1
|
Rezazadeh H, Ghanati F, Bonfill M, Nasibi F, Tabarsa M. Optimization of the fermentation media, mathematical modeling, and enhancement of paclitaxel production by Alternaria alternata after elicitation with pectin. Sci Rep 2024; 14:12980. [PMID: 38839906 PMCID: PMC11153502 DOI: 10.1038/s41598-024-63681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Alternaria alternata fungus is a potent paclitaxel producer isolated from Corylus avellana. The major challenge is the lack of optimized media for endophytic fungi productivity. In the effort to maximize the production of taxoids by A. alternata, several fermentation conditions, including pH (pH 4.0-7.0), different types and concentrations of carbon (fructose, glucose, sucrose, mannitol, sorbitol, and malt extract), and nitrogen (urea, ammonium nitrate, potassium nitrate, ammonium phosphate, and ammonium sulfate) were applied step by step. Based on the results, A. alternata in a medium containing sucrose 5% (w/v) and ammonium phosphate 2.5 mM at pH 6.0 showed a rapid and sustainable growth rate, the highest paclitaxel yield (94.8 µg gFW-1 vs 2.8 µg gFW-1 in controls), and the maximum content of amino acids. Additionally, the effect of pectin was evaluated on fungus, and mycelia harvested. Pectin significantly enhanced the growth and taxoid yield on day 21 (respectively 171% and 116% of their corresponding on day 7). The results were checked out by mathematical modeling as well. Accordingly, these findings suggest a low-cost, eco-friendly, and easy-to-produce approach with excellent biotechnological potential for the industrial manufacture of taxoids.
Collapse
Affiliation(s)
- Hamzeh Rezazadeh
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), POB 14115-154, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), POB 14115-154, Tehran, Iran.
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Fatemeh Nasibi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
2
|
Gao X, Zhang N, Xie W. Advancements in the Cultivation, Active Components, and Pharmacological Activities of Taxus mairei. Molecules 2024; 29:1128. [PMID: 38474640 DOI: 10.3390/molecules29051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Taxus mairei (Lemée and H.Lév.) S.Y.Hu, indigenous to the southern regions of China, is an evergreen tree belonging to the genus Taxus of the Taxaceae family. Owing to its content of various bioactive compounds, it exhibits multiple pharmacological activities and has been widely applied in clinical medicine. This article comprehensively discusses the current state of cultivation, chemical constituents, applications in the pharmaceutical field, and the challenges faced by T. mairei. The paper begins by detailing the ecological distribution of T. mairei, aiming to provide an in-depth understanding of its origin and cultivation overview. In terms of chemical composition, the article thoroughly summarizes the extracts and monomeric components of T. mairei, unveiling their pharmacological activities and elucidating the mechanisms of action based on the latest scientific research, as well as their potential as lead compounds in new drug development. The article also addresses the challenges in the T. mairei research, such as the difficulties in extracting and synthesizing active components and the need for sustainable utilization strategies. In summary, T. mairei is a rare species important for biodiversity conservation and demonstrates significant research and application potential in drug development and disease treatment.
Collapse
Affiliation(s)
- Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ni Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
3
|
Yang H, Cheng H, Dai R, Shang L, Zhang X, Wen H. Macrophage polarization in tissue fibrosis. PeerJ 2023; 11:e16092. [PMID: 37849830 PMCID: PMC10578305 DOI: 10.7717/peerj.16092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023] Open
Abstract
Fibrosis can occur in all major organs with relentless progress, ultimately leading to organ failure and potentially death. Unfortunately, current clinical treatments cannot prevent or reverse tissue fibrosis. Thus, new and effective antifibrotic therapeutics are urgently needed. In recent years, a growing body of research shows that macrophages are involved in fibrosis. Macrophages are highly heterogeneous, polarizing into different phenotypes. Some studies have found that regulating macrophage polarization can inhibit the development of inflammation and cancer. However, the exact mechanism of macrophage polarization in different tissue fibrosis has not been fully elucidated. This review will discuss the major signaling pathways relevant to macrophage-driven fibrosis and profibrotic macrophage polarization, the role of macrophage polarization in fibrosis of lung, kidney, liver, skin, and heart, potential therapeutics targets, and investigational drugs currently in development, and hopefully, provide a useful review for the future treatment of fibrosis.
Collapse
Affiliation(s)
- Huidan Yang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hao Cheng
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Rongrong Dai
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Lili Shang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Xiaoying Zhang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hongyan Wen
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
4
|
Nie Y, Zhai X, Li J, Sun A, Che H, Christman JW, Chai G, Zhao P, Karpurapu M. NFATc3 Promotes Pulmonary Inflammation and Fibrosis by Regulating Production of CCL2 and CXCL2 in Macrophages. Aging Dis 2023; 14:1441-1457. [PMID: 37523510 PMCID: PMC10389814 DOI: 10.14336/ad.2022.1202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/02/2022] [Indexed: 08/02/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and highly lethal inflammatory interstitial lung disease characterized by aberrant extracellular matrix deposition. Macrophage activation by cytokines released from repetitively injured alveolar epithelial cells regulates the inflammatory response, tissue remodeling, and fibrosis throughout various phases of IPF. Our previous studies demonstrate that nuclear factor of activated T cells cytoplasmic member 3 (NFATc3) regulates a wide array of macrophage genes during acute lung injury pathogenesis. However, the role of NFATc3 in IPF pathophysiology has not been previously reported. In the current study, we demonstrate that expression of NFATc3 is elevated in lung tissues and pulmonary macrophages in mice subjected to bleomycin (BLM)-induced pulmonary fibrosis and IPF patients. Remarkably, NFATc3 deficiency (NFATc3+/-) was protective in bleomycin (BLM)-induced lung injury and fibrosis. Adoptive transfer of NFATc3+/+ macrophages to NFATc3+/- mice restored susceptibility to BLM-induced pulmonary fibrosis. Furthermore, in vitro treatment with IL-33 or conditioned medium from BLM-treated epithelial cells increased production of CCL2 and CXCL2 in macrophages from NFATc3+/+ but not NFATc3+/- mice. CXCL2 promoter-pGL3 Luciferase reporter vector showed accentuated reporter activity when co-transfected with the NFATc3 expression vector. More importantly, exogenous administration of recombinant CXCL2 into NFATc3+/- mice increased fibrotic markers and exacerbated IPF phenotype in BLM treated mice. Collectively, our data demonstrate, for the first time, that NFATc3 regulates pulmonary fibrosis by regulating CCL2 and CXCL2 gene expression in macrophages.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Xiaorun Zhai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Jiao Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Aijuan Sun
- Department of Pathology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China.
| | - Huilian Che
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - John W Christman
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
5
|
Wu YX, Zhang YR, Jiang FJ, He S, Zhang YL, Chen D, Tong Y, Nie YJ, Pang QF. 4-OI ameliorates bleomycin-induced pulmonary fibrosis by activating Nrf2 and suppressing macrophage-mediated epithelial-mesenchymal transition. Inflamm Res 2023:10.1007/s00011-023-01733-z. [PMID: 37169970 DOI: 10.1007/s00011-023-01733-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVES Pulmonary fibrosis (PF) is a chronic and refractory interstitial lung disease with limited therapeutic options. 4-octyl itaconate (4-OI), a cell-permeable derivative of itaconate, has been shown to have anti-oxidative and anti-inflammatory properties. However, the effect and the underlying mechanism of 4-OI on PF are still unknown. METHODS WT or Nrf2 knockout (Nrf2-/-) mice were intratracheally injected with bleomycin (BLM) to establish PF model and then treated with 4-OI. The mechanism study was performed by using RAW264.7 cells, primary macrophages, and conditional medium-cultured MLE-12 cells. RESULTS 4-OI significantly alleviated BLM-induced PF and EMT process. Mechanism studies have found that 4-OI can not only directly inhibit EMT process, but also can reduce the production of TGF-β1 by restraining macrophage M2 polarization, which in turn inhibits EMT process. Moreover, the effect of 4-OI on PF and EMT depends on Nrf2. CONCLUSION 4-OI ameliorates BLM-induced PF in an Nrf2-dependent manner, and its role in alleviating PF is partly due to the direct inhibition on EMT, and partly through indirect inhibition of M2-mediated EMT. These findings suggested that 4-OI has great clinical potential to develop as a new anti-fibrotic agent for PF therapy.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ya-Ru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Feng-Juan Jiang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan-Li Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ying Tong
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yun-Juan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Qing-Feng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Dorababu A, Maraswami M. Recent Advances (2015-2020) in Drug Discovery for Attenuation of Pulmonary Fibrosis and COPD. Molecules 2023; 28:molecules28093674. [PMID: 37175084 PMCID: PMC10179756 DOI: 10.3390/molecules28093674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
A condition of scarring of lung tissue due to a wide range of causes (such as environmental pollution, cigarette smoking (CS), lung diseases, some medications, etc.) has been reported as pulmonary fibrosis (PF). This has become a serious problem all over the world due to the lack of efficient drugs for treatment or cure. To date, no drug has been designed that could inhibit fibrosis. However, few medications have been reported to reduce the rate of fibrosis. Meanwhile, ongoing research indicates pulmonary fibrosis can be treated in its initial stages when symptoms are mild. Here, an attempt is made to summarize the recent studies on the effects of various chemical drugs that attenuate PF and increase patients' quality of life. The review is classified based on the nature of the drug molecules, e.g., natural/biomolecule-based, synthetic-molecule-based PF inhibitors, etc. Here, the mechanisms through which the drug molecules attenuate PF are discussed. It is shown that inhibitory molecules can significantly decrease the TGF-β1, profibrotic factors, proteins responsible for inflammation, pro-fibrogenic cytokines, etc., thereby ameliorating the progress of PF. This review may be useful in designing better drugs that could reduce the fibrosis process drastically or even cure the disease to some extent.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry, SRMPP Government First Grade College, Huvinahadagali 583219, India
| | - Manikantha Maraswami
- Department of Chemistry, Abzena LLC., 360 George Patterson Blvd, Bristol, PA 19007, USA
| |
Collapse
|
7
|
Yu J, Li P, Duan Z, Liu X. Effect of Qiling Jiaogulan Powder on Pulmonary Fibrosis and Pulmonary Arteriole Remodeling in Low-Temperature-Exposed Broilers. Animals (Basel) 2022; 13:ani13010005. [PMID: 36611616 PMCID: PMC9817788 DOI: 10.3390/ani13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Chinese herbal medicine plays an important role in regulating the nutritional metabolism of poultry and maintaining or improving normal physiological functions and animal health. The present study investigated the effects of dietary supplementation with Qiling Jiaogulan Powder (QLJP) on pulmonary fibrosis and pulmonary arteriole remodeling in low temperature-exposed broilers. Seven-day-old Ross 308 broilers (n = 240) were reared adaptively to 14 days of age. The broilers were randomly divided into six groups: A control group (basal diet and normal feeding temperature); model group (basal diet); low-, medium- and high-dose QLJP groups (basal diet supplemented with 1 g/kg, 2 g/kg, 4 g/kg QLJP); and L-Arg group (basal diet supplemented with 10 g/kg L-arginine). Additionally, all the broilers, except the broilers in the control group, from the age of 14 days old, had a house temperature continuously lowered by 2 °C each day until it reached 12 °C at 21 days of age, and the low temperature was maintained until the end of the experiment. There were four replicates per group and 10 birds per replicate. The results showed that the structure of the lung tissue was clearer and basically intact in the broilers in the QLJP groups, with a small number of collagen fibers formed, and the content of hydroxyproline (HYP) was significantly reduced. QLJP improved pulmonary arteriole lesions, such as tunica media thickening, intimal hyperplasia, arterial wall hypertrophy, and lumen narrowing. QLJP reduced the relative media thickness (%) and relative medial area (%) of the pulmonary arteriole, and significantly decreased the expression level of the alpha-smooth muscle actin (α-SMA) protein in pulmonary arteriole, which alleviated pulmonary arteriole remodeling. The quantitative real-time PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) results showed that QLJP treatment significantly reduced the gene and protein levels of transforming growth factor-beta l (TGF-β1) and Smad2 in the lung and downregulated the gene and protein levels of collagen type I alpha 1 (COL1A1) and matrix metalloproteinase 2 (MMP2). In conclusion, the results of our study suggested that dietary supplementation with QLJP improved pulmonary fibrosis and pulmonary arteriole remodeling by inhibiting the expression of genes related to the TGF-β1/Smad2 signaling pathway and inhibited the occurrence and development of pulmonary arterial hypertension in low-temperature-exposed broilers.
Collapse
Affiliation(s)
- Juan Yu
- School of Life Sciences and Basic Medicine, Xinxiang University, Xinxiang 453003, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030800, China
| | - Peng Li
- School of Life Sciences and Basic Medicine, Xinxiang University, Xinxiang 453003, China
| | - Zhibian Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030800, China
| | - Xingyou Liu
- School of Life Sciences and Basic Medicine, Xinxiang University, Xinxiang 453003, China
- Correspondence:
| |
Collapse
|
8
|
Ye H, Pan J, Cai X, Yin Z, Li L, Gong E, Xu C, Zheng H, Cao Z, Chen E, Qian J. IL‑10/IL‑10 receptor 1 pathway promotes the viability and collagen synthesis of pulmonary fibroblasts originated from interstitial pneumonia tissues. Exp Ther Med 2022; 24:518. [PMID: 35837039 PMCID: PMC9257754 DOI: 10.3892/etm.2022.11445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/04/2021] [Indexed: 11/07/2022] Open
Abstract
Interstitial pneumonia is a pulmonary interstitial inflammatory and fibrosis disease with a variety of causes that causes respiratory disorders and threatens the lives of patients. The present study aimed to investigate the expression of interleukin (IL)-10 in peripheral blood of patients with interstitial pneumonia and its biological functions in pulmonary fibroblasts. A total of 42 patients with idiopathic pulmonary fibrosis (IPF) and 20 healthy subjects were included. ELISA was used to determine IL-10 concentration in serum from the patients and healthy subjects. Primary fibroblasts were isolated from lung tissue successfully and determined by morphology. The CCK-8 assay was performed to determine the effect of IL-10 expression on cell viability. Western blotting was used to determine COL1a1, COL1a2 and IL-10R1 protein expression. Flow cytometry was used for cell cycle analysis and to determine the number of IL-10+ cells. Expression of IL-10 in serum from IPF patients was higher compared to that from healthy subjects. IL-10 promoted the viability and collagen synthesis and secretion of MRC-5 cells and primary pulmonary fibroblasts. IL-10 and IL-10 receptor (R) 1 served regulatory roles in the viability and collagen synthesis of MRC-5 cells. The ratio of peripheral mononuclear lymphocytes with positive expression of IL-10 was elevated in peripheral blood from patients with IPF. The present study demonstrated that IL-10 expression in peripheral blood of patients with IPF is increased significantly compared with healthy subjects. Activation of the IL-10/IL-10R1 signaling pathway promoted the viability and collagen synthesis and secretion of pulmonary fibroblasts, leading to pulmonary fibrosis. The present study provided experimental basis for further understanding the development mechanism of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hong Ye
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Jiongwei Pan
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Xiaoping Cai
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Zhangyong Yin
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Lu Li
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Enhui Gong
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Cunlai Xu
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Hao Zheng
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Zhuo Cao
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Enguo Chen
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Affiliated to Zhejiang University School of Medicine, Hangzhou, Zheijang 310016, P.R. China
| | - Junfeng Qian
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| |
Collapse
|
9
|
Huang JJ, Wei T, Ye ZW, Zheng QW, Jiang BH, Han WF, Ye AQ, Han PY, Guo LQ, Lin JF. Microbial Cell Factory of Baccatin III Preparation in Escherichia coli by Increasing DBAT Thermostability and in vivo Acetyl-CoA Supply. Front Microbiol 2022; 12:803490. [PMID: 35095813 PMCID: PMC8790024 DOI: 10.3389/fmicb.2021.803490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Given the rapid development of genome mining in this decade, the substrate channel of paclitaxel might be identified in the near future. A robust microbial cell factory with gene dbat, encoding a key rate-limiting enzyme 10-deacetylbaccatin III-10-O-transferase (DBAT) in paclitaxel biosynthesis to synthesize the precursor baccatin III, will lay out a promising foundation for paclitaxel de novo synthesis. Here, we integrated gene dbat into the wild-type Escherichia coli BW25113 to construct strain BWD01. Yet, it was relatively unstable in baccatin III synthesis. Mutant gene dbat S189V with improved thermostability was screened out from a semi-rational mutation library of DBAT. When it was over-expressed in an engineered strain N05 with improved acetyl-CoA generation, combined with carbon source optimization of fermentation engineering, the production level of baccatin III was significantly increased. Using this combination, integrated strain N05S01 with mutant dbat S189V achieved a 10.50-fold increase in baccatin III production compared with original strain BWD01. Our findings suggest that the combination of protein engineering and metabolic engineering will become a promising strategy for paclitaxel production.
Collapse
Affiliation(s)
- Jia-jun Huang
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-wei Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qian-wang Zheng
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Bing-hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Wen-feng Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - An-qi Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Pei-yun Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Li-qiong Guo
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jun-fang Lin
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
10
|
Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pulmonary fibrosis: Therapeutic and mechanistic insights into the role of phytochemicals. Biofactors 2021; 47:250-269. [PMID: 33548106 DOI: 10.1002/biof.1713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary fibrosis (PF) is the devastating consequence of various inflammatory diseases of the lung. PF leads to a reduction of lung function, respiratory failure, and death. Several molecular pathways are involved in PF, such as inflammatory cytokines including tumor necrosis factor α (TNFα), tumor necrosis factor β1 (TNFβ1), interleukin 6 (IL-6), and interleukin 4 (IL-4), reactive oxygen species, matrix metalloproteases, and transforming growth factor-beta (TGF-β). Targeting these processes involved in the progression of PF is essential for the treatment of this disease. Natural products, including plant extracts and active compound that directly target the processes involved in PF, could be suitable therapeutic options with less adverse effects. In the present study, we reviewed the protective effects and the therapeutic role of various bioactive compounds from plants in PF management.
Collapse
Affiliation(s)
- Seyede Atefe Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
11
|
Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, Ahn KS, Oh SR. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells 2021; 10:897. [PMID: 33919784 PMCID: PMC8070705 DOI: 10.3390/cells10040897] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the innate and adaptive immune responses of organ systems, including the lungs, to particles and pathogens. Cumulative results show that macrophages contribute to the development and progression of acute or chronic inflammatory responses through the secretion of inflammatory cytokines/chemokines and the activation of transcription factors in the pathogenesis of inflammatory lung diseases, such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), ARDS related to COVID-19 (coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)), allergic asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). This review summarizes the functions of macrophages and their associated underlying mechanisms in the development of ALI, ARDS, COVID-19-related ARDS, allergic asthma, COPD, and IPF and briefly introduces the acute and chronic experimental animal models. Thus, this review suggests an effective therapeutic approach that focuses on the regulation of macrophage function in the context of inflammatory lung diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| |
Collapse
|
12
|
Wang J, Zhao X, Feng W, Li Y, Peng C. Inhibiting TGF-[Formula: see text] 1-Mediated Cellular Processes as an Effective Strategy for the Treatment of Pulmonary Fibrosis with Chinese Herbal Medicines. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1965-1999. [PMID: 34961416 DOI: 10.1142/s0192415x21500932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xingtao Zhao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wuwen Feng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yunxia Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
13
|
de la Rica R, Borges M, Gonzalez-Freire M. COVID-19: In the Eye of the Cytokine Storm. Front Immunol 2020; 11:558898. [PMID: 33072097 PMCID: PMC7541915 DOI: 10.3389/fimmu.2020.558898] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023] Open
Abstract
The dysregulated release of cytokines has been identified as one of the key factors behind poorer outcomes in COVID-19. This "cytokine storm" produces an excessive inflammatory and immune response, especially in the lungs, leading to acute respiratory distress (ARDS), pulmonary edema and multi-organ failure. Alleviating this inflammatory state is crucial to improve prognosis. Pro-inflammatory factors play a central role in COVID-19 severity, especially in patients with comorbidities. In these situations, an overactive, untreated immune response can be deadly, suggesting that mortality in COVID-19 cases is likely due to this virally driven hyperinflammation. Administering immunomodulators has not yielded conclusive improvements in other pathologies characterized by dysregulated inflammation such as sepsis, SARS-CoV-1, and MERS. The success of these drugs at reducing COVID-19-driven inflammation is still anecdotal and comes with serious risks. It is also imperative to screen the elderly for risk factors that predispose them to severe COVID-19. Immunosenescence and comorbidities should be taken into consideration. In this review, we summarize the latest data available about the role of the cytokine storm in COVID-19 disease severity as well as potential therapeutic approaches to ameliorate it. We also examine the role of inflammation in other diseases and conditions often comorbid with COVID-19, such as aging, sepsis, and pulmonary disorders. Finally, we identify gaps in our knowledge and suggest priorities for future research aimed at stratifying patients according to risk as well as personalizing therapies in the context of COVID19-driven hyperinflammation.
Collapse
Affiliation(s)
- Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Marta Gonzalez-Freire
- Vascular and Metabolic Pathologies, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
14
|
Sullivan SA, Nawarathne IN, Walker KD. CoA recycling by a benzoate coenzyme A ligase in cascade reactions with aroyltransferases to biocatalyze paclitaxel analogs. Arch Biochem Biophys 2020; 683:108276. [PMID: 31978400 DOI: 10.1016/j.abb.2020.108276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
A Pseudomonas CoA ligase (BadA) biocatalyzed aroyl CoA thioesters used by a downstream N-benzoyltransferase (NDTNBT) in a cascade reaction made aroyl analogs of the anticancer drug paclitaxel. BadA kept the high-cost aroyl CoA substrates at saturation for the downstream NDTNBT by recycling CoA when it was added as the limiting reactant. A deacylated taxane substrate N-debenzoyl-2'-deoxypaclitaxel was converted to its benzoylated product at a higher yield, compared to the converted yield in assays in which the BadA ligase chemistry was omitted, and benzoyl CoA was added as a cosubstrate. The resulting benzoylated product 2'-deoxypaclitaxel was made at 196% over the theoretical yield of product that could be made from the CoA added at 50 μM, and the cosubstrates benzoic acid (100 μM), and N-debenzoyl-2'-deoxypaclitaxel (500 μM) added in excess. In addition, a 2-O-benzoyltransferase (mTBT) was incubated with BadA, aroyl acids, CoA, a 2-O-debenzoylated taxane substrate, and cofactors under the CoA-recycling conditions established for the NDTNBT/BadA cascade. The mTBT/BadA combination also made various 2-O-aroylated products that could potentially function as next-generation baccatin III compounds. These ligase/benzoyltransferase cascade reactions show the feasibility of recycling aroyl CoA thioesters in vitro to make bioactive acyl analogs of paclitaxel precursors.
Collapse
Affiliation(s)
- Sean A Sullivan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Kevin D Walker
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|