by BBR administration. The mRNA expression levels of the pro-inflammatory factors (MCP-1, TNF-α, IL-6 and IL-1β) were increased by LPS under both adipogenic and osteoblastic conditions, which were effectively ameliorated by BBR. The actions of BBR were attenuated by compound C, suggesting that the role of BBR may be partly due to AMP-activated protein kinase activation. The results demonstrated notable pro-osteogenic and anti-adipogenic actions of BBR in a LPS-stimulated inflammatory environment. This indicated a potential role of BBR for bacterial infected-related peri-implantitis medication.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Haixia Liu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xueqin Zhu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xueyun Wen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fang Yu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
40
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Kamali A, Ziadlou R, Lang G, Pfannkuche J, Cui S, Li Z, Richards RG, Alini M, Grad S. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics 2021; 11:27-47. [PMID: 33391459 PMCID: PMC7681102 DOI: 10.7150/thno.48987] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) is a major reason for disability, and symptomatic intervertebral disc (IVD) degeneration (IDD) contributes to roughly 40% of all LBP cases. Current treatment modalities for IDD include conservative and surgical strategies. Unfortunately, there is a significant number of patients in which conventional therapies fail with the result that these patients remain suffering from chronic pain and disability. Furthermore, none of the current therapies successfully address the underlying biological problem - the symptomatic degenerated disc. Both spinal fusion as well as total disc replacement devices reduce spinal motion and are associated with adjacent segment disease. Thus, there is an unmet need for novel and stage-adjusted therapies to combat IDD. Several new treatment options aiming to regenerate the IVD are currently under investigation. The most common approaches include tissue engineering, growth factor therapy, gene therapy, and cell-based treatments according to the stage of degeneration. Recently, the regenerative activity of small molecules (low molecular weight organic compounds with less than 900 daltons) on IDD was demonstrated. However, small molecule-based therapy in IDD is still in its infancy due to limited knowledge about the mechanisms that control different cell signaling pathways of IVD homeostasis. Small molecules can act as anti-inflammatory, anti-apoptotic, anti-oxidative, and anabolic agents, which can prevent further degeneration of disc cells and enhance their regeneration. This review pursues to give a comprehensive overview of small molecules, focusing on low molecular weight organic compounds, and their potential utilization in patients with IDD based on recent in vitro, in vivo, and pre-clinical studies.
Collapse
Affiliation(s)
- Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, Davos, Switzerland
- Department of Biomedical Engineering, Medical Faculty of the University of Basel, Basel, CH
| | - Gernot Lang
- Department of Orthopaedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland
- The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
42
|
Zhang Z, Huo Y, Zhou Z, Zhang P, Hu J. Role of lncRNA PART1 in intervertebral disc degeneration and associated underlying mechanism. Exp Ther Med 2020; 21:131. [PMID: 33376513 PMCID: PMC7751492 DOI: 10.3892/etm.2020.9563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/08/2020] [Indexed: 01/20/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a chronic skeletal muscle degeneration disease. Previous studies have demonstrated that long non-coding RNAs (lncRNAs) exert significant roles in serious illnesses. Prostate androgen-regulated transcript 1 (PART1) is an identified lncRNA that has been reported to be a regulator in a number of diseases. However, the potential effects of PART1 in IDD have yet to be fully elucidated. The present study aimed to investigate the roles of lncRNA PART1 in IDD and identify a possible underlying mechanism. Human nucleus pulposus (NP) cells were first exposed to lipopolysaccharide (LPS) to construct in vitro IDD models. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure lncRNA PART1 expression levels in 10 ng/ml LPS-stimulated NP cells and normal cells (untreated cells). Dual-luciferase reporter assays were conducted to verify the possible binding sites of microRNA (miR)-190a-3p on lncRNA PART1. In addition, NP cell viability and apoptosis were measured by performing MTT and flow cytometry, respectively. Expression and secretion of inflammatory factors (TNF-α, IL-1β and IL-6) and extracellular matrix (ECM) degradation-related proteins (aggrecan and collagen type II) were measured using ELISA, RT-qPCR and western blotting. Expression levels of lncRNA PART1 in LPS-treated NP cells were found to be higher compared with those in the control groups. miR-190a-3p directly targeted lncRNA PART1. PART1 knockdown enhanced cell viability, reduced cell apoptosis, inhibited inflammatory factor secretion and promoted ECM degradation in LPS-stimulated NP cells. However, transfection with the miR-190a-3p inhibitor reversed the aforementioned PART1 knockdown-induced alterations in cell viability, apoptosis, inflammatory cytokine and ECM degradation. Collectively, these results suggest that PART1 accelerates the progression of IDD by directly targeting miR-190a-3p, which provides a novel target for IDD diagnosis and treatment.
Collapse
Affiliation(s)
- Zongyu Zhang
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| | - Yongfeng Huo
- Department of Orthopedics, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222004, P.R. China
| | - Zhijing Zhou
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| | - Peng Zhang
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| | - Jun Hu
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| |
Collapse
|
43
|
Khalil A, Tazeddinova D. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:411-429. [PMID: 33057955 PMCID: PMC7558243 DOI: 10.1007/s13659-020-00271-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 05/15/2023]
Abstract
Polyphenols are a large family of more than 10,000 naturally occurring compounds, which exert countless pharmacological, biological and physiological benefits for human health including several chronic diseases such as cancer, diabetes, cardiovascular, and neurological diseases. Their role in traditional medicine, such as the use of a wide range of remedial herbs (thyme, oregano, rosemary, sage, mint, basil), has been well and long known for treating common respiratory problems and cold infections. This review reports on the most highlighted polyphenolic compounds present in up to date literature and their specific antiviral perceptive properties that might enhance the body immunity facing COVID-19, and other viral infectious diseases. In fact, several studies and clinical trials increasingly proved the role of polyphenols in controlling numerous human pathogens including SARS and MERS, which are quite similar to COVID-19 through the enhancement of host immune response against viral infections by different biological mechanisms. Thus, polyphenols ought to be considered as a potential and valuable source for designing new drugs that could be used effectively in the combat against COVID-19 and other rigorous diseases.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Food Technology, South Ural State University, Chelyabinsk, Russian Federation
| | - Diana Tazeddinova
- Department of Food Technology, South Ural State University, Chelyabinsk, Russian Federation
| |
Collapse
|
44
|
Anti-Inflammatory Principles from Tamarix aphylla L.: A Bioassay-Guided Fractionation Study. Molecules 2020; 25:molecules25132994. [PMID: 32630007 PMCID: PMC7411813 DOI: 10.3390/molecules25132994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/27/2020] [Indexed: 01/01/2023] Open
Abstract
Natural products have served as primary remedies since ancient times due to their cultural acceptance and outstanding biodiversity. To investigate whether Tamarix aphylla L. modulates an inflammatory process, we carried out bioassay-guided isolation where the extracts and isolated compounds were tested for their modulatory effects on several inflammatory indicators, such as nitric oxide (NO), reactive oxygen species (ROS), proinflammatory cytokine; tumour necrosis factor (TNF-α), as well as the proliferation of the lymphocyte T-cells. The aqueous ethanolic extract of the plant inhibited the intracellular ROS production, NO generation, and T-cell proliferation. The aqueous ethanolic crude extract was partitioned by liquid-liquid fractionation using n-hexane (n-C6H6), dichloromethane (DCM), ethyl acetate (EtOAc), n-butanol (n-BuOH), and water (H2O). The DCM and n-BuOH extracts showed the highest activity against most inflammatory indicators and were further purified to obtain compounds 1-4. The structures of 3,5-dihydroxy-4',7-dimethoxyflavone (1) and 3,5-dihydroxy-4-methoxybenzoic acid methyl ester (2) from the DCM extracts; and kaempferol (3), and 3-hydroxy-4-methoxy-(E)-cinnamic acid (4) from the n-BuOH extract were elucidated by different spectroscopic tools, including MS, NMR, UV, and IR. Compound 2 inhibited the production of ROS and TNF-α, whereas compound 3 showed inhibitory activity against all the tested mediators. A better understanding of the potential aspect of Tamarix aphylla L. derivatives as anti-inflammatory agents could open the door for the development of advanced anti-inflammatory entities.
Collapse
|
45
|
Inhibitory effect of kaempferol on mouse melanoma cell line B16 in vivo and in vitro. Postepy Dermatol Alergol 2020; 38:498-504. [PMID: 34377134 PMCID: PMC8330872 DOI: 10.5114/ada.2020.94257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/08/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction Melanoma is a malignant tumour and is the leading cause of death in patients with skin tumours. Aim Kaempferol belongs to a class of flavonoids, and is associated with many biological functions such as anti-inflammatory, anti-oxidation and anti-cancer. However, the inhibitory effect of kaempferol on melanoma still remains unclear. Material and methods The effect of kaempferol on melanoma was determined by conducting both in vitro and in vivo experiments using MTT assay and flow cytometry. Results The in vitro results revealed that kaempferol obviously inhibited cell viability of melanoma B16 cells, induced cell cycle arrest and cell apoptosis. The in vivo results showed that kaempferol effectively inhibited the growth of mice xenografts. More importantly, kaempferol down-regulated the number of MDSC cells and up-regulated the number of NKT cells and CD8 T cells in the spleen. Conclusions Taken together, these findings indicate that kaempferol might play an inhibitory role in the growth of melanoma by enhancing anti-tumour immunity of organisms.
Collapse
|
46
|
Xiao ZF, Su GY, Hou Y, Chen SD, Zhao BD, He JB, Zhang JH, Chen YJ, Lin DK. Mechanics and Biology Interact in Intervertebral Disc Degeneration: A Novel Composite Mouse Model. Calcif Tissue Int 2020; 106:401-414. [PMID: 31912171 DOI: 10.1007/s00223-019-00644-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to distinguish the characteristics of intervertebral disc degeneration (IVDD) originating from mechanics imbalance, biology disruption, and their communion, and to develop a composite IVDD model by ovariectomy combined with lumbar facetectomy for mimicking elderly IVDD with osteoporosis and lumbar spinal instability. Mice were randomly divided into four groups and subjected to sham surgery (CON), ovariectomy (OVX), facetectomy (mechanical instability, INS) or their combination (COM), respectively. Radiographical (n = 4) and histological changes (n = 8) of L4/5 spinal segments were analyzed. Tartrate-resistant acid phosphatase (TRAP) staining was conducted to detect osteoclasts, and expression of osterix (OSX), type I collagen (Col I), type II collagen (Col II) and vascular endothelial growth factor (VEGF) were evaluated by immunochemistry. OVX affected the body's metabolism but INS did not, as the body weight increased and uterus weight decreased in OVX and COM mice compared to CON and INS mice. OVX, INS, and COM caused IVDD in various degrees at 12 weeks after surgery. However, the major pathogeneses of OVX- and INS-induced IVDD were different, which focused on endplate (EP) remodeling and annulus fibrosus (AF) collapse, respectively. OVX induced osteopenia of vertebra. In contrast, INS promoted the stress-adaptive increase of subchondral bone trabeculae. The COM produced a reproducible severe IVDD model with characteristics of sparse vertebral trabeculae, cartilaginous EP ossification, subchondral bone sclerosis, fibrous matrix disorder, angiogenesis, disc stiffness, as well as space fusion. Additionally, all groups had elevated bone and cartilage turnover compared with CON group, as the quantity of trap + osteoclasts and the osteogenic OSX expression increased in these groups. Likewise, the VEGF expression levels were similar, accompanied by the altered matrix expression of disc, including the changed distribution and contents of Col II and Col I. The findings suggested that the composite mouse model to some extent could effectively mimic the interactions of biology and mechanics engaged in the onset and natural course of IVDD, which would be more compatible with the IVDD of elderly with vertebral osteoporosis and spinal instability and benefit to further clarify the complicated mechanobiological environment of elderly IVDD progression.
Collapse
Affiliation(s)
- Zhi-Feng Xiao
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Guo-Yi Su
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Yu Hou
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Shu-Dong Chen
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Bing-de Zhao
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Jian-Bo He
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Ji-Heng Zhang
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Yan-Jun Chen
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Ding-Kun Lin
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
47
|
Farhang N, Silverman L, Bowles RD. Improving Cell Therapy Survival and Anabolism in Harsh Musculoskeletal Disease Environments. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:348-366. [PMID: 32070243 DOI: 10.1089/ten.teb.2019.0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell therapies are an up and coming technology in orthopedic medicine that has the potential to provide regenerative treatments for musculoskeletal disease. Despite numerous cell therapies showing preclinical success for common musculoskeletal indications of disc degeneration and osteoarthritis, there have been mixed results when testing these therapies in humans during clinical trials. A theory behind the mixed success of these cell therapies is that the harsh microenvironments of the disc and knee they are entering inhibit their anabolism and survival. Therefore, there is much ongoing research looking into how to improve the survival and anabolism of cell therapies within these musculoskeletal disease environments. This includes research into improving cell function under specific microenvironmental conditions known to exist in the intervertebral disc (IVD) and knee environment such as hypoxia, low-nutrient conditions, hyperosmolarity, acidity, and inflammation. This research also includes improving differentiation of cells into desired native cell phenotypes to better enhance their survival and anabolism in the knee and IVD. This review highlights the effects of specific musculoskeletal microenvironmental challenges on cell therapies and what research is being done to overcome these challenges. Impact statement While there has been significant clinical interest in using cell therapies for musculoskeletal pathologies in the knee and intervertebral disc, cell therapy clinical trials have had mixed outcomes. The information presented in this review includes the environmental challenges (i.e., acidic pH, inflammation, hyperosmolarity, hypoxia, and low nutrition) that cell therapies experience in these pathological musculoskeletal environments. This review summarizes studies that describe various approaches to improving the therapeutic capability of cell therapies in these harsh environments. The result is an overview of what approaches can be targeted and/or combined to develop a more consistent cell therapy for musculoskeletal pathologies.
Collapse
Affiliation(s)
- Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Robby D Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
48
|
Peng Y, Huang D, Liu S, Li J, Qing X, Shao Z. Biomaterials-Induced Stem Cells Specific Differentiation Into Intervertebral Disc Lineage Cells. Front Bioeng Biotechnol 2020; 8:56. [PMID: 32117935 PMCID: PMC7019859 DOI: 10.3389/fbioe.2020.00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell therapy, which promotes stem cells differentiation toward specialized cell types, increases the resident population and production of extracellular matrix, and can be used to achieve intervertebral disc (IVD) repair, has drawn great attention for the development of IVD-regenerating materials. Many materials that have been reported in IVD repair have the ability to promote stem cells differentiation. However, due to the limitations of mechanical properties, immunogenicity and uncontrollable deviations in the induction of stem cells differentiation, there are few materials that can currently be translated into clinical applications. In addition to the favorable mechanical properties and biocompatibility of IVD materials, maintaining stem cells activity in the local niche and increasing the ability of stem cells to differentiate into nucleus pulposus (NP) and annulus fibrosus (AF) cells are the basis for promoting the application of IVD-regenerating materials in clinical practice. The purpose of this review is to summarize IVD-regenerating materials that focus on stem cells strategies, analyze the properties of these materials that affect the differentiation of stem cells into IVD-like cells, and then present the limitations of currently used disc materials in the field of stem cell therapy and future research perspectives.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2019; 34:911-923. [PMID: 31829475 DOI: 10.1002/ptr.6577] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Regulated cell death (RCD) guarantees to preserve organismal homeostasis. Apoptosis and autophagy are two major arms of RCD, while endoplasmic reticulum (ER) as a crucial organelle involved in proteostasis, promotes cells toward autophagy and apoptosis. Alteration in ER stress and autophagy machinery is responsible for a great number of diseases. Therefore, targeting those pathways appears to be beneficial in the treatment of relevant diseases. Meantime, among the traditional herb medicine, kaempferol as a flavonoid seems to be promising to modulate ER stress and autophagy and exhibits protective effects on malfunctioning cells. There are some reports indicating the capability of kaempferol in affecting autophagy and ER stress. In brief, kaempferol modulates autophagy in noncancerous cells to protect cells against malfunction, while it induces cell mortality derived from autophagy through the elevation of p-AMP-activated protein kinase, light chain-3-II, autophagy-related geness, and Beclin-1 in cancer cells. Noteworthy, kaempferol enhances cell survival through C/EBP homologous protein (CHOP) suppression and GRP78 increment in noncancerous cells, while it enhances cell mortality through the induction of unfolding protein response and CHOP increment in cancer cells. In this review, we discuss how kaempferol modulates autophagy and ER stress in noncancer and cancer cells to expand our knowledge of new pharmacological compounds for the treatment of associated diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Sahar Roomiani
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
50
|
Wu B, Peng L, Yang G. Optimizing isolation process of kaempferitrin from leaves of
Prunus cerasifera. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural ProductWuhan Polytechnic University Wuhan Hubei China
- College of Food Science and EngineeringWuhan Polytechnic University Wuhan Hubei China
| | - Lijuan Peng
- College of Food Science and EngineeringWuhan Polytechnic University Wuhan Hubei China
| | - Guoyan Yang
- Center of Analysis and MeasurementWuhan Polytechnic University Wuhan Hubei China
| |
Collapse
|