1
|
Li W, Zhang W, Liu Z, Song H, Wang S, Zhang Y, Zhan C, Liu D, Tian Y, Tang M, Wen M, Qiao J. Review of Recent Advances in Microbial Production and Applications of Nerolidol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5724-5747. [PMID: 40013722 DOI: 10.1021/acs.jafc.4c12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Nerolidol, an oxygenated sesquiterpene (C15H26O) that occurs in plants, exhibits significant bioactivities such as antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. It is a U.S. Food and Drug Administration-approved flavoring agent and a common ingredient in several commercial products such as toiletries and detergents. In addition, the potential applications of nerolidol that may prove beneficial for human health, agriculture, and the food industry have garnered increasing attention from researchers in these fields. Recent years have witnessed the application of metabolic engineering and synthetic biology strategies for constructing microbial cell factories that can produce nerolidol, which is considered a sustainable and economical approach. This review summarizes recent research on the biological activities and applications of nerolidol as well as nerolidol production using microbial cell factories. In addition, the synthesis of bioactive derivatives of nerolidol is addressed. In summary, this review provides readers with an updated understanding of the potential applications and green production prospects of nerolidol.
Collapse
Affiliation(s)
- Weiguo Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Wanze Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Ziming Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Hongjian Song
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Yi Zhang
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Chuanling Zhan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Damiao Liu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Yanjie Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Min Tang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| |
Collapse
|
2
|
Corrêa ANR, Clerici NJ, de Paula NO, Brandelli A. Inhibition of Food Spoilage Fungi, Botrytis cinerea and Rhizopus sp., by Nanoparticles Loaded with Baccharis dracunculifolia Essential Oil and Nerolidol. Foods 2024; 13:3403. [PMID: 39517187 PMCID: PMC11544775 DOI: 10.3390/foods13213403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the antifungal potential of encapsulated essential oil (EO) from Baccharis dracunculifolia and nerolidol (NE) within Pluronic® F-127 nanoparticles (NPs). The EO, containing nerolidol, β-caryophyllene, and α-pinene as major bioactive compounds, exhibited superior antifungal activity compared to NE. The NP-EO formulations demonstrated high efficacy against Botrytis cinerea, with inhibition rates ranging from 29.73% to 87.60% and moderate efficacy against Rhizopus sp., with inhibition rates from 11.81% to 32.73%. In comparison, NP-NE showed lower antifungal activity. Both formulations effectively inhibited spore germination, with NP-EO showing greater inhibition compared to NP-NE. The encapsulation efficiency was significantly higher for NP-EO (80.1%) as compared to NP-NE (51.1%), attributed to the complex composition of EO facilitating better encapsulation and retention. Stability studies indicated that both NP formulations were stable at 25 °C for at least 15 days and exhibited changes in particle size and the formation of smaller particle populations at other temperatures (4 °C and 37 °C). Hemolytic activity was low across all NPs, suggesting their safety for food applications. The findings underscore the efficacy and applicability of EO-encapsulated NPs in extending food shelf life and maintaining product quality. The controlled and prolonged release of active compounds, coupled with their antifungal activity and safety, suggests that these NPs represent a promising and innovative approach for food preservation and active packaging development.
Collapse
Affiliation(s)
- Aldrey Nathália Ribeiro Corrêa
- Laboratory of Nanobiotechnology and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (A.N.R.C.); (N.J.C.); (N.O.d.P.)
| | - Naiara Jacinta Clerici
- Laboratory of Nanobiotechnology and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (A.N.R.C.); (N.J.C.); (N.O.d.P.)
| | - Natália Oliveira de Paula
- Laboratory of Nanobiotechnology and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (A.N.R.C.); (N.J.C.); (N.O.d.P.)
| | - Adriano Brandelli
- Laboratory of Nanobiotechnology and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (A.N.R.C.); (N.J.C.); (N.O.d.P.)
- Center of Nanoscience and Nanotechnology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
3
|
Liu W, Qi Y, Diao W, Lin J, Zhang L, Wang Q, Gu L, Feng Z, Chi M, Wang Y, Yi W, Li Y, Li C, Zhao G. Chelerythrine ameliorates Aspergillus fumigatus keratitis through suppressing the LOX-1/p38 MAPK signaling pathway. Cytokine 2024; 182:156717. [PMID: 39067394 DOI: 10.1016/j.cyto.2024.156717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Aspergillus fumigatus (A. fumigatus) keratitis is a type of infectious corneal disease that significantly impairs vision. The objective of this study is to evaluate the therapeutic potential of chelerythrine (CHE) on A. fumigatus keratitis. METHODS The antifungal activity of CHE was assessed through various tests including the minimum inhibitory concentration test, scanning electron microscopy, transmission electron microscopy, propidium iodide uptake test and plate count. Neutrophil infiltration and activity were assessed using immunofluorescence staining and the myeloperoxidase test. RT-PCR, western blotting assay, and ELISA were performed to measure the expression levels of proinflammatory cytokines (IL-1β and IL-6), NF-E2-related factor (Nrf2), heme oxygenase-1 (HO-1), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), as well as to determine the ratio of phosphorylated-p38 (p-p38) mitogen-activated protein kinase (MAPK) to p38 MAPK. RESULTS In vitro, CHE inhibited the growth of A. fumigatus conidia, reduced fungal hyphae survival, and prevented fungal biofilm formation. In vivo, CHE reduced the severity of A. fumigatus keratitis and exhibited an excellent anti-inflammatory effect by blocking neutrophil infiltration. Furthermore, CHE decreased the expression levels of proinflammatory cytokines and LOX-1 at both mRNA and protein levels, while also decreasing the p-p38 MAPK/p38 MAPK ratio. Additionally, CHE increased the expression levels of Nrf2 and HO-1. CONCLUSION CHE provides protection against A. fumigatus keratitis through multiple mechanisms, including reducing fungal survival, inducing anti-inflammatory effects, enhancing Nrf2 and HO-1 expression, and suppressing the signaling pathway of LOX-1/p38 MAPK.
Collapse
Affiliation(s)
- Wenyao Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yinghe Qi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Weilin Diao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yuwei Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wendan Yi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yuqi Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
4
|
Wang T, Song G, Sun M, Zhang Y, Zhang B, Peng M, Li M. Nerolidol attenuates airway inflammation and airway remodeling and alters gut microbes in ovalbumin-induced asthmatic mice. Cell Biochem Funct 2024; 42:e3899. [PMID: 38088534 DOI: 10.1002/cbf.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/26/2024]
Abstract
Asthma is a common respiratory disease associated with airway inflammation. Nerolidol is an acyclic sesquiterpenoid with anti-inflammatory properties. BALB/C mice were sensitized with ovalbumin (OVA) to induce asthma symptoms and given different doses of Nerolidol. We found that Nerolidol reduced OVA-induced inflammatory cell infiltration, the number of goblet cells and collagen deposition in lung tissue. Nerolidol reduced the OVA-specific IgE levels in serum and alveolar lavage fluid in an asthma model. Immunohistochemical staining of α-SMA (the marker of airway smooth muscle) showed that Nerolidol caused bronchial basement membrane thinning in asthmatic mice. The hyperplasia of airway smooth muscle cells (ASMCs) is an important feature of airway remodeling in asthma. ASMCs were treated with 10 ng/mL TGF-β to simulate the pathological environment of asthma in vitro and then treated with different doses of Nerolidol. Nerolidol inhibited the activity of TGF-β/Smad signaling pathway both in the lung tissue of OVA-induced mouse and TGF-β-stimulated ASMCs. 16s rRNA sequencing was performed on feces of normal mice, the changes of intestinal flora in OVA-induced asthmatic mice and Nerolidol-treated asthmatic mice were studied. The results showed that Nerolidol reversed the reduced gut microbial alpha diversity in asthmatic mice. Nerolidol changed the relative abundance of gut bacteria at different taxonomic levels. At the phylum level, the dominant bacteria were Bacteroidota, Firmicutes, and Proteobacteria. At the genus level, the dominant bacteria were Lactobacillus, Muribaculaceae, Bacteroides, and Lachnospiraceae. We conclude that Nerolidol attenuates OVA-induced airway inflammation and alters gut microbes in mice with asthma via TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Guihua Song
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengmeng Sun
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Bingxue Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Minghao Peng
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengyin Li
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
5
|
García-López C, Rodríguez-Calvo-de-Mora M, Borroni D, Sánchez-González JM, Romano V, Rocha-de-Lossada C. The role of matrix metalloproteinases in infectious corneal ulcers. Surv Ophthalmol 2023; 68:929-939. [PMID: 37352980 DOI: 10.1016/j.survophthal.2023.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During infectious keratitis, the production of collagenolytic and inflammatory substances, along with increased corneal matrix metalloproteinase (MMP) activity, induces the degradation of corneal collagen and may cause postkeratitis complications, such as opacity, thinning, and corneal perforation. MMPs, especially MMP-2 and MMP-9, are overexpressed in infectious keratitis and sustained over time by inflammatory and nonmicrobial mechanisms. The high MMP levels are correlated with excessive corneal destruction in bacterial, herpetic, fungal, and acanthamoeba infections. Nonspecific treatments, such as tetracyclines, particularly doxycycline, or corticosteroids, are used as adjuvants to antimicrobials to alleviate the disproportionate degradation and inflammation of the corneal layers caused by corneal MMPs and decrease the recruitment and infiltration of inflammatory cells. Treatments showing inhibition of specific MMPs (Galardin, ZHAWOC7726), interfering with pro-MMP activation (EDTA, ascorbic acid), or showing anticytokine effect (epigallocatechin-2-gallate, TRAM-34) have been reported. Other treatments show a direct action over corneal collagen structure such as corneal cross-linking or have been associated with reduction of MMP levels such as amniotic membrane grafting. Although the use of these drugs has been shown in studies to be effective in controlling inflammation, especially in experimental ones, robust studies are still needed based on randomized and randomized clinical trials to demonstrate their potential effect as adjuvants in the management of infectious keratitis.
Collapse
Affiliation(s)
- Celia García-López
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Marina Rodríguez-Calvo-de-Mora
- Department of Ophthalmology, Hospital Regional Universitario de Málaga, Málaga, Spain; Department of Ophthalmology (Qvision), Vithas Almería, Almería, Spain; Department of Ophthalmology, VITHAS Málaga, Málaga, Spain
| | - Davide Borroni
- Department of Doctoral Studies, Riga Stradins University, Riga, Latvia; Cornea Research Unit, ADVALIA Vision, Milan, Italy
| | | | - Vito Romano
- Eye Unit, ASST Spedali Civili di Brescia, Brescia, Italy; Eye Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carlos Rocha-de-Lossada
- Department of Ophthalmology, Hospital Regional Universitario de Málaga, Málaga, Spain; Department of Ophthalmology (Qvision), Vithas Almería, Almería, Spain; Department of Ophthalmology, VITHAS Málaga, Málaga, Spain; Department of Surgery, Ophthalmology Area, University of Seville, Seville, Spain
| |
Collapse
|
6
|
Zhao K, Hu F, Zhang Z, Yin X, Wang H, Li M. 0.01% Hypochlorous Acid Treats Aspergillus fumigatus Keratitis in Rats by Reducing Fungal Load and Inhibiting the Inflammatory Response. Transl Vis Sci Technol 2023; 12:3. [PMID: 37531113 PMCID: PMC10405862 DOI: 10.1167/tvst.12.8.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose To investigate the antifungal and anti-inflammatory effects of 0.01% hypochlorous acid (HCLO) on rats with Aspergillus fumigatus keratitis. Methods The time-kill assay and broth microdilution procedures were used in vitro to demonstrate that 0.01% HCLO was fungicidal and fungistatic. The severity of the disease was evaluated in vivo using a clinical score and slit-lamp photographs. Fungal load, polymorphonuclear neutrophil infiltration, and the production of related proteins were determined using colony plate counting, in vivo confocal microscopy, periodic acid-Schiff staining, fungal fluorescence staining, immunofluorescence staining, myeloperoxidase assay, and Western blotting. Result In vitro, 0.01% HCLO can destroy A. fumigatus spores in 1 minute. The optical density of the 0.01% HCLO group was significantly lower than that of the phosphate-buffered saline control group (P < 0.01), and no visible mycelium was observed using a fluorescence microscope. 0.01% HCLO reduced the severity of A. fumigatus keratitis in rats by decreasing the clinical score, fungal loading (periodic acid-Schiff, plate count, and fungal fluorescence staining), and inhibiting neutrophil infiltration and activity (immunofluorescence staining and myeloperoxidase). Furthermore, the Western blot analysis revealed that 0.01% HCO decreased protein expression levels of tumor necrosis factor-α and IL-1β. Conclusions According to our findings, 0.01% HCLO can kill A. fumigatus spores in vitro. It has antifungal and anti-inflammatory effects on A. fumigatus keratitis in rats. It also inhibited A. fumigatus growth; decreased neutrophil infiltration, tumor necrosis factor-α, and IL-1β expression; and provided a potential treatment for fungal keratitis. Translational Relevance This study provides a potential treatment for fungal keratitis in the clinic.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - Fen Hu
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - Zhaowei Zhang
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyue Yin
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - He Wang
- Department of Ophthalmology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingxin Li
- Department of Ophthalmology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Luan S, Peng X, Lin J, Zhang Y, Zhan L, Yin J, Luan J, Ji X, Zhao G. Gallic Acid Ameliorates Aspergillus Fumigatus Keratitis Through Reducing Fungal Load and Suppressing the Inflammatory Response. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36350620 PMCID: PMC9652715 DOI: 10.1167/iovs.63.12.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose The purpose of this study was to explore the antifungal and anti-inflammatory effects of gallic acid (GA) on Aspergillus fumigatus (A. fumigatus) keratitis. Methods CCK-8 assay and Draize eye test were used to determine the non-cytotoxic concentration of GA in RAW264.7 cells and an A. fumigatus keratitis mouse model. The antifungal effects of GA were analyzed using minimal inhibitory concentration (MIC), biofilm formation test, fungal adherence assay, calcofluor white staining, and propidium iodide staining. The therapeutic effects of GA were estimated by slit lamp photographs, clinical score, hematoxylin and eosin (H&E) staining, and Periodic acid-Schiff staining in vivo. Immunofluorescence staining and myeloperoxidase assay were conducted to identify neutrophil infiltration and activity. RT-PCR, ELISA, and Western blot were performed to detect the expression of pro-inflammatory cytokines and Nrf2/HO-1. Results In HCECs and A. fumigatus keratitis mouse model, GA at 100 µg/mL did not affect cell viability, thus this concentration was applied to subsequent experiments. In vitro, GA significantly inhibited A. fumigatus growth, biofilm formation, and adhesion. In vivo, 100 µg/mL GA alleviated the severity of fungal keratitis (FK) by repressing fungal load, reducing neutrophil infiltration, and lowering MPO activity. Besides, the expression of IL-1β, TNF-α, LOX-1, and COX-2 was inhibited, whereas Nrf2 and HO-1 expression was enhanced at both mRNA and protein levels in the 100 µg/mL GA treated group in comparison to PBS control. Conclusions GA ameliorates FK severity through inhibiting A. fumigatus load, reducing neutrophils infiltration, downregulating the expression of pro-inflammatory cytokines, and enhancing the Nrf2/HO-1 pathway, which provides new insight into A. fumigatus keratitis treatment.
Collapse
Affiliation(s)
- Songying Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jiao Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyue Ji
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
8
|
Fang X, Lian H, Bi S, Liu S, Yuan X, Liao C. Roles of pattern recognition receptors in response to fungal keratitis. Life Sci 2022; 307:120881. [PMID: 35963303 DOI: 10.1016/j.lfs.2022.120881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Fungal keratitis is one of the leading causes of blindness worldwide, which has become an increasingly serious threat to public ocular health, but no effective treatment strategies are available now. Pattern recognition receptors (PRRs) of the innate immune system are the first line of host defense against fungal infections. They could recognize pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and trigger an array of inflammatory responses. Over the last decades, research has resulted in significant progress regarding the roles of PRRs in fungal keratitis. This review will highlight the importance of several pattern recognition receptors (C-type lectin-like receptors, Toll-like receptors, and NOD-like receptors) in regulating the innate immunity under fungal keratitis and describe the crosstalk and collaboration in PRRs contributing to disease pathology. Meanwhile, some potential therapy-based PRRs against corneal fungal infections are discussed.
Collapse
Affiliation(s)
- Xiaolong Fang
- The School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huifang Lian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Ophthalmology, Baoding First Central Hospital, Baoding, Hebei 071000, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoyong Yuan
- The School of Medicine, Nankai University, Tianjin 300071, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China.
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
9
|
Luan J, Peng X, Lin J, Zhang Y, Tian X, Zhan L, Zhao G. The therapeutic potential of chondroitin sulfate in Aspergillus fumigatus keratitis. Mol Immunol 2022; 147:50-61. [DOI: 10.1016/j.molimm.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
|
10
|
He M, Jia Y, Liu X, Peng X, Li C, Yang S, Xu Q, Lin J, Zhao G. Perillaldehyde protects against Aspergillus fumigatus keratitis by reducing fungal load and inhibiting inflammatory cytokines and LOX-1. Curr Eye Res 2022; 47:1366-1373. [PMID: 35759617 DOI: 10.1080/02713683.2022.2093382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this research was to explore the antifungal and anti-inflammatory effects of perillaldehyde (PAE) in Aspergillus fumigatus (A.fumigatus) keratitis and the underlying mechanism. METHODS The biofilm formation, adherence assay, propidium iodide uptake test were used to determine the possible mechanism of PAE in terms of antifungal effects in vitro. The severity of corneal infection was evaluated by clinical scores. The immunofluorescence staining was adopt to detect the number of macrophages in infected corneas. Draize test was performed to assess the ocular toxicity of PAE. Real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot reflected the expression of inflammatory cytokines and Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in mice corneas and RAW264.7 cells. RESULTS PAE was able to inhibit the formation of biofilm, reduce conidial adhesion, and damage the integrity of membranes to exert antifungal activity. In C57BL/6 mice models, PAE alleviated the severity of infected corneas, reduced the recruitment of macrophages and had low ocular toxicity. In addition, the mRNA and protein levels of TNF-α, CCL-2 and LOX-1 could be significantly decreased by the application of PAE after A.fumigatus infection in vivo and in vitro. CONCLUSION Our study indicated that PAE protected against A.fumigatus keratitis by reducing fungal load, accumulation of macrophages, and inhibiting the expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Mengting He
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - You Jia
- Department of Ophthalmology, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| | - Xing Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shanshan Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
11
|
Wang LM, Yang H, Yan HJ, Ge RF, Wang YX, Xue SS, Li L, Lyu LY, Che CY. Thymol Protects against Aspergillus Fumigatus Keratitis by Inhibiting the LOX-1/IL-1β Signaling Pathway. Curr Med Sci 2022; 42:620-628. [PMID: 35292873 DOI: 10.1007/s11596-022-2512-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To explore the anti-inflammatory effects and mechanisms of action of thymol in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS The minimum inhibitory concentration of thymol against A. fumigatus was detected. To characterize the anti-inflammatory effects of thymol, mouse corneas and human corneal epithelial cells were pretreated with thymol or dimethyl sulfoxide (DMSO) before infection with A. fumigatus spores. Slit-lamp microscopy, immunohistochemistry, myeloperoxidase detection, quantitative real-time polymerase chain reaction, and Western blotting were used to assess infection. Neutrophil and macrophage recruitment, in addition to the secretion of LOX-1 and IL-1β, were quantified to evaluate the relative contribution of thymol to the inflammatory response. RESULTS We confirmed that the growth of A. fumigatus was directly inhibited by thymol. In contrast with the DMSO group, there was a lower degree of inflammation in the mouse corneas of the thymol-pretreated group. This was characterized by significantly lower clinical scores, less inflammatory cell infiltration, and lower expression of LOX-1 and IL-1β. Similarly, in vitro experiments indicated that the production of LOX-1 and IL-1β was significantly inhibited after thymol treatment, in contrast with the DMSO-pretreated group. CONCLUSION Our findings demonstrate that thymol exerted a direct fungistatic activity on A. fumigatus. Furthermore, thymol played a protective role in fungal keratitis by inhibiting LOX-1/IL-1β signaling pathway and reducing the recruitment of neutrophils and macrophages.
Collapse
Affiliation(s)
- Li-Mei Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hai-Jing Yan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Rui-Feng Ge
- Department of Otorhinolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yun-Xiao Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Sha-Sha Xue
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lin Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Le-Yu Lyu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
12
|
Zhang Q, Xu T, Bai N, Tan F, Zhao H, Liu J. Lectin‑type oxidized LDL receptor 1 modulates matrix metalloproteinase 2 production in peri‑implantitis. Exp Ther Med 2021; 23:171. [PMID: 35069852 DOI: 10.3892/etm.2021.11094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Tao Xu
- School of Stomatology of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Na Bai
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Fei Tan
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hongmei Zhao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jie Liu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
13
|
Yan H, Yang H, Wang L, Sun X, Han L, Cong P, Chen X, Lu D, Che C. Disulfiram inhibits IL-1β secretion and inflammatory cells recruitment in Aspergillus fumigatus keratitis. Int Immunopharmacol 2021; 102:108401. [PMID: 34883353 DOI: 10.1016/j.intimp.2021.108401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Disulfiram, an inhibitor of gasdermin D-induced pore formation, is known to suppress interleukin (IL)-1β secretion and pyroptosis. However, its effects on fungal keratitis remain unknown. Therefore, we investigated the role of disulfiram in Aspergillus fumigatus keratitis. METHODS In vitro, Cell Count Kit-8 (CCK8) assay and cell scratch test were performed to determine optimal concentration. In vivo and in vitro experiments were conducted in a mouse model, human neutrophils, and mouse peritoneal macrophages. We pre-treated the mice or cells with disulfiram and infected them with A. fumigatus at specific times. We subsequently evaluated the development of fungal keratitis lesions, the recruitment of inflammatory cells, and the production of inflammatory cytokines using slit lamp microscopy, clinical evaluation, quantitative reverse transcription polymerase chain reaction, immunofluorescence staining, enzyme-linked immunosorbent assay, and western blotting. We also used slit lamp microscopy and clinical evaluation to assess the effect of natamycin with or without disulfiram. RESULTS Disulfiram at 20 μM has no significant cytotoxic effect and does not affect cell migration. In the mouse model, disulfiram significantly suppressed inflammatory responses, reduced neutrophil and macrophage recruitment, and down-regulated myeloperoxidase and nitric oxide synthase levels at earlier stages of infection. Disulfiram had no effect on IL-1β production and maturation, but it inhibited IL-1β secretion in macrophages. Disulfiram combined with natamycin significantly increased corneal transparency in the mice model. CONCLUSION Overall, disulfiram reduced the host immune response in fungal keratitis by attenuating neutrophil and macrophage recruitment and inhibiting IL-1β secretion in macrophages. Disulfiram in combination with antifungal agents may serve as a novel therapeutic method for reducing corneal opacity in fungal keratitis.
Collapse
Affiliation(s)
- Haijing Yan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Limei Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyan Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lin Han
- Gout Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Peishan Cong
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaomeng Chen
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Danli Lu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
14
|
Bastaki SMA, Amir N, Adeghate E, Ojha S. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats. Mol Cell Biochem 2021; 476:3497-3512. [PMID: 33999335 DOI: 10.1007/s11010-021-04094-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Targeting oxidative stress and inflammation by novel dietary compounds of natural origin convincingly appears to be one of the most important therapeutic strategies to keep inflammatory bowel diseases (IBD) such as ulcerative colitis disease in remission. It is imperative to investigate naturally occuring plant-derived dietary phytochemicals that are receiving attention for their therapeutic benefits to overcome the debilitating conditions of IBD. In the present study, the effect of nerolidol (NRD), a monocyclic sesquiterpene found in German Chamomile tea, was investigated in acetic acid-induced colitis model in Wistar rats. NRD was orally administered at a dose of 50 mg/kg/day either for 3 days before or 30 min after induction of IBD for 7 days, after intrarectal administration of acetic acid. The body weight, macroscopic, and microscopic analyses of the colon in different experimental groups were observed on days 0, 2, 4, and 7. Acetic acid caused significant reduction in body weight and induced macroscopic and microscopic ulcer along with a significant decline of antioxidants, concomitant to increased malondialdehyde (MDA), a marker of lipid peroxidation, and myeloperoxidase (MPO) activity, a marker of neutrophil activation. Treatment with NRD significantly improved IBD-induced reduction in body weight, improved histology, inhibited MDA formation, and restored antioxidants along with reduced MPO activity. Acetic acid also induced the release of pro-inflammatory cytokines and increased calprotectin, released by neutrophils under inflammatory conditions. NRD treatment significantly reduced calprotectin and pro-inflammatory cytokines. NRD treatment showed potential to improve disease activity and inhibit oxidative stress, lipid peroxidation, and inflammation along with histological preservation of the colon tissues.
Collapse
Affiliation(s)
- Salim M A Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Naheed Amir
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Sha XY, Shi Q, Liu L, Zhong JX. Update on the management of fungal keratitis. Int Ophthalmol 2021; 41:3249-3256. [PMID: 33929644 DOI: 10.1007/s10792-021-01873-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim of this article is to introduce the recent advance on the studies of fungal keratitis published over past 5 years. METHODS We performed literature review of articles published on PubMed, Google Scholar, CNKI and Web of Science relevant to the diagnosis, pathogenesis and novel treatment of fungal keratitis. RESULTS Excessive inflammation can lead to stromal damage and corneal opacification, hence the research on immune mechanism provides many potential therapeutic targets for fungal keratitis. Many researchers discussed the importance of earlier definitive diagnosis and were trying to find rapid and accurate diagnostic methods of pathogens. Develop new drug delivery systems and new routes of administration with better corneal penetration, prolonged ocular residence time, and better mucoadhesive properties is also one of the research hotspots. Additionally, many novel therapeutic agents and methods have been gradually applied in clinical ophthalmology. CONCLUSION The diagnosis and treatment of fungal keratitis are still a challenge for ophthalmologist, and many researches provide new methods to conquer these problems.
Collapse
Affiliation(s)
- Xiao-Yuan Sha
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qi Shi
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lian Liu
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jing-Xiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Han F, Guo H, Wang L, Zhang Y, Sun L, Dai C, Wu X. TSLP Produced by Aspergillus fumigatus-Stimulated DCs Promotes a Th17 Response Through the JAK/STAT Signaling Pathway in Fungal Keratitis. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 33346778 PMCID: PMC7757613 DOI: 10.1167/iovs.61.14.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to explore the role of thymic stromal lymphopoietin (TSLP) secreted by Aspergillus fumigatus-stimulated dendritic cells (DCs) during the T helper 17 (Th17) immune response, and further clarify the mechanisms contributing to the Th17 immune response of fungal keratitis (FK). Methods A carboxyfluorescein diacetate succinimidyl ester assay, PCR, and flow cytometry were performed to detect Th17 differentiation of CD4+ T cells; PCR, ELISA, and Western blot were used to detect the expression of TSLP and JAK/STAT-related proteins; Signaling pathways involved in Th17 response was evaluated using RNA sequence; C57BL/6 mice were infected with A. fumigatus and treated with ruxolitinib or BBI608. Slit-lamp examination, fluorescein staining, and clinical scores were used to assess the clinical manifestation. Results A. fumigatus-infected DCs could drive naïve CD4+ T-cell proliferation and promote the production of Th17 cytokines IL-17A, IL-17F, and IL-22. A. fumigatus stimulation increased the expression of TSLP in DCs. DC-derived TSLP contributed to a Th17-type inflammatory response via the JAK/STAT signaling pathway. TSLP small interfering RNA, TSLPR small interfering RNA, or JAK/STAT inhibitors inhibited the Th17 immune response induced by A. fumigatus-infected DCs. Moreover, TSLP promoted A. fumigatus keratitis disease progression in a mouse model. However, inhibition of the JAK/STAT signaling pathway using a specific inhibitor reversed the development of FK by A. fumigatus infection. Conclusions TSLP secreted by A. fumigatus-stimulated DCs played a significant role in the Th17-dominant immune response of FK through its JAK/STAT activation. Our findings may contribute to the elucidation of the molecular mechanisms of FK and to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fang Han
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Leyi Wang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yuting Zhang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Lin Sun
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Chenyang Dai
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
| |
Collapse
|