1
|
Zhang Q, Guo S, Wang H. The Protective Role of Baicalin in the Regulation of NLRP3 Inflammasome in Different Diseases. Cell Biochem Biophys 2025; 83:1387-1397. [PMID: 39443419 DOI: 10.1007/s12013-024-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome consists of pro-caspase-1, NLRP3 and apoptosis-related speckle-like protein (ASC). It can detect multiple microorganisms, endogenous danger signals and environmental stimulus including adenosine triphosphate (ATP), urate, cholesterol crystals, and so on, thereby forming activated NLRP3 inflammasome. During the course of the activation of NLRP3 inflammasome, pro-caspase-1 is transformed into activated caspase-1 that results in the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. The dysfunction of NLRP3 inflammasome participates in multiple diseases such as liver diseases, renal diseases, nervous system diseases and diabetes. Baicalin is the primary bioactive component of Scutellaria baicalensis, which has been used since ancient times. Baicalin has many types of biological functions, such as anti-bacterial, anti-tumor and antioxidant. More and more evidence suggests that baicalin regulation of NLRP3 inflammasome is involved in different diseases. However, the mechanism is still elusive. Here, we reviewed the progress of baicalin regulation of NLRP3 inflammasome in many kinds of diseases to lay a foundation for future researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Cui LL, Zhang L, Liu S, Zhu Q, Xue FS. Dexmedetomidine Cannot Attenuate Liver Injury and Improve Outcomes Following Laparoscopic Living Donor Hepatectomy: A Randomised Controlled Trial. Drug Des Devel Ther 2025; 19:4263-4274. [PMID: 40420947 PMCID: PMC12105671 DOI: 10.2147/dddt.s524343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
Purpose To determine the effects of intraoperative dexmedetomidine (DEX) administration on postoperative ischaemia/reperfusion injury (HIRI) and clinical outcomes of patients undergoing the laparoscopic living donor hepatectomy (LLDH). Patients and Methods Fifty-five patients who underwent the LLDH were randomly assigned to the DEX or control group. The DEX group received an intravenous infusion of DEX with an bolus dose of 1 µg/kg for 15 min before anaesthesia induction, followed by a continuous infusion at a rate of 0.4 µg/kg/h until the portal branch was disconnected. The control group was given an intravenous infusion of 0.9% saline at same volume and rate. The primary outcome was peak serum aspartate aminotransferase (AST) level during the first 72 h postoperatively. The secondary outcomes included other variables of postoperative liver and kidney function, intraoperative hemodynamic changes, postoperative recovery outcomes and the occurrence of complications. Results The peak serum AST level during the first 72 h postoperatively was not significantly different between groups (DEX vs control: 288 [194-466] vs 324 [194-437] IU/L; difference, -1.2 IU/L; 95% CI, -86.9 to 88.0; P=0.973). The intraoperative mean artery pressure was not significantly different, but intraoperative heart rate was significantly decreased in the DEX group. There were no significant differences between groups in other secondary outcomes. Conclusion This study demonstrates that intraoperative DEX administration at the studied dosage regimens cannot attenuate postoperative HIRI and does not improve clinical outcomes in patients undergoing the LLDH. Clinical Trial Registration www.chictr.org.cn, ChiCTR2000040629.
Collapse
Affiliation(s)
- Ling-Li Cui
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Liang Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shen Liu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Qian Zhu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Fu-Shan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| |
Collapse
|
3
|
Zhang S, Yu M, Wang F, Li S, Li X, Hu H, Zhang Z, Zhu X, Tian W. Salidroside promotes liver regeneration after partial hepatectomy in mice by modulating NLRP3 inflammasome-mediated pyroptosis pathway. Biochem Biophys Res Commun 2024; 735:150678. [PMID: 39270555 DOI: 10.1016/j.bbrc.2024.150678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Insufficient residual liver tissue after partial hepatectomy (PH) may lead to serious complications such as hepatic failure and small-for-size syndrome. Salidroside (SAL) is obtained from Rhodiola rosea through modernized separation and extraction and has been validated for treating various liver diseases. It's yet unknown, nevertheless, how SAL affects liver regeneration after PH. This study aimed to determine whether SAL could promote liver regeneration after PH in mice. We demonstrated that SAL could attenuate liver injury after PH and promote hepatocyte proliferation and liver mass recovery. Mechanistically, SAL inhibited the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, attenuating pyroptosis. RNA-seq analysis indicated that SAL downregulated the transcription of NLRP3 and GSDMD genes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the NOD-like receptor signaling pathway was significantly enriched in down-regulated signaling pathways. Notably, SAL in combination with the NLRP3 inhibitor MCC950 did not further inhibit NLRP3 inflammasome and promote liver mass recovery. In summary, our findings proved that SAL could be a potential agent for improving liver function and promoting liver regeneration after PH.
Collapse
Affiliation(s)
- Saiya Zhang
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Meilu Yu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Fen Wang
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Sha Li
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xuefei Li
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Hongyu Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhen Zhang
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xiangpeng Zhu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
4
|
Ciftel S, Mercantepe T, Aktepe R, Pinarbas E, Ozden Z, Yilmaz A, Mercantepe F. Protective Effects of Trimetazidine and Dexmedetomidine on Liver Injury in a Mesenteric Artery Ischemia-Reperfusion Rat Model via Endoplasmic Reticulum Stress. Biomedicines 2024; 12:2299. [PMID: 39457612 PMCID: PMC11504293 DOI: 10.3390/biomedicines12102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute mesenteric ischemia can lead to severe liver damage due to ischemia-reperfusion (I/R) injury. This study investigated the protective effects of trimetazidine (TMZ) and dexmedetomidine (DEX) against liver damage induced by mesenteric artery I/R via endoplasmic reticulum stress (ERS) mechanisms. METHODS Twenty-four rats were divided into four groups: control, I/R, I/R+TMZ, and I/R+DEX. TMZ (20 mg/kg) was administered orally for seven days, and DEX (100 µg/kg) was given intraper-itoneally 30 min before I/R induction. Liver tissues were analyzed for creatinine, alanine ami-notransferase (ALT), aspartate aminotransferase (AST), thiobarbituric acid reactive substances (TBARS), and total thiol (TT) levels. RESULTS Compared with the control group, the I/R group presented significantly increased AST, ALT, TBARS, and TT levels. TMZ notably reduced creatinine levels. I/R caused significant liver necrosis, inflammation, and congestion. TMZ and DEX treatments reduced this histopathological damage, with DEX resulting in a more significant reduction in infiltrative areas and vascular congestion. The increase in the expression of caspase-3, Bax, 8-OHdG, C/EBP homologous protein (CHOP), and glucose-regulated protein 78 (GRP78) decreased with the TMZ and DEX treatments. In addition, Bcl-2 positivity decreased both in the TMZ and DEX treatments. CONCLUSIONS Both TMZ and DEX have protective effects against liver damage. These effects are likely mediated through the reduction in ERS and apoptosis, with DEX showing slightly superior protective effects compared with TMZ.
Collapse
Affiliation(s)
- Sedat Ciftel
- Department of Gastroenterology and Hepatology, Erzurum Regional Education and Research Hospital, 25070 Erzurum, Turkey;
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (T.M.); (Z.O.)
| | - Riza Aktepe
- Department of Anatomy, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Esra Pinarbas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Zulkar Ozden
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (T.M.); (Z.O.)
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| |
Collapse
|
5
|
Yao X, Liu Y, Sui Y, Zheng M, Zhu L, Li Q, Irwin MG, Yang L, Zhan Q, Xiao J. Dexmedetomidine facilitates autophagic flux to promote liver regeneration by suppressing GSK3β activity in mouse partial hepatectomy. Biomed Pharmacother 2024; 177:117038. [PMID: 39002441 DOI: 10.1016/j.biopha.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is widely used for sedation and anesthesia in patients undergoing hepatectomy. However, the effect of DEX on autophagic flux and liver regeneration remains unclear. OBJECTIVES This study aimed to determine the role of DEX in hepatocyte autophagic flux and liver regeneration after PHx. METHODS In mice, DEX was intraperitoneally injected 5 min before and 6 h after PHx. In vitro, DEX was co-incubated with culture medium for 24 h. Autophagic flux was detected by LC3-II and SQSTM1 expression levels in primary mouse hepatocytes and the proportion of red puncta in AML-12 cells transfected with FUGW-PK-hLC3 plasmid. Liver regeneration was assessed by cyclinD1 expression, Edu incorporation, H&E staining, ki67 immunostaining and liver/body ratios. Bafilomycin A1, si-GSK3β and Flag-tagged GSK3β, α2-ADR antagonist, GSK3β inhibitor, AKT inhibitor were used to identify the role of GSK3β in DEX-mediated autophagic flux and hepatocyte proliferation. RESULTS Pre- and post-operative DEX treatment promoted liver regeneration after PHx, showing 12 h earlier than in DEX-untreated mice, accompanied by facilitated autophagic flux, which was completely abolished by bafilomycin A1 or α2-ADR antagonist. The suppression of GSK3β activity by SB216763 and si-GSK3β enhanced the effect of DEX on autophagic flux and liver regeneration, which was abolished by AKT inhibitor. CONCLUSION Pre- and post-operative administration of DEX facilitates autophagic flux, leading to enhanced liver regeneration after partial hepatectomy through suppression of GSK3β activity in an α2-ADR-dependent manner.
Collapse
Affiliation(s)
- Xueya Yao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Yingxiang Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Yongheng Sui
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Miao Zheng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Qionghui Zhan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| |
Collapse
|
6
|
Fan S, Gao Y, Zhao P, Xie G, Zhou Y, Yang X, Li X, Zhang S, Gonzalez FJ, Qu A, Huang M, Bi H. Fenofibrate-promoted hepatomegaly and liver regeneration are PPAR α-dependent and partially related to the YAP pathway. Acta Pharm Sin B 2024; 14:2992-3008. [PMID: 39027236 PMCID: PMC11252459 DOI: 10.1016/j.apsb.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 07/20/2024] Open
Abstract
Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is widely prescribed for hyperlipidemia management. Recent studies also showed that it has therapeutic potential in various liver diseases. However, its effects on hepatomegaly and liver regeneration and the involved mechanisms remain unclear. Here, the study showed that fenofibrate significantly promoted liver enlargement and regeneration post-partial hepatectomy in mice, which was dependent on hepatocyte-expressed PPARα. Yes-associated protein (YAP) is pivotal in manipulating liver growth and regeneration. We further identified that fenofibrate activated YAP signaling by suppressing its K48-linked ubiquitination, promoting its K63-linked ubiquitination, and enhancing the interaction and transcriptional activity of the YAP-TEAD complex. Pharmacological inhibition of YAP-TEAD interaction using verteporfin or suppression of YAP using AAV Yap shRNA in mice significantly attenuated fenofibrate-induced hepatomegaly. Other factors, such as MYC, KRT23, RAS, and RHOA, might also participate in fenofibrate-promoted hepatomegaly and liver regeneration. These studies demonstrate that fenofibrate-promoted liver enlargement and regeneration are PPARα-dependent and partially through activating the YAP signaling, with clinical implications of fenofibrate as a novel therapeutic agent for promoting liver regeneration.
Collapse
Affiliation(s)
- Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
7
|
Yamaguchi Y, Hosokawa S, Haraguchi G, Kajikawa Y, Sakurai M, Ishii T, Ando N, Morio T, Doi S, Furukawa T. The Anti-Inflammatory Effects and Clinical Potential of Dexmedetomidine in Pulmonary Arterial Hypertension. J Pharmacol Exp Ther 2023; 385:88-94. [PMID: 36849413 DOI: 10.1124/jpet.122.001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
A pathogenic aspect of pulmonary arterial hypertension (PAH) is the aberrant pulmonary arterial smooth muscle cell (PASMC) proliferation. PASMC proliferation is significantly affected by inflammation. A selective α-2 adrenergic receptor agonist called dexmedetomidine (DEX) modulates specific inflammatory reactions. We investigated the hypothesis that anti-inflammatory characteristics of DEX could lessen PAH that monocrotaline (MCT) causes in rats. In vivo, male Sprague-Dawley rats aged 6 weeks were subcutaneously injected with MCT at a dose of 60 mg/kg. Continuous infusions of DEX (2 µg/kg per hour) were started via osmotic pumps in one group (MCT plus DEX group) at day 14 following MCT injection but not in another group (MCT group). Right ventricular systolic pressure (RVSP), right ventricular end-diastolic pressure (RVEDP), and survival rate significantly improved in the MCT plus DEX group compared with the MCT group [RVSP, 34 mmHg ± 4 mmHg versus 70 mmHg ± 10 mmHg; RVEDP, 2.6 mmHg ± 0.1 mmHg versus 4.3 mmHg ± 0.6 mmHg; survival rate, 42% versus 0% at day 29 (P < 0.01)]. In the histologic study, the MCT plus DEX group showed fewer phosphorylated p65-positive PASMCs and less medial hypertrophy of the pulmonary arterioles. In vitro, DEX dose-dependently inhibited human PASMC proliferation. Furthermore, DEX decreased the expression of interleukin-6 mRNA in human PASMCs treated with fibroblast growth factor 2 (FGF2). These consequences suggest that DEX improves PAH by inhibiting PASMC proliferation through its anti-inflammatory properties. Additionally, DEX may exert anti-inflammatory effects via blocking FGF2-induced nuclear factor κ B activation. SIGNIFICANCE STATEMENT: Dexmedetomidine, a selective α-2 adrenergic receptor agonist utilized as a sedative in the clinical setting, improves pulmonary arterial hypertension (PAH) by inhibiting pulmonary arterial smooth muscle cell proliferation through its anti-inflammatory effect. Dexmedetomidine may be a new PAH therapeutic agent with vascular reverse remodeling effect.
Collapse
Affiliation(s)
- Yohei Yamaguchi
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Susumu Hosokawa
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Go Haraguchi
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Yusuke Kajikawa
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Makito Sakurai
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Taku Ishii
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Noboru Ando
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Tomohiro Morio
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Shozaburo Doi
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Tetsushi Furukawa
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| |
Collapse
|
8
|
Wang X, Li YR, Shi Y, Li X, Luo J, Zhang Y, Qi B, Wu F, Sun Y, Pan Z, Tian J. Dexmedetomidine ameliorates liver injury and maintains liver function in patients with hepatocellular carcinoma after hepatectomy: a retrospective cohort study with propensity score matching. Front Oncol 2023; 13:1108559. [PMID: 37152009 PMCID: PMC10160666 DOI: 10.3389/fonc.2023.1108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Background Although dexmedetomidine (DEX) is widely used during the perioperative period in patients with hepatocellular carcinoma (HCC), its clinical effects on liver function and postoperative inflammation are unclear. This study aimed to explore effects of DEX on postoperative liver function and inflammation in patients with HCC after hepatectomy. Methods A retrospective cohort study with propensity score matching was performed. A total of 494 patients who underwent hepatectomy from June 2019 to July 2020 and fulfilled the eligibility criteria were included in this study. Baseline data, liver function indexes and inflammation-related biomarkers were collected and compared between the two groups. Survival analysis was conducted to investigate the effects of DEX on the overall survival (OS) of patients. Propensity score matching (PSM) was used to minimize bias between the two groups. Results The study cohort comprised 189 patients in the DEX-free group and 305 patients in the DEX group. Patients in the DEX group had lower levels of alanine transaminase (ALT, P = 0.018) and lactate dehydrogenase (LDH, P = 0.046) and higher level of serum albumin (ALB, P < 0.001) than patients in the DEX-free group before discharge. A total of 107 pairs of patients were successfully matched by PSM. Results consistently suggested that ALT and LDH levels were significantly lower (P = 0.044 and P = 0.046, respectively) and ALB levels were significantly higher (P = 0.002) in the DEX group than in the DEX-free group in the early postoperative period. No significant differences of inflammation-related biomarkers were observed between two groups after PSM. Neither the Kaplan-Meier survival analysis nor the multiple Cox regression survival analysis identified DEX as a contributing factor that would affect the OS of patients after PSM. Conclusion DEX exerts protective effects on liver function while has little effects on inflammation-related biomarkers in the early postoperative period in patients undergoing hepatectomy due to HCC.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-ran Li
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yumiao Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiamei Luo
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiqi Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Qi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feixiang Wu
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuming Sun
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhiying Pan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Longhitano L, Distefano A, Murabito P, Astuto M, Nicolosi A, Buscema G, Sanfilippo F, Lazzarino G, Amorini AM, Bruni A, Garofalo E, Tibullo D, Volti GL. Propofol and α2-Agonists Attenuate Microglia Activation and Restore Mitochondrial Function in an In Vitro Model of Microglia Hypoxia/Reoxygenation. Antioxidants (Basel) 2022; 11:antiox11091682. [PMID: 36139756 PMCID: PMC9495359 DOI: 10.3390/antiox11091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular ischemia is a common clinical disease encompassing a series of complex pathophysiological processes in which oxidative stress plays a major role. The present study aimed to evaluate the effects of Dexmedetomidine, Clonidine, and Propofol in a model of hypoxia/reoxygenation injury. Microglial cells were exposed to 1%hypoxia for 3 h and reoxygenated for 3 h, and oxidative stress was measured by ROS formation and the expression of inflammatory process genes. Mitochondrial dysfunction was assessed by membrane potential maintenance and the levels of various metabolites involved in energetic metabolism. The results showed that Propofol and α2-agonists attenuate the formation of ROS during hypoxia and after reoxygenation. Furthermore, the α2-agonists treatment restored membrane potential to values comparable to the normoxic control and were both more effective than Propofol. At the same time, Propofol, but not α2-agonists, reduces proliferation (Untreated Hypoxia = 1.16 ± 0.2, Untreated 3 h Reoxygenation = 1.28 ± 0.01 vs. Propofol hypoxia = 1.01 ± 0.01 vs. Propofol 3 h Reoxygenation = 1.12 ± 0.03) and microglial migration. Interestingly, all of the treatments reduced inflammatory gene and protein expressions and restored energy metabolism following hypoxia/reoxygenation (ATP content in hypoxia/reoxygenation 3 h: Untreated = 3.11 ± 0.8 vs. Propofol = 7.03 ± 0.4 vs. Dexmedetomidine = 5.44 ± 0.8 vs. Clonidine = 7.70 ± 0.1), showing that the drugs resulted in a different neuroprotective profile. In conclusion, our results may provide clinically relevant insights for neuroprotective strategies in intensive care units.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Paolo Murabito
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Marinella Astuto
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Anna Nicolosi
- Azienda Ospedaliera “Cannizzaro”, Via Messina 628, 95126 Catania, Italy
| | - Giovanni Buscema
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Filippo Sanfilippo
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Andrea Bruni
- Anesthesia and Intesive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Grecia University, 88100 Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intesive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Grecia University, 88100 Catanzaro, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
10
|
Zhang L, Cui LL, Yang WH, Xue FS, Zhu ZJ. Effect of intraoperative dexmedetomidine on hepatic ischemia-reperfusion injury in pediatric living-related liver transplantation: A propensity score matching analysis. Front Surg 2022; 9:939223. [PMID: 35965870 PMCID: PMC9365069 DOI: 10.3389/fsurg.2022.939223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHepatic ischemia-reperfusion injury (HIRI) is largely unavoidable during liver transplantation (LT). Dexmedetomidine (DEX), an α2-adrenergic agonist, exerts a variety of organ-protective effects in pediatric populations. However, evidence remains relatively limited about its hepatoprotective effects in pediatric living-related LT.MethodsA total of 121 pediatric patients undergoing living-related LT from June 2015 to December 2018 in our hospital were enrolled. They were classified into DEX or non-DEX groups according to whether an infusion of DEX was initiated from incision to the end of surgery. Primary outcomes were postoperative liver graft function and the severity of HIRI. Multivariate logistic regression and propensity score matching (PSM) analyses were performed to identify any association.ResultsA 1:1 matching yielded 35 well-balanced pairs. Before matching, no significant difference was found in baseline characteristics between groups except for warm ischemia time, which was longer in the non-DEX group (44 [38–50] vs. 40 [37–44] min, p = 0.017). After matching, the postoperative peak lactic dehydrogenase levels decreased significantly in the DEX group than in the non-DEX group (622 [516–909] vs. 970 [648–1,490] IU/L, p = 0.002). Although there was no statistical significance, a tendency toward a decrease in moderate-to-extreme HIRI rate was noted in the DEX group compared to the non-DEX group (68.6% vs. 82.9%, p = 0.163). Patients in the DEX group also received a significantly larger dosage of epinephrine as postreperfusion syndrome (PRS) treatment (0.28 [0.17–0.32] vs. 0.17 [0.06–0.30] µg/kg, p = 0.010). However, there were no significant differences between groups in PRS and acute kidney injury incidences, mechanical ventilation duration, intensive care unit, and hospital lengths of stay. Multivariate analysis revealed a larger graft-to-recipient weight ratio (odds ratio [OR] 2.657, 95% confidence interval [CI], 1.132–6.239, p = 0.025) and intraoperative DEX administration (OR 0.333, 95% CI, 0.130–0.851, p = 0.022) to be independent predictors of moderate-to-extreme HIRI.ConclusionThis study demonstrated that intraoperative DEX could potentially decrease the risk of HIRI but was associated with a significant increase in epinephrine requirement for PRS in pediatric living-related LT. Further studies, including randomized controlled studies, are warranted to provide more robust evidence.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ling-Li Cui
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen-He Yang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fu-Shan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Correspondence: Fu-Shan Xue Zhu-Jun Zhu
| | - Zhi-Jun Zhu
- Division of Liver Transplantation, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing, China
- Correspondence: Fu-Shan Xue Zhu-Jun Zhu
| |
Collapse
|
11
|
Yue LH, Wang LN, Zhu XC, Peng YH. The promotion of liver regeneration in mice after a partial hepatectomy as a result of the modulation of macrophage activation by dexmedetomidine. Transpl Immunol 2022; 72:101577. [DOI: 10.1016/j.trim.2022.101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 01/20/2023]
|
12
|
Zhou L, Li J, Liu X, Tang Y, Li T, Deng H, Chen J, Yin X, Hu K, Ouyang W. Dexmedetomidine promotes apoptosis and suppresses proliferation of hepatocellular carcinoma cells via microRNA-130a/EGR1 axis. Cell Death Dis 2022; 8:31. [PMID: 35046398 PMCID: PMC8770558 DOI: 10.1038/s41420-021-00805-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Accumulating evidence has revealed the role of microRNAs (miRs) in hepatocellular carcinoma (HCC). Dexmedetomidine, a highly selective α2-adrenergic agonist, is widely used in perioperative settings for analgesia and sedation. Herein, we aimed to determine whether dexmedetomidine might directly regulate miR-130a/early growth response 1 (EGR1) axis in HCC and explore the related mechanisms. miR-130a and EGR1 expression were determined in HCC tissues and their correlation was evaluated. Human HCC cell line HCCLM3 was selected. Upon the determination of the optimal concentration of dexmedetomidine, HCCLM3 cells were treated with dexmedetomidine, miR-130a- or EGR1-related oligonucleotides or plasmids were transfected into cells to explore their functions in cell biological behaviors. miR-130a and EGR1 levels in cells were tested. The targeting relationship between miR-130a and EGR1 was verified. miR-130a was inhibited while EGR1 was elevated in HCC tissues and they were negatively correlated. EGR1 was targeted by miR-130a. With the increase of dexmedetomidine concentration, HCCLM3 cell viability was correspondingly inhibited, miR-130a expression was elevated and EGR1 expression was decreased. Dexmedetomidine, upregulating miR-130a or downregulating EGR1 inhibited proliferation, invasion and migration, and promoted apoptosis of HCCLM3 cells. MiR-130a upregulation/downregulation enhanced/impaired the effect of dexmedetomidine on cell biological behaviors. Our study provides evidence that raising miR-130a enhances the inhibitory effects of dexmedetomidine on HCC cellular growth via inhibiting EGR1. Thus, miR-130a may be a potential candidate for the treatment of HCC.
Collapse
|
13
|
Wu Y, Qiu G, Zhang H, Zhu L, Cheng G, Wang Y, Li Y, Wu W. Dexmedetomidine alleviates hepatic ischaemia-reperfusion injury via the PI3K/AKT/Nrf2-NLRP3 pathway. J Cell Mol Med 2021; 25:9983-9994. [PMID: 34664412 PMCID: PMC8572787 DOI: 10.1111/jcmm.16871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatic ischaemia-reperfusion (I/R) injury constitutes a tough difficulty in liver surgery. Dexmedetomidine (Dex) plays a protective role in I/R injury. This study investigated protective mechanism of Dex in hepatic I/R injury. The human hepatocyte line L02 received hypoxia/reoxygenation (H/R) treatment to stimulate cell model of hepatic I/R. The levels of pyroptosis proteins and inflammatory factors were detected. Functional rescue experiments were performed to confirm the effects of miR-494 and JUND on hepatic I/R injury. The levels of JUND, PI3K/p-PI3K, AKT/p-AKT, Nrf2, and NLRP3 activation were detected. The rat model of hepatic I/R injury was established to confirm the effect of Dex in vivo. Dex reduced pyroptosis and inflammation in H/R cells. Dex increased miR-494 expression, and miR-494 targeted JUND. miR-494 inhibition or JUND upregulation reversed the protective effect of Dex. Dex repressed NLRP3 inflammasome by activating the PI3K/AKT/Nrf2 pathway. In vivo experiments confirmed the protective effect of Dex on hepatic I/R injury. Overall, Dex repressed NLRP3 inflammasome and alleviated hepatic I/R injury via the miR-494/JUND/PI3K/AKT/Nrf2 axis.
Collapse
Affiliation(s)
- Yan Wu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Gaolin Qiu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hainie Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Leilei Zhu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Gao Cheng
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yiqiao Wang
- Department of AnesthesiologyAnhui NO.2 Provincial People's HospitalHefeiChina
| | - Yuanhai Li
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Weiwei Wu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
14
|
Zhang L, Li N, Cui LL, Xue FS, Zhu ZJ. Intraoperative Low-Dose Dexmedetomidine Administration Associated with Reduced Hepatic Ischemia-Reperfusion Injury in Pediatric Deceased Liver Transplantation: A Retrospective Cohort Study. Ann Transplant 2021; 26:e933354. [PMID: 34650026 PMCID: PMC8525313 DOI: 10.12659/aot.933354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Dexmedetomidine (DEX) attenuates hepatic ischemia-reperfusion injury (HIRI) in adult liver transplantation (LT), but its effects on postoperative liver graft function in pediatric LT remain unclear. We sought to investigate whether intraoperative DEX administration was associated with improved liver graft function in pediatric LT recipients. It was hypothesized that DEX administration was associated with reduced HIRI and improved liver graft function. Material/Methods From November 2015 to May 2020, 54 deceased pediatric LT recipients were categorized into a control group and a DEX group. Intraoperatively, the DEX group received an additional infusion of DEX at 0.4 μg/kg/h from incision to the end of the operation in comparison with the control group. Preoperative, intraoperative, and postoperative data were reviewed. Postoperative liver enzyme levels and HIRI severity were assessed and compared. Independent risk factors for HIRI were determined by multivariate logistic regression analysis using a stepwise forward conditional method. Results We enrolled 28 and 26 patients in the DEX and control groups, respectively. Patients in the DEX group exhibited a reduced incidence of moderate-to-severe HIRI (88.5% vs 60.7%, P=0.020) and decreased level of serum alanine aminotransferase (median [interquartile range]: 407 [230–826] vs 714 [527–1492] IU/L, P=0.048) compared with the controls. Binary logistic analysis revealed that longer cold ischemia time (odds ratio [OR]=1.006; 95% confidence interval [CI]=1.000–1.013; P=0.044) and intraoperative DEX use (OR=0.198; 95% CI=0.045–0.878; P=0.033) were independent predictors for moderate-to-severe HIRI. Conclusions Intraoperative low-dose DEX administration was associated with a lower incidence of moderate-to-severe HIRI in pediatric deceased LT. However, further studies are needed to confirm our results and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China (mainland)
| | - Na Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China (mainland)
| | - Ling-Li Cui
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China (mainland)
| | - Fu-Shan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China (mainland)
| | - Zhi-Jun Zhu
- Division of Liver Transplantation, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China (mainland).,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China (mainland).,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing, China (mainland)
| |
Collapse
|
15
|
Shi L, Zhang S, Huang Z, Hu F, Zhang T, Wei M, Bai Q, Lu B, Ji L. Baicalin promotes liver regeneration after acetaminophen-induced liver injury by inducing NLRP3 inflammasome activation. Free Radic Biol Med 2020; 160:163-177. [PMID: 32682928 DOI: 10.1016/j.freeradbiomed.2020.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Liver regeneration has become a new hotspot in the study of drug-induced liver injury (DILI). Baicalin has already been reported to alleviate acetaminophen (APAP)-induced acute liver injury in our previous study. This study aims to observe whether baicalin also promotes liver regeneration after APAP-induced liver injury and to elucidate its engaged mechanism. Baicalin alleviated APAP-induced hepatic parenchymal cells injury and enhanced the number of mitotic and proliferating cell nuclear antigen (PCNA)-positive hepatocytes in APAP-intoxicated mice. Baicalin increased hepatic PCNA and cyclinD1 expression in APAP-intoxicated mice. Baicalin induced the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, leading to the increased hepatic expression of interleukin-18 (IL-18) and IL-1β in APAP-intoxicated mice. The results in vitro demonstrated that IL-18 promoted the proliferation of human normal liver L-02 cells. Moreover, the baicalin-provided promotion on liver regeneration in APAP-intoxicated mice was diminished after the application of NLRP3 inhibitor MCC950 and the recombinant mouse IL-18 binding protein (rmIL-18BP). Baicalin induced the cytosolic accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), and increased the interaction between Nrf2 with Nlrp3, ASC and pro-caspase-1 in livers from APAP-intoxicated mice. Furthermore, the baicalin-provided NLRP3 inflammasome activation and promotion on liver regeneration after APAP-induced liver injury in wild-type mice were diminished in Nrf2 knockout mice. In conclusion, baicalin promoted liver regeneration after APAP-induced acute liver injury in mice via inducing Nrf2 accumulation in cytoplasm that led to NLRP3 inflammasome activation, and then caused the increased expression of IL-18, which induced hepatocytes proliferation.
Collapse
Affiliation(s)
- Liang Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaobo Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feifei Hu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qingyun Bai
- School of Chemical and Biological Engineering, Yichun University, Jiangxi, 336000, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
16
|
Cheng F, Yan FF, Liu YP, Cong Y, Sun KF, He XM. Dexmedetomidine inhibits the NF-κB pathway and NLRP3 inflammasome to attenuate papain-induced osteoarthritis in rats. PHARMACEUTICAL BIOLOGY 2019; 57:649-659. [PMID: 31545916 PMCID: PMC6764405 DOI: 10.1080/13880209.2019.1651874] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Context: Dexmedetomidine (Dex) has been reported to have an anti-inflammatory effect. However, its role on osteoarthritis (OA) has not been explored. Objective: This study investigates the effect of Dex on OA rat model induced by papain. Materials and methods: The OA Wistar rat model was induced by intraluminal injection of 20 mL of papain mixed solution (4% papain 0.2 mL mixed with 0.03 mol L-1 l-cysteine 0.1 mL) into the right knee joint. Two weeks after papain injection, OA rats were treated by intra-articular injection of Dex (5, 10, or 20 μg kg-1) into the right knee (once a day, continuously for 4 weeks). Articular cartilage tissue was obtained after Dex treatment was completed. Results: The gait behavior scores (2.83 ± 0.49), PWMT (15.2 ± 1.78) and PTWL (14.81 ± 0.92) in H-DEX group were higher than that of OA group, while Mankin score (5.5 ± 0.81) was decreased (p < 0.05). Compared with the OA group, the IL-1β (153.11 ± 16.05 pg mg-1), IL-18 (3.71 ± 0.7 pg mg-1), IL-6 (14.15 ± 1.94 pg/mg) and TNF-α (40.45 ± 10.28 pg mg-1) levels in H-DEX group were decreased (p < 0.05). MMP-13, NLRP3, and caspase-1 p10 expression in Dex groups were significantly lower than that of OA group (p < 0.05), while collagen II was increased (p < 0.05). p65 in the nucleus of Dex groups was significantly down-regulated than that of OA group (p < 0.05). Discussion and Conclusions: Dex can improve pain symptoms and cartilage tissue damage of OA rats, which may be related to its inhibition of the activation of NF-κB and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Feng-Feng Yan
- Department of Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Yue-Peng Liu
- Center for Clinical Research and Translational Medicine, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Yan Cong
- Department of Traditional Chinese and Western Medicine, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Ke-Fu Sun
- Department of Orthopedic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xue-Ming He
- Department of Geratology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
17
|
Xie Y, Guo C, Liu Y, Shi L, Yu J. Dexmedetomidine activates the PI3K/Akt pathway to inhibit hepatocyte apoptosis in rats with obstructive jaundice. Exp Ther Med 2019; 18:4461-4466. [PMID: 31772637 DOI: 10.3892/etm.2019.8085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 03/28/2019] [Indexed: 01/14/2023] Open
Abstract
Obstructive jaundice (OJ) is a common disease in clinical surgery. The present study aimed to determine the effects of dexmedetomidine (Dex) on hepatocyte apoptosis in rats with OJ and also to explore the underlying mechanism. A total of 30 adult male Sprague Dawley rats were randomly divided into 3 groups: Sham group, bile duct ligation (BDL) group, and BDL+Dex group. The serum liver function index, expression levels of serum inflammatory factor interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and the liver pathological changes were compared amongst groups. The serum liver function index and expression levels of inflammatory factors in the BDL group and BDL+Dex group were higher compared with the sham group. The serum liver function index and expression levels of inflammatory factors were lower in the BDL+Dex group compared with the BDL group. The severity of hepatic injury was diminished in the BDL+Dex group compared with the BDL group. Compared with the sham group, the hepatocyte apoptosis rate increased significantly in the BDL group and BDL+Dex group. The present findings suggested that Dex improved the liver function of rats with OJ, reduced the production of inflammatory factors and inhibited the apoptosis of hepatocytes. Dex demonstrated a protective effect on liver damage potentially via activation of the phosphoinositide 3-kinase/protein kinase B signaling pathway.
Collapse
Affiliation(s)
- Yaying Xie
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Chunyan Guo
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Ye Liu
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Luanyuan Shi
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Jianshe Yu
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
18
|
Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Peralta C. Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells 2019; 8:1131. [PMID: 31547621 PMCID: PMC6829519 DOI: 10.3390/cells8101131] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Ischemia-reperfusion injury is an important cause of liver damage occurring during surgical procedures including hepatic resection and liver transplantation, and represents the main underlying cause of graft dysfunction and liver failure post-transplantation. To date, ischemia-reperfusion injury is an unsolved problem in clinical practice. In this context, inflammasome activation, recently described during ischemia-reperfusion injury, might be a potential therapeutic target to mitigate the clinical problems associated with liver transplantation and hepatic resections. The present review aims to summarize the current knowledge in inflammasome-mediated inflammation, describing the experimental models used to understand the molecular mechanisms of inflammasome in liver ischemia-reperfusion injury. In addition, a clear distinction between steatotic and non-steatotic livers and between warm and cold ischemia-reperfusion injury will be discussed. Finally, the most updated therapeutic strategies, as well as some of the scientific controversies in the field will be described. Such information may be useful to guide the design of better experimental models, as well as the effective therapeutic strategies in liver surgery and transplantation that can succeed in achieving its clinical application.
Collapse
Affiliation(s)
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| |
Collapse
|
19
|
Chen X, Xu Z, Zeng S, Wang X, Liu W, Qian L, Wei J, Yang X, Shen Q, Gong Z, Yan Y. The Molecular Aspect of Antitumor Effects of Protease Inhibitor Nafamostat Mesylate and Its Role in Potential Clinical Applications. Front Oncol 2019; 9:852. [PMID: 31552177 PMCID: PMC6733886 DOI: 10.3389/fonc.2019.00852] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Nafamostat mesylate (NM), a synthetic serine protease inhibitor first placed on the market by Japan Tobacco in 1986, has been approved to treat inflammatory-related diseases, such as pancreatitis. Recently, an increasing number of studies have highlighted the promising effects of NM in inhibiting cancer progression. Alone or in combination treatments, studies have shown that NM attenuates various malignant tumors, including pancreatic, colorectal, gastric, gallbladder, and hepatocellular cancers. In this review, based on several activating pathways, including the canonical Nuclear factor-κB (NF-κB) signaling pathway, tumor necrosis factor receptor-1 (TNFR1) signaling pathway, and tumorigenesis-related tryptase secreted by mast cells, we summarize the anticancer properties of NM in existing studies both in vitro and in vivo. In addition, the efficacy and side effects of NM in cancer patients are summarized in detail. To further clarify NM's antitumor activities, clinical trials devoted to validating the clinical applications and underlying mechanisms are needed in the future.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wanli Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuying Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Dexmedetomidine exerts dual effects on human annulus fibrosus chondrocytes depending on the oxidative stress status. Biosci Rep 2019; 39:BSR20190419. [PMID: 31383789 PMCID: PMC6706599 DOI: 10.1042/bsr20190419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Dexmedetomidine (Dex) is an anesthetic widely used in lumbar discectomy, but its effect on chondrocytes remains unclear. Dex is speculated to promote cartilage degeneration by activating α-2 adrenergic receptor. However, the antioxidative and anti-inflammatory effects of Dex implied the potential chondrocyte protective effect under stress conditions. The present study aimed to determine the effect of Dex on chondrocytes under non-stress and stress conditions. Chondrocytes were isolated from human annulus fibrosus (AF) tissues and oxidative stress was induced by treatment with 1 mM hydrogen peroxide (H2O2). Chondrocytes were treated with Dex alone or in combination with H2O2. Treatment with Dex alone decreased mRNA expression of COL2A1 and increased that of MMP-3 and MMP-13, thus contributing to cartilage degeneration. However, Dex prevented H2O2-induced death and degeneration of chondrocytes partly by enhancing antioxidant capacity. Mechanistically, Dex attenuated H2O2-mediated activation of NF-κB and NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), both of which play key roles in inflammation and inflammatory damage. Dex inactivated NLRP3 through the suppression of NF-κB and JNK signals. Co-treatment with Dex and H2O2 increased protein level of XIAP (X-linked inhibitor-of-apoptosis, an anti-apoptosis protein), compared with H2O2 treatment alone. H2O2 treatment increased the expression of neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) that is a ubiquitin ligase targeting XIAP. However, Dex decreased the amount of NEDD4 adhering to XIAP, thus protecting XIAP protein from NEDD4-mediated ubiquitination and degradation. Given that surgery inevitably causes oxidative stress and inflammation, the protective effect of Dex on chondrocytes during oxidative stress is noteworthy and warrants further study.
Collapse
|
21
|
Cheng J, Liu Q, Hu N, Zheng F, Zhang X, Ni Y, Liu J. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene 2019; 709:1-7. [DOI: 10.1016/j.gene.2019.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/03/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
|
22
|
Sun YB, Zhao H, Mu DL, Zhang W, Cui J, Wu L, Alam A, Wang DX, Ma D. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis 2019; 10:167. [PMID: 30778043 PMCID: PMC6379430 DOI: 10.1038/s41419-019-1416-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Sepsis is life-threatening and often leads to acute brain damage. Dexmedetomidine, an α2-adrenoceptor agonist, has been reported to possess neuroprotective effects against various brain injury but underlying mechanisms remain elusive. In this study, in vitro and in vivo models of sepsis were used to explore the effects of dexmedetomidine on the inflammasome activity and its associated glia pyroptosis and neuronal death. In vitro, inflammasome activation and pyroptosis were found in astrocytes following lipopolysaccharide (LPS) exposure. Dexmedetomidine significantly alleviated astrocyte pyroptosis and inhibited histone release induced by LPS. In vivo, LPS treatment in rats promoted caspase-1 immunoreactivity in astrocytes and caused an increase in the release of pro-inflammatory cytokines of IL-1β and IL-18, resulting in neuronal injury, which was attenuated by dexmedetomidine; this neuroprotective effect was abolished by α2-adrenoceptor antagonist atipamezole. Dexmedetomidine significantly reduced the high mortality rate caused by LPS challenge. Our data demonstrated that dexmedetomidine may protect glia cells via reducing pyroptosis and subsequently protect neurons, all of which may preserve brain function and ultimately improve the outcome in sepsis.
Collapse
Affiliation(s)
- Yi-Bing Sun
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Dong-Liang Mu
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Wenwen Zhang
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.,Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiang Cui
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Lingzhi Wu
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Dong-Xin Wang
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| |
Collapse
|
23
|
Huang S, Ju W, Zhu Z, Han M, Sun C, Tang Y, Hou Y, Zhang Z, Yang J, Zhang Y, Wang L, Lin F, Chen H, Xie R, Zhu C, Wang D, Wu L, Zhao Q, Chen M, Zhou Q, Guo Z, He X. Comprehensive and combined omics analysis reveals factors of ischemia-reperfusion injury in liver transplantation. Epigenomics 2019; 11:527-542. [PMID: 30700158 DOI: 10.2217/epi-2018-0189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To explore molecular mechanisms underlying liver ischemia-reperfusion injury (IRI). MATERIALS & METHODS Four Gene Expression Omnibus datasets comprising liver transplantation data were collected for a comprehensive analysis. A proteomic analysis was performed and used for correlations analysis with transcriptomic. RESULTS & CONCLUSION Ten differentially expressed genes were co-upregulated in four Gene Expression Omnibus datasets, including ATF3, CCL4, DNAJB1, DUSP5, JUND, KLF6, NFKBIA, PLAUR, PPP1R15A and TNFAIP3. The combined analysis demonstrated ten coregulated genes/proteins, including HBB, HBG2, CA1, SLC4A1, PLIN2, JUNB, HBA1, MMP9, SLC2A1 and PADI4. The coregulated differentially expressed genes and coregulated genes/proteins formed a tight interaction network and could serve as the core factors underlying IRI. Comprehensive and combined omics analyses revealed key factors underlying liver IRI, and thus having potential clinical significance.
Collapse
Affiliation(s)
- Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Jie Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Fanxiong Lin
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Haitian Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Rongxing Xie
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Caihui Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, Guangdong 516081, PR China.,Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| |
Collapse
|
24
|
Pinellia pedatisecta lectin exerts a proinflammatory activity correlated with ROS-MAPKs/NF-κB pathways and the NLRP3 inflammasome in RAW264.7 cells accompanied by cell pyroptosis. Int Immunopharmacol 2018; 66:1-12. [PMID: 30415189 DOI: 10.1016/j.intimp.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
Pinellia pedatisecta, a widely used herb in Chinese medicine, has proinflammatory toxicity related to its Pinellia pedatisecta lectin (PPL), but the mechanism is still unknown. However, for safer use, it is necessary to clarify its proinflammatory mechanism. Herein, we studied the mechanism in RAW264.7 cells. PPL decreased the mitochondrial membrane potential (MMP) and increased the outflow of calcium, accompanied by the overproduction of reactive oxygen species (ROS), which resulted in the activation of the MAPK and NF-κB pathways and the release of IL-1β. The maturation of IL-1β relied on caspase-1 p20, the active caspase-1, as demonstrated by adding caspase-1 inhibitor. While caspase-1 was associated with the activation of the NLRP3 inflammasome, we further found that the stimulation of PPL also contributed to the activation. In addition, TXNIP was downregulated, whereas NLRP3/caspase-1 p20/ASC was upregulated, and there was binding of TXNIP with NLRP3. There was also binding of NLRP3 with ASC and caspase-1. Further, we found that N-acetylcysteine (NAC), an ROS scavenger, could inhibit the PPL-stimulated activation of these pathways and the release of IL-1β. Moreover, PPL led to cell pyroptosis with pyknotic nuclei and plasma membrane rupture, which could be inhibited by NAC. All of these findings demonstrated an important role of ROS in the inflammation caused by PPL. Taken together, our data provide new mechanistic insights into the possible endogenous signaling pathways involved in the inflammation of RAW264.7 cells, stimulated by PPL.
Collapse
|
25
|
Administration of Dexmedetomidine inhibited NLRP3 inflammasome and microglial cell activities in hippocampus of traumatic brain injury rats. Biosci Rep 2018; 38:BSR20180892. [PMID: 30232232 PMCID: PMC6435454 DOI: 10.1042/bsr20180892] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
The abnormally high nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity is a typical characteristic of traumatic brain injury (TBI). Dexmedetomidine (Dex) is a highly selective α-2 adrenergic receptor agonist that inhibits the activation of NLRP3. Thus, it was hypothesized that Dex could attenuate TBI by inhibiting NLRP3 inflammasome activity in hippocampus. Rats were subjected to controlled cortical impact method to induce TBI, and treated with Dex. The effect of Dex treatment on the cognitive function, NLRP3 activity, and microglial activation in rat brain tissues was assessed. The administration of Dex improved performance of TBI rats in Morris water maze (MWM) test, which was associated with the increased neurone viability and suppressed microglia activity. Moreover, the administration of Dex inhibited the neuroinflammation in brain tissue as well as the expressions of NLRP3 and caspase-1. Additionally, Dex and NLRP3 inhibitor, BAY-11-7082 had a synergistic effect in inhibiting NLRP3/caspase-1 axis activity and improving TBI. The findings outlined in the current study indicated that the improvement effect of Dex on TBI was related to its effect on NLRP3 activity.
Collapse
|