1
|
Xie Y, Sun H, Shan L, Ma X, Sun Q, Liu F. The establishment of PD-1 inhibitor treatment prognosis model based on dynamic changes of peripheral blood indexes in patients with advanced lung squamous cell carcinoma. Front Oncol 2024; 14:1454709. [PMID: 39741972 PMCID: PMC11685080 DOI: 10.3389/fonc.2024.1454709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
Background Unlike patients with lung adenocarcinoma, patients with lung squamous cell carcinoma (LUSC) do not derive significant benefits from targeted therapy. In recent years, immunotherapy has revolutionized the treatment approach for LUSC. However, not all patients with this type of cancer respond to immunotherapy, necessitating the identification of effective biomarkers to predict survival prognosis and evaluate the efficacy of PD-1 inhibitors. Materials and methods We retrospectively collected case and hematologic data from 212 patients with advanced squamous lung cancer who received PD-1 combination therapy. Hematological indices mainly contained SCC, CEA, NSE, Hb, LDH, WBC and RBC at baseline, 6 and 12 weeks of treatment. All patients underwent imaging examinations and efficacy was evaluated according to RECIST1.1 criteria. Univariate tests were used to assess the relationship between changes in serum biomarkers, clinical characteristics and treatment outcome. The survival prognosis of patients was investigated by telephone follow-up. The optimal critical values of all hematological indicators were calculated by ROC curves, and then logistic regression and Cox regression were used to analyze multiple serum markers in relation to efficacy and survival prognosis, respectively. Finally, column line plots were constructed and validated to predict the probability of patient survival. Results Post-treatment RBC12w<3.81 × 10 12/L (p < 0.034) was associated with lower ORR, and WBC6w<9.34 × 109/L (p=0.041) was associated with higher DCR.SCC12w≥2.25 ng/mL (p = 0.015), NSE6w≥13.54 ng/mL(p = 0.044)and RBC0w≥4.2 × 10 9/L (p = 0.003) were independent predictors of PFS. SCC12w≥2.25 ng/mL (p < 0.001) and NSE6w≥13.54ng/mL(p = 0.042) were independent predictor of OS. Patients in the SCC12w≥2.25 ng/mL (HR = 1.943,95% CI:1.218-3.079 vs. HR = 2.161,95%CI:1.087-3.241) and NSE6w≥13.54 ng/mL (HR = 1.657,95% CI:1.118-2.535 vs. HR = 2.064,95% CI:1.569-4.169) groups had shorter PFS and OS. In subgroup analysis, patients with stage III advanced squamous lung cancer had a better pro-gnosis than those with stage IV. PD-L1-positive, and SCC12w ≥2.25 ng/mL had a worse prognosis. The results of constructing column-line plots for predicting the survival probability of 1-, 3-, and 5-year PFS and OS: The C-index and 95% CI for PFS and OS of column-line plots were 0.725 (95% CI: 0.478-1.928) and 0.755 (95% CI: 0.642-0.868), respectively, and the bootstrap correction showed a good consistency of the column-line plots. Conclusion Changes in RBC12w ≥3.81×1012/L, WBC6w ≥9.34×10 9/L, SCC12w ≥2.25 ng/mL, and NSE6w ≥13.54 ng/mL after treatment are prognostic indicators of immunotherapy in patients with advanced squamous lung cancer.
Collapse
Affiliation(s)
- Yuyan Xie
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Sun
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liying Shan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Ma
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qingyu Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Qian WJ, Yan JS, Gang XY, Xu L, Shi S, Li X, Na FJ, Cai LT, Li HM, Zhao MF. Intercellular adhesion molecule-1 (ICAM-1): From molecular functions to clinical applications in cancer investigation. Biochim Biophys Acta Rev Cancer 2024; 1879:189187. [PMID: 39317271 DOI: 10.1016/j.bbcan.2024.189187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a versatile molecule that plays a critical role in various physiological and pathological processes, particularly in tumor development where its impact is bidirectional. On the one hand, it augments the immune response by promoting immune cell migration, infiltration, and the formation of immunological synapses, thus facilitating potent antitumor effects. Simultaneously, it contributes to tumor immune evasion and influences metastasis by mediating transendothelial migration (TEM), epithelial-to-mesenchymal transition (EMT), and epigenetic modification of tumor cells. Despite its significant potential, the full clinical utility of ICAM-1 has yet to be fully realized. In this review, we thoroughly examine recent advancements in understanding the role of ICAM-1 in tumor development, its relevance in predicting therapeutic efficacy and prognosis, as well as the progress in clinical translational research on anti-ICAM-1-based therapies, encompassing including monoclonal antibodies, immunotherapy, antibody-drug conjugate (ADC), and conventional treatments. By shedding light on these innovative strategies, we aim to underscore ICAM-1's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.
Collapse
Affiliation(s)
- Wen-Jing Qian
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Shan Yan
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xiao-Yu Gang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xin Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Fang-Jian Na
- Network Information Center, China Medical University, Shenyang, China
| | - Lu-Tong Cai
- Psychological Medicine, Shenyang Medical College, Shenyang, China
| | - He-Ming Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China; Guangdong Association of Clinical Trials (GACT)/Chinese Thoracic Oncology Group (CTONG) and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, China.
| | - Ming-Fang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Özçam M, Lynch SV. The gut-airway microbiome axis in health and respiratory diseases. Nat Rev Microbiol 2024; 22:492-506. [PMID: 38778224 DOI: 10.1038/s41579-024-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Communication between the gut and remote organs, such as the brain or the cardiovascular system, has been well established and recent studies provide evidence for a potential bidirectional gut-airway axis. Observations from animal and human studies indicate that respiratory insults influence the activity of the gut microbiome and that microbial ligands and metabolic products generated by the gut microbiome shape respiratory immunity. Information exchange between these two large mucosal surface areas regulates microorganism-immune interactions, with significant implications for the clinical and treatment outcomes of a range of respiratory conditions, including asthma, chronic obstructive pulmonary disease and lung cancer. In this Review, we summarize the most recent data in this field, offering insights into mechanisms of gut-airway crosstalk across spatial and temporal gradients and their relevance for respiratory health.
Collapse
Affiliation(s)
- Mustafa Özçam
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Yin J, Ren P. New advances in the treatment of chondrosarcoma under the PD-1/PD-L1 pathway. J Cancer Res Ther 2024; 20:522-530. [PMID: 38687921 DOI: 10.4103/jcrt.jcrt_2269_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/02/2024] [Indexed: 05/02/2024]
Abstract
ABSTRACT Bone sarcomas encompass a group of spontaneous mesenchymal malignancies, among which osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma are the most common subtypes. Chondrosarcoma, a relatively prevalent malignant bone tumor that originates from chondrocytes, is characterized by endogenous cartilage ossification within the tumor tissue. Despite the use of aggressive treatment approaches involving extensive surgical resection, chemotherapy, and radiotherapy for patients with osteosarcoma, chondrosarcoma, and chordoma, limited improvements in patient outcomes have been observed. Furthermore, resistance to chemotherapy and radiation therapy has been observed in chondrosarcoma and chordoma cases. Consequently, novel therapeutic approaches for bone sarcomas, including chondrosarcoma, need to be uncovered. Recently, the emergence of immunotherapy and immune checkpoint inhibitors has garnered attention given their clinical success in various diverse types of cancer, thereby prompting investigations into their potential for managing chondrosarcoma. Considering that circumvention of immune surveillance is considered a key factor in the malignant progression of tumors and that immune checkpoints play an important role in modulating antitumor immune effects, blockers or inhibitors targeting these immune checkpoints have become effective therapeutic tools for patients with tumors. One such checkpoint receptor implicated in this process is programmed cell death protein-1 (PD-1). The association between PD-1 and programmed cell death ligand-1 (PD-L1) and cancer progression in humans has been extensively studied, highlighting their remarkable potential as biomarkers for cancer treatment. This review comprehensively examines available studies on current chondrosarcoma treatments and advancements in anti-PD-1/PD-L1 blockade therapy for chondrosarcoma.
Collapse
Affiliation(s)
- Jiawei Yin
- Trauma Department of Orthopedics, The Second Hospital of Shandong University, Jinan, China
| | | |
Collapse
|
5
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
6
|
Todoroki K, Abe Y, Matsuo K, Nomura H, Kawahara A, Nakamura Y, Nakamura M, Seki N, Kusukawa J. Prognostic effect of programmed cell death ligand 1/programmed cell death 1 expression in cancer stem cells of human oral squamous cell carcinoma. Oncol Lett 2024; 27:79. [PMID: 38249811 PMCID: PMC10797318 DOI: 10.3892/ol.2024.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
The relationship between cancer stem cells (CSCs) in oral squamous cell carcinoma (OSCC) and programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) remains unclear. Therefore, the present study aimed to clarify the association between the CD44v3high/CD24low immunophenotype of CSCs in OSCC and PD-L1/PD-1 co-expression, and to assess the prognostic effect of CSCs in terms of immune checkpoint molecules. Formalin-fixed, paraffin-embedded tissue samples and clinicopathological data from 168 patients with OSCC were retrospectively retrieved. Immunohistochemical staining and reverse transcription quantitative polymerase chain reaction were applied to a tissue microarray of the invasive front of each case. Semi-automated cell counting was used to assess CD44v3, CD24, PD-L1 and PD-1 expression by immunohistochemistry (IHC) using a digital image analysis program. Associations between immunological markers and clinicopathological variables were estimated. Patients with the CSC immunophenotype CD44v3high/CD24low, and patients with a high PD-L1/PD-1-positive cell density in the tumor parenchyma and stroma had significantly lower survival rates. Furthermore, patients with the CSC immunophenotype (CD44v3high/CD24low) and high PD-L1/PD-1 co-expression had even lower survival rates (P<0.01, log-rank test). Notably, there was a positive correlation between CD44v3 and PD-L1 expression (τ=0.1096, P=0.0366, Kendall rank correlation coefficient) and a negative correlation between CD24 and PD-1 expression (τ=-0.1387, P=0.0089, Kendall rank correlation coefficient). Additionally, the high CD44v3 expression group, as determined by IHC, exhibited significantly decreased expression of U2 small nuclear RNA auxiliary factor 1 (U2AF1) at the mRNA level compared with that in the low CD44v3 expression group (P<0.001, Mann-Whitney U test), and U2AF1 and PD-L1 mRNA expression exhibited a significant negative correlation (τ=-0.3948, P<0.001, Kendall rank correlation coefficient). In conclusion, CSCs in OSCC may evade host immune mechanisms and maintain CSC stemness via PD-L1/PD-1 co-expression, resulting in unfavorable clinical outcomes.
Collapse
Affiliation(s)
- Keita Todoroki
- Dental and Oral Medical Center, Kurume University, School of Medicine, Kurume, Fukuoka 830-0011, Japan
- Department of Dental and Oral Surgery, Takagi Hospital, Kouhoukai Medical Corporation, Okawa, Fukuoka 831-0016, Japan
| | - Yushi Abe
- Dental and Oral Medical Center, Kurume University, School of Medicine, Kurume, Fukuoka 830-0011, Japan
- Department of Dental and Oral Surgery, Takagi Hospital, Kouhoukai Medical Corporation, Okawa, Fukuoka 831-0016, Japan
| | - Katsuhisa Matsuo
- Dental and Oral Medical Center, Kurume University, School of Medicine, Kurume, Fukuoka 830-0011, Japan
- Department of Dental and Oral Surgery, Takagi Hospital, Kouhoukai Medical Corporation, Okawa, Fukuoka 831-0016, Japan
| | - Hidetoshi Nomura
- Dental and Oral Medical Center, Kurume University, School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka 830-0011, Japan
| | - Yoshiaki Nakamura
- Department of Dentistry and Oral Surgery, Oita Saiseikai Hita Hospital, Hita, Oita 877-1292, Japan
| | - Moriyoshi Nakamura
- Dental and Oral Medical Center, Kurume University, School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Naoko Seki
- Dental and Oral Medical Center, Kurume University, School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University, School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
7
|
Su X, Fu C, Liu F, Bian R, Jing P. T-cell exhaustion prediction algorithm in tumor microenvironment for evaluating prognostic stratification and immunotherapy effect of esophageal cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:592-611. [PMID: 37493251 DOI: 10.1002/tox.23887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Esophageal cancer (EC) is a common digestive malignancy that ranks sixth in cancer deaths, with a 5-year survival rate of 15%-25%. As a result, reliable prognostic biomarkers are required to accurately predict the prognosis of EC. T-cell exhaustion (TEX) is associated with poorer prognosis and immune infiltration in EC. In this study, nine risk genes were finally screened to constitute the prognostic model using least absolute shrinkage and selection operator analysis. Patients were divided into two groups based on the expression of the TEX-related genes: high-risk group and low-risk group. The expression of TEX-related genes differed significantly between the two groups. The findings revealed that the risk model developed was highly related to the clinical prognosis and amount of immune cell infiltration in EC patients. It was also significantly correlated with the therapeutic sensitivity of multiple chemotherapeutic agents in EC patients. Subsequently, we successfully constructed drug-resistant cell lines KYSE480/CDDP-R and KYSE180/CDDP-R to verify the correlation between PD-1 and drug resistance in EC. Then, we examined the mRNA and protein expression levels of PD-1 in parental and drug-resistant cells using qPCR and WB. It was found that the expression level of PD-1 was significantly increased in the plasma red of drug-resistant cells. Next, we knocked down PD-1 in drug-resistant cells and found that the resistance of EC cells to CDDP was significantly reduced. And the proportion of apoptotic cells in cells treated with 6 μM CDDP for 24 h was significantly in increase. The TEX-based risk model achieved good prediction results for prognosis prediction in EC patients. And it was also significantly associated with the level of immune cell infiltration and drug therapy sensitivity of EC patients. Additionally, the downregulation of PD-1 may be associated with increased drug sensitivity in EC and enhanced T-cell infiltration. The high-risk group had lower TIDE scores, indicating that the high-risk group benefits more after receiving immunotherapy. Thus, the TEX-based risk model can be used as a novel tumor prognostic biomarker.
Collapse
Affiliation(s)
- Xiangyu Su
- School of Medicine, Southeast University, Nanjing, China
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chenchun Fu
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fei Liu
- Department of Oncology, Luhe People's Hospital of Nanjing, Nanjing, China
| | - Rongrong Bian
- Department of Oncology, Luhe People's Hospital of Nanjing, Nanjing, China
| | - Ping Jing
- Department of Gastroenterology, Luhe People's Hospital of Nanjing, Nanjing, China
| |
Collapse
|
8
|
Wang Q, Jiang H, Zhang H, Lu W, Wang X, Xu W, Li J, Lv Y, Li G, Cai C, Yu G. β-Glucan-conjugated anti-PD-L1 antibody enhances antitumor efficacy in preclinical mouse models. Carbohydr Polym 2024; 324:121564. [PMID: 37985066 DOI: 10.1016/j.carbpol.2023.121564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The use of immune checkpoint blockade (ICB) is a promising approach for clinical cancer treatment. However, most of cancer patients do not respond to anti-PD-1/PD-L1 antibody. In this study, we proposed a novel strategy of antibody-β-glucan conjugates (AGC) to enhance the antitumor immune response to ICB therapy. The AGC were constructed by conjugating an anti-PD-L1 antibody with a β-glucan via click chemistry. This design facilitates the delivery of β-glucan into the tumor microenvironment (TME). Furthermore, the bridging effect mediated by AGC can promote the interaction between tumor cells and dendritic cells (DCs), thereby enhancing immunotherapeutic benefits. In the MC38 tumor-bearing mouse model, AGC demonstrated powerful tumor suppression, achieving a tumor suppression rate of 86.7 %. Immunophenotyping, cytokine analysis, RNA sequencing, and FTY720-treated models were combined to elucidate the mechanism underlying AGC function. Compared with anti-PD-L1 antibody, AGC induced an earlier immune response, infiltration of DCs, and activation of preexisting T cells in the TME, with T cells predominantly proliferating locally rather than migrating from other organs. In conclusion, these data suggest that AGC could serve as a promising strategy to improve ICB therapy with prospects for clinical utilization.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China.
| | - Hongli Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiqiao Lu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenfeng Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Youjing Lv
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
9
|
Hu ZC, Wang B, Zhou XG, Liang HF, Liang B, Lu HW, Ge YX, Chen Q, Tian QW, Xue FF, Jiang LB, Dong J. Golgi Apparatus-Targeted Photodynamic Therapy for Enhancing Tumor Immunogenicity by Eliciting NLRP3 Protein-Dependent Pyroptosis. ACS NANO 2023; 17:21153-21169. [PMID: 37921421 DOI: 10.1021/acsnano.3c05005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Innate and adaptive immunity is important for initiating and maintaining immune function. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome serves as a checkpoint in innate and adaptive immunity, promoting the secretion of pro-inflammatory cytokines and gasdermin D-mediated pyroptosis. As a highly inflammatory form of cell death distinct from apoptosis, pyroptosis can trigger immunogenic cell death and promote systemic immune responses in solid tumors. Previous studies proposed that NLRP3 was activated by translocation to the mitochondria. However, a recent authoritative study has challenged this model and proved that the Golgi apparatus might be a prerequisite for the activation of NLRP3. In this study, we first developed a Golgi apparatus-targeted photodynamic strategy to induce the activation of NLRP3 by precisely locating organelles. We found that Golgi apparatus-targeted photodynamic therapy could significantly upregulate NLRP3 expression to promote the subsequent release of intracellular proinflammatory contents such as IL-1β or IL-18, creating an inflammatory storm to enhance innate immunity. Moreover, this acute NLRP3 upregulation also activated its downstream classical caspase-1-dependent pyroptosis to enhance tumor immunogenicity, triggering adaptive immunity. Pyroptosis eventually led to immunogenic cell death, promoted the maturation of dendritic cells, and effectively activated antitumor immunity and long-lived immune memory. Overall, this Golgi apparatus-targeted strategy provided molecular insights into the occurrence of immunogenic pyroptosis and offered a platform to remodel the tumor microenvironment.
Collapse
Affiliation(s)
- Zhi-Chao Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ben Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Gang Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hai-Feng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong-Wei Lu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Xiang Ge
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Wei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Feng-Feng Xue
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Saar M, Lavogina D, Lust H, Tamm H, Jaal J. Immune checkpoint inhibitors modulate the cytotoxic effect of chemotherapy in lung adenocarcinoma cells. Oncol Lett 2023; 25:152. [PMID: 36936028 PMCID: PMC10018276 DOI: 10.3892/ol.2023.13738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 03/06/2023] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has significantly improved survival in patients with non-small cell lung cancer (NSCLC), and ICIs are increasingly used in combination with cytotoxic treatments, such as chemotherapy. Although combined treatments are more effective, not all patients respond to the therapy; therefore, a detailed understanding of the effect of treatment combinations at the tumour level is needed. The present study aimed to explore whether ICIs could affect the cytotoxic effects of chemotherapy on lung adenocarcinoma cell lines with different PD-L1 expression levels (high, HCC-44; low, A-549). Using the resazurin-based assay, the efficacy of seven chemotherapeutic agents (cisplatin, etoposide, gemcitabine, pemetrexed, vinorelbine, docetaxel and paclitaxel) was compared in the presence or absence of the individually chosen single doses of four ICIs (nivolumab, pembrolizumab, atezolizumab and durvalumab). The results revealed that different ICIs can exhibit either potentiating or depotentiating effects, depending on the chemotherapy agent or lung adenocarcinoma cell line used. Durvalumab was the most promising ICI, which potentiated most chemotherapy agents in both cell lines, especially in the case of high PD-L1 expression. By contrast, nivolumab, exhibited depotentiating trends in several combinations. The immunostaining of γH2AX in treated cells confirmed that the potentiation of the chemotherapeutic cytotoxicity by durvalumab was at least partially mediated via increased DNA damage; however, this effect was strongly dependent on the chemotherapy agent and cell line used. Our future studies aim to address the specific mechanisms underlying the observed ICI-induced potentiation or depotentiation.
Collapse
Affiliation(s)
- Marika Saar
- Pharmacy Department, Tartu University Hospital, 50406 Tartu, Estonia
- Pharmacy Institute, University of Tartu, 50411 Tartu, Estonia
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Correspondence to: Ms. Marika Saar or Professor Jana Jaal, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Puusepa 8, 50406 Tartu, Estonia, E-mail:
| | - Darja Lavogina
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
| | - Helen Lust
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
| | - Hannes Tamm
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia
- Pathology Department, Tartu University Hospital, 50406 Tartu, Estonia
| | - Jana Jaal
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Radiotherapy and Oncological Therapy, Haematology and Oncology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
- Correspondence to: Ms. Marika Saar or Professor Jana Jaal, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Puusepa 8, 50406 Tartu, Estonia, E-mail:
| |
Collapse
|
11
|
Ren X, Jia L, Zhao Z, Qiang Y, Wu W, Han P, Zhao J, Sun J. Weakly supervised label propagation algorithm classifies lung cancer imaging subtypes. Sci Rep 2023; 13:5167. [PMID: 36997586 PMCID: PMC10063585 DOI: 10.1038/s41598-023-32301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Aiming at the problems of long time, high cost, invasive sampling damage, and easy emergence of drug resistance in lung cancer gene detection, a reliable and non-invasive prognostic method is proposed. Under the guidance of weakly supervised learning, deep metric learning and graph clustering methods are used to learn higher-level abstract features in CT imaging features. The unlabeled data is dynamically updated through the k-nearest label update strategy, and the unlabeled data is transformed into weak label data and continue to update the process of strong label data to optimize the clustering results and establish a classification model for predicting new subtypes of lung cancer imaging. Five imaging subtypes are confirmed on the lung cancer dataset containing CT, clinical and genetic information downloaded from the TCIA lung cancer database. The successful establishment of the new model has a significant accuracy rate for subtype classification (ACC = 0.9793), and the use of CT sequence images, gene expression, DNA methylation and gene mutation data from the cooperative hospital in Shanxi Province proves the biomedical value of this method. The proposed method also can comprehensively evaluate intratumoral heterogeneity based on the correlation between the final lung CT imaging features and specific molecular subtypes.
Collapse
Affiliation(s)
- Xueting Ren
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Liye Jia
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Zijuan Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Wei Wu
- Department of Clinical Laboratory, Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Peng Han
- North Automatic Control Technology Institute, Taiyuan, Shanxi, China
| | - Juanjuan Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China.
| | - Jingyu Sun
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
12
|
Doroudian M, Zanganeh S, Abbasgholinejad E, Donnelly SC. Nanomedicine in Lung Cancer Immunotherapy. Front Bioeng Biotechnol 2023; 11:1144653. [PMID: 37008041 PMCID: PMC10064145 DOI: 10.3389/fbioe.2023.1144653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Lung cancer is the major cause of cancer death worldwide. Cancer immunotherapy has been introduced as a promising and effective treatment that can improve the immune system’s ability to eliminate cancer cells and help establish immunological memory. Nanoparticles can contribute to the rapidly evolving field of immunotherapy by simultaneously delivering a variety of immunological agents to the target site and tumor microenvironment. Nano drug delivery systems can precisely target biological pathways and be implemented to reprogram or regulate immune responses. Numerous investigations have been conducted to employ different types of nanoparticles for immunotherapy of lung cancer. Nano-based immunotherapy adds a strong tool to the diverse collection of cancer therapies. This review briefly summarizes the remarkable potential opportunities for nanoparticles in lung cancer immunotherapy and its challenges.
Collapse
Affiliation(s)
- Mohammad Doroudian
- School of Medicine, Trinity College, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saba Zanganeh
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Seamas C. Donnelly
- Department of Clinical Medicine, Trinity College Dublin, Tallaght University Hospital, Dublin, Ireland
- *Correspondence: Seamas C. Donnelly,
| |
Collapse
|
13
|
Heterogeneity and Differentiation Trajectories of Infiltrating CD8+ T Cells in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14215183. [PMID: 36358600 PMCID: PMC9658355 DOI: 10.3390/cancers14215183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary CD8+ T cells infiltrating the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) play a crucial role in establishing anti-tumor immunotherapy. The number of CD8+ T cells affects the treatment response, but their functional status plays a more critical role, and this global landscape is still unclear. We divided CD8+ T cells into ten subsets by analyzing a LUAD single-cell dataset. The dynamic process of cell differentiation and functional exhaustion of CD8+ T cells was further discussed, and potential biomarkers in this process were screened. This study deepens the understanding of the heterogeneity of infiltrating CD8+ T cells in LUAD, and the prognostic marker provides a new target for targeted therapy and immunotherapy in LUAD patients. Abstract CD8+ T cells infiltrating the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) are critical for establishing antitumor immunity. Nevertheless, the global landscape of their numbers, functional status, and differentiation trajectories remains unclear. In the single-cell RNA-sequencing (scRNA-seq) dataset GSE131907 of LUAD, the CD8+T cells were selected for TSNE clustering, and the results showed that they could be divided into ten subsets. The cell differentiation trajectory showed the presence of abundant transition-state CD8+ T cells during the differentiation of naive-like CD8+ T cells into cytotoxic CD8+ T cells and exhausted CD8+ T cells. The differentially expressed marker genes among subsets were used to construct the gene signature matrix, and the proportion of each subset was identified and calculated in The Cancer Genome Atlas (TCGA) samples. Survival analysis showed that the higher the proportion of the exhausted CD8+ T lymphocyte (ETL) subset, the shorter the overall survival (OS) time of LUAD patients (p = 0.0098). A total of 61 genes were obtained by intersecting the differentially expressed genes (DEGs) of the ETL subset, and the DEGs of the TCGA samples were divided into a high and a low group according to the proportion of the ETL subset. Through protein interaction network analysis and survival analysis, four hub genes that can significantly affect the prognosis of LUAD patients were finally screened, and RT-qPCR and Western blot verified the differential expression of the above four genes. Our study further deepens the understanding of the heterogeneity and functional exhaustion of infiltrating CD8+ T cells in LUAD. The screened prognostic marker genes provide potential targets for targeted therapy and immunotherapy in LUAD patients.
Collapse
|
14
|
[Research Progress on Pathogenic Mechanism and Potential Therapeutic Drugs of
Idiopathic Pulmonary Fibrosis Complicated with Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:756-763. [PMID: 36167462 PMCID: PMC9619346 DOI: 10.3779/j.issn.1009-3419.2022.101.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrous interstitial lung disease of unknown etiology. IPF is also considered to be among the independent risk factors for lung cancer, increasing the risk of lung cancer by 7% and 20%. The incidence of IPF complicated with lung cancer, especially non-small cell lung cancer (NSCLC), is increasing gradually, but there is no consensus on unified management and treatment. IPF and NSCLC have similar pathological features. Both appear in the surrounding area of the lung. In pathients with IPF complicated with NSCLC, NSCLC often develops from the honeycomb region of IPF, but the mechanism of NSCLC induced by IPF remains unclear. In addition, IPF and NSCLC have similar genetic, molecular and cellular processes and common signal transduction pathways. The universal signal pathways targeting IPF and NSCLC will become potential therapeutic drugs for IPF complicated with NSCLC. This article examines the main molecular mechanisms involved in IPF and NSCLC and the research progress of drugs under development targeting these signal pathways.
.
Collapse
|
15
|
Rizzo A, Ricci AD. Predictors of response for hepatocellular carcinoma immunotherapy: is there anything on the horizon? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2075724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello,” I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Angela Dalia Ricci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Xia Z, Rong X, Dai Z, Zhou D. Identification of Novel Prognostic Biomarkers Relevant to Immune Infiltration in Lung Adenocarcinoma. Front Genet 2022; 13:863796. [PMID: 35571056 PMCID: PMC9092026 DOI: 10.3389/fgene.2022.863796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Programmed death ligand-1 (PD-L1) is a biomarker for assessing the immune microenvironment, prognosis, and response to immune checkpoint inhibitors in the clinical treatment of lung adenocarcinoma (LUAD), but it does not work for all patients. This study aims to discover alternative biomarkers. Methods: Public data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) were used to determine the gene modules relevant to tumor immunity. Protein–protein interaction (PPI) network and GO semantic similarity analyses were applied to identify the module hub genes with functional similarities to PD-L1, and we assessed their correlations with immune infiltration, patient prognosis, and immunotherapy response. Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining were used to validate the outcome at the protein level. Results: We identified an immune response–related module, and two hub genes (PSTPIP1 and PILRA) were selected as potential biomarkers with functional similarities to PD-L1. High expression levels of PSTPIP1 and PILRA were associated with longer overall survival and rich immune infiltration in LUAD patients, and both were significantly high in patients who responded to anti–PD-L1 treatment. Compared to PD-L1–negative LUAD tissues, the protein levels of PSTPIP1 and PILRA were relatively increased in the PD-L1–positive tissues, and the expression of PSTPIP1 and PILRA positively correlated with the tumor-infiltrating lymphocytes. Conclusion: We identified PSTPIP1 and PILRA as prognostic biomarkers relevant to immune infiltration in LUAD, and both are associated with the response to anti–PD-L1 treatment.
Collapse
Affiliation(s)
- Zhi Xia
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Xueyao Rong
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Dongbo Zhou
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dongbo Zhou,
| |
Collapse
|
17
|
Rizzo A, Cusmai A, Gadaleta-Caldarola G, Palmiotti G. Which role for predictors of response to immune checkpoint inhibitors in hepatocellular carcinoma? Expert Rev Gastroenterol Hepatol 2022; 16:333-339. [PMID: 35403533 DOI: 10.1080/17474124.2022.2064273] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) remains a frequently diagnosed malignancy worldwide, still representing an important cause of cancer-related death. Recent years have seen the emergence of novel systemic treatments for HCC patients, including immune checkpoint inhibitors (ICIs). Nonetheless, several questions regarding HCC immunotherapy remain unanswered, especially in terms of biochemical predictors of response. AREAS COVERED In the current paper, we will discuss available evidence regarding predictive biomarkers of response to HCC immunotherapy. A literature search was conducted in January 2022 of Pubmed/Medline, Cochrane library, and Scopus databases. EXPERT OPINION The identification of predictive biomarkers represents an unmet need in HCC patients receiving ICIs. The HCC medical community is called to further efforts aimed to elucidate the effective role of PD-L1 expression, TMB, MSI, gut microbiota, and other emerging biomarkers.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello," I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Antonio Cusmai
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello," I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Gennaro Gadaleta-Caldarola
- Medical Oncology Unit, 'Mons. R. Dimiccoli' Hospital, Barletta (BT), Azienda Sanitaria Locale Barletta, 76121, Italy
| | - Gennaro Palmiotti
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello," I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
18
|
A Novel In Situ Dendritic Cell Vaccine Triggered by Rose Bengal Enhances Adaptive Antitumour Immunity. J Immunol Res 2022; 2022:1178874. [PMID: 35155685 PMCID: PMC8824725 DOI: 10.1155/2022/1178874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 01/15/2022] [Indexed: 02/08/2023] Open
Abstract
Dendritic cell- (DC-) based vaccination has emerged as a promising antitumour immunotherapy. However, overcoming immune tolerance and immunosuppression in the tumour microenvironment (TME) is still a great challenge. Recent studies have shown that Rose Bengal (RB) can effectively induce immunogenic cell death (ICD) in cancer cells, presenting whole tumour antigens for DC processing and presentation. However, the synergistic antitumour effect of combining intralesional RB with immature DCs (RB-iDCs) remains unclear. In the present study, we investigated whether RB-iDCs have superior antitumour effects compared with either single agent and evaluated the immunological mechanism of RB-iDCs in a murine lung cancer model. The results showed that intralesional RB-iDCs suppressed subcutaneous tumour growth and lung metastasis, which resulted in 100% mouse survival and significantly increased TNF-α production by CD8+ T cells. These effects were closely related to the induction of the expression of distinct ICD hallmarks by RB in both bulk cancer cells and cancer stem cells (CSCs), especially calreticulin (CRT), thus enhancing immune effector cell (i.e., CD4+, CD8+, and memory T cells) infiltration and attenuating the accumulation of immunosuppressive cells (i.e., Tregs, macrophages, and myeloid-derived suppressor cells (MDSCs)) in the TME. This study reveals that the RB-iDC vaccine can synergistically destroy the primary tumour, inhibit distant metastasis, and prevent tumour relapse in a lung cancer mouse model, which provides important preclinical data for the development of a novel combinatorial immunotherapy.
Collapse
|
19
|
Rizzo A, Ricci AD, Di Federico A, Frega G, Palloni A, Tavolari S, Brandi G. Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy in Hepatocellular Carcinoma: Where Do We Stand? Front Oncol 2022; 11:803133. [PMID: 34976841 PMCID: PMC8718608 DOI: 10.3389/fonc.2021.803133] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains the sixth most commonly diagnosed malignancy worldwide, still representing an important cause of cancer-related death. Over the next few years, novel systemic treatment options have emerged. Among these, immune checkpoint inhibitors (ICIs) have been widely evaluated and are under assessment, as monotherapy or in combination with other anticancer agents in treatment-naïve and previously treated patients. In particular, the approval of the PD-L1 inhibitor atezolizumab plus the antiangiogenic agent bevacizumab as front-line treatment for advanced HCC has led to the adoption of this combination in this setting, and the IMbrave 150 phase III trial has established a novel standard of care. However, several questions remain unanswered, including the identification of reliable predictors of response to ICIs in HCC patients. In the current paper, we will provide an updated overview of potentially useful predictive biomarkers of response to immunotherapy in advanced HCC. A literature search was conducted in September 2021 of Pubmed/Medline, Cochrane library and Scopus databases.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Giorgio Frega
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Palloni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
20
|
Liu J, Chen Z, Li Y, Zhao W, Wu J, Zhang Z. PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Front Pharmacol 2021; 12:731798. [PMID: 34539412 PMCID: PMC8440961 DOI: 10.3389/fphar.2021.731798] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed death protein 1 (PD1) is a common immunosuppressive member on the surface of T cells and plays an imperative part in downregulating the immune system and advancing self-tolerance. Its ligand programmed cell death ligand 1 (PDL1) is overexpressed on the surface of malignant tumor cells, where it binds to PD1, inhibits the proliferation of PD1-positive cells, and participates in the immune evasion of tumors leading to treatment failure. The PD1/PDL1-based pathway is of great value in immunotherapy of cancer and has become an important immune checkpoint in recent years, so understanding the mechanism of PD1/PDL1 action is of great significance for combined immunotherapy and patient prognosis. The inhibitors of PD1/PDL1 have shown clinical efficacy in many tumors, for example, blockade of PD1 or PDL1 with specific antibodies enhances T cell responses and mediates antitumor activity. However, some patients are prone to develop drug resistance, resulting in poor treatment outcomes, which is rooted in the insensitivity of patients to targeted inhibitors. In this paper, we reviewed the mechanism and application of PD1/PDL1 checkpoint inhibitors in tumor immunotherapy. We hope that in the future, promising combination therapy regimens can be developed to allow immunotherapeutic tools to play an important role in tumor treatment. We also discuss the safety issues of immunotherapy and further reflect on the effectiveness of the treatment and the side effects it brings.
Collapse
Affiliation(s)
- Jinhua Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zichao Chen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjie Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - JiBiao Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Rizzo A, Ricci AD. PD-L1, TMB, and other potential predictors of response to immunotherapy for hepatocellular carcinoma: how can they assist drug clinical trials? Expert Opin Investig Drugs 2021; 31:415-423. [PMID: 34429006 DOI: 10.1080/13543784.2021.1972969] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) represents the sixth most commonly diagnosed malignancy worldwide, accounting for millions of deaths annually. Despite immune checkpoint inhibitors (ICIs) reported important results, only a minority of HCC patients benefit from these treatments, and the identification of predictive biomarkers of response still remains a highly unmet need. AREAS COVERED Herein, we provide a timely overview of available evidence on biochemical predictors of response to immunotherapy in advanced HCC patients; we speculate on how PD-L1, TMB, and other emerging biomarkers could assist drug clinical trials in the near future. A literature search was conducted in June 2021 using Pubmed/Medline, Cochrane library, and Scopus databases. EXPERT OPINION Reliable predictors of response to ICIs are of pivotal importance to allow a proper stratification and selection of HCC patients that could derive more benefit from immunotherapy. Well-designed, multicenter clinical trials specifically focused on predictive biomarkers are warranted in this setting, where most of evidence currently derives from retrospective, single-center studies with small sample size.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Medical Oncology, Irccs Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Angela Dalia Ricci
- Medical Oncology, Irccs Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| |
Collapse
|
22
|
Wang Z, Chen L, Ma Y, Li X, Hu A, Wang H, Wang W, Li X, Tian B, Dong J. Peptide vaccine-conjugated mesoporous carriers synergize with immunogenic cell death and PD-L1 blockade for amplified immunotherapy of metastatic spinal. J Nanobiotechnology 2021; 19:243. [PMID: 34384429 PMCID: PMC8362242 DOI: 10.1186/s12951-021-00975-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
The clinical treatment of metastatic spinal tumor remains a huge challenge owing to the intrinsic limitations of the existing methods. Programmed cell death protein 1 (PD1)/programmed cell death ligand 1 (PD-L1) pathway blockade has been explored as a promising immunotherapeutic strategy; however, their inhibition has a low response rate, leading to the minimal cytotoxic T cell infiltration. To ameliorate the immunosuppressive microenvironment of intractable tumor and further boost the efficacy of immunotherapy, we report an all-round mesoporous nanocarrier composed of an upconverting nanoparticle core and a large-pore mesoporous silica shell (UCMS) that is simultaneously loaded with photosensitizer molecules, the IDO-derived peptide vaccine AL-9, and PD-L1 inhibitor. The IDO-derived peptide can be recognized by the dendritic cells and presented to CD8+ cytotoxic T cells, thereby enhancing the immune response and promoting the killing of the IDO-expressed tumor cells. Meanwhile, the near-infrared (NIR) activated photodynamic therapy (PDT) could induce immunogenic cell death (ICD), which promotes the effector T-cell infiltration. By combining the PDT-elicited ICD, peptide vaccine and immune checkpoint blockade, the designed UCMS@Pep-aPDL1 successfully potentiated local and systemic antitumor immunity and reduced the progression of metastatic foci, demonstrating a synergistic strategy for cancer immunotherapy. ![]()
Collapse
Affiliation(s)
- Zhenqing Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yiqun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xilei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huiren Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenxing Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xiaomin Li
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Bo Tian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China. .,Department of Orthopaedic Surgery, Shanghai Baoshan District Wusong Center Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, People's Republic of China.
| |
Collapse
|
23
|
Chen H, Han KD, He ZJ, Huang YS. How to Choose a Survival Period? The Impact of Antibiotic Use on OS or PFS in NSCLC Patients Treated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Technol Cancer Res Treat 2021; 20:15330338211033498. [PMID: 34323149 PMCID: PMC8330456 DOI: 10.1177/15330338211033498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The development of immunotherapy has dramatically changed the treatment of non-small-cell lung cancer. The negative association of antibiotics on the clinical activity of immune checkpoint inhibitors in patients with NSCLC is well known. Methods: PubMed, Embase, and Medline databases were searched until January 11, 2020. We included retrospective studies of ICIs (e.g., PD-1, PD-L1, and CTLA-4). The clinical outcomes were progression-free survival (PFS) and overall survival (OS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated, and subgroup and sensitivity analyses were performed. Results: Our results indicated that the use of antibiotics reduced the survival of NSCLC patients treated with ICIs. The pooled HRs of PFS and OS were HR = 1.41 (95% CI = 1.23-1.61; P < 0.001) and HR = 2.16 (95% CI = 1.79-2.60; P < 0.001). We divided the studies into 5 subgroups according to antibiotic exposure time. Subgroup analysis showed that the patients that were administered antibiotics [−60 days; 0 days] or [−30 days; 0 days] before the initiation of ICIs treatment had a poorer OS rate, whereas those patients that were administered antibiotics [0 days; 30 days] after the initiation of ICIs treatment had a poorer PFS rate. In summary, ATB treatment in patients [−60 days; +30 days] near the initiation of ICIs treatment significantly reduced the survival in NSCLC patients. Conclusion: Our results indicated that ATB use is negatively associated with survival in NSCLC patients treated with ICIs immunotherapy. Similar studies involving a larger sample of cases are still being published. This meta-analysis identified that the timing of ATB treatment in NSCLC patients receiving ICIs immunotherapy has different effects on the OS and PFS of these patients. ATB treatment prior to the initiation of ICIs treatment affects OS, whereas ATB treatment after the initiation of ICIs treatment affects PFS.
Collapse
Affiliation(s)
- Hua Chen
- Department of Oncology, 560204Maoming people's Hospital, Maoming, Guangdong Province, China
| | - Ke-Dong Han
- Department of Cardiology, 560204Maoming people's Hospital, Maoming, Guangdong Province, China
| | - Zhi-Jiang He
- Department of Oncology, 560204Maoming people's Hospital, Maoming, Guangdong Province, China
| | - Yi-Sheng Huang
- Department of Oncology, 560204Maoming people's Hospital, Maoming, Guangdong Province, China
| |
Collapse
|
24
|
Feng J, Guiyu D, Xiongwen W. The clinical efficacy of argon-helium knife cryoablation combined with nivolumab in the treatment of advanced non-small cell lung cancer. Cryobiology 2021; 102:92-96. [PMID: 34302805 DOI: 10.1016/j.cryobiol.2021.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022]
Abstract
To investigate the clinical safety and efficacy of argon-helium knife cryoablation combined with nivolumab in the treatment of advanced non-small cell lung cancer (NSCLC), 64 patients with advanced NSCLC were retrospectively reviewed. From July 2019 to December 2019, all patients received argon-helium knife cryoablation combined with nivolumab (cryo-nivolumab group, n = 32) or cryoablation alone (cryoablation group, n = 32) at Guangzhou Fuda Cancer Hospital. Short-term efficacy, adverse effects, immune function, tumor markers cytokeratin 21-1 (CYFRA21-1), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE) and circulating tumor cells (CTCs) levels were compared between the two groups. Baseline characteristics were balanced between the two groups. All adverse effects were manageable and no significant difference was noted between the two groups (P > 0.05). Patients in cryo-nivolumab group had a significant improvement in immune function and short-term efficacy (P < 0.05). The levels of CTCs and tumor markers CYFRA21-1 and NSE in cryo-nivolumab group were reduced significantly (P < 0.05). Argon-helium knife cryoablation combined with nivolumab was well tolerated and safe and was superior to cryoablation alone in improving clinical efficacy in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Jiang Feng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Guangzhou, 510405, China; Medical Development Department, Far East Horizon Health Care, No. 9, Yaojiang Road, Shanghai, 200003, China
| | - Dong Guiyu
- The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26, Erheng Road, Yuancun, Guangzhou, 510655, China
| | - Wang Xiongwen
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Guangzhou, 510405, China.
| |
Collapse
|
25
|
Zhang B, Wang R, Li K, Peng Z, Liu D, Zhang Y, Zhou L. An Immune-Related lncRNA Expression Profile to Improve Prognosis Prediction for Lung Adenocarcinoma: From Bioinformatics to Clinical Word. Front Oncol 2021; 11:671341. [PMID: 33968781 PMCID: PMC8100529 DOI: 10.3389/fonc.2021.671341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is still the top-ranked cancer-related deaths all over the world. Now immunotherapy has emerged as a promising option for treating lung cancer. Recent evidence indicated that lncRNAs were also key regulators in immune system. We aimed to develop a novel prognostic signature based on the comprehensive analysis of immune-related lncRNAs to predict survival outcome of LUAD patients. Methods The gene expression profiles of 491 LUAD patients were downloaded from TCGA. 1047 immune-related lncRNAs were obtained through Pearson correlation analysis of immune genes and lncRNAs using statistical software R language. Univariate and multivariate Cox regression analysis were performed to determine the optimal immune-related lncRNAs prognostic signature (ITGCB-DT, ABALON, TMPO-AS1 and VIM-AS1). Finally, we validated the immune-related lncRNAs prognostic signature in The First Affiliated Hospital of Xi'an Jiaotong University cancer center cohort. Results A four immune-related lncRNAs prognostic signature was constructed to predict the survival outcome of LUAD patients. Statistical significance were found that the LUAD patients in high-risk group suffered shorter overall survival than those in low-risk group (P <0.001). ROC curve analysis shown that the four immune-related lncRNAs prognostic signature had the best predictive effect compared with age, gender, AJCC-stage, T stage, N stage, M stage (AUC = 0.756). More importantly, clinical cohort studies proved that the signature could predict the overall survival of LUAD patients with an AUC = 0.714. Conclusions In summary, we demonstrated that the novel immune-related lncRNAs signature had the ability to predict the prognosis of LUAD patients, which might serve as potential prognostic biomarkers and guide the individualized treatment strategies for LUAD patients.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kai Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziyang Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dapeng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liuzhi Zhou
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Gao R, Zhang Y, Hou W, Li J, Zhu G, Zhang X, Xu B, Wu Z, Wang H. Combination of first-line chemotherapy with Kanglaite injections versus first-line chemotherapy alone for advanced non-small-cell lung cancer: study protocol for an investigator-initiated, multicenter, open-label, randomized controlled trial. Trials 2021; 22:214. [PMID: 33731199 PMCID: PMC7966914 DOI: 10.1186/s13063-021-05169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is usually diagnosed at an advanced stage, and chemotherapy is the main treatment for this disease. Kanglaite injections (KLTi) have been widely used for the treatment of cancer in China. KLTi combined with chemotherapy could improve the short-term efficacy, quality of life, and performance status for NSCLC compared with chemotherapy alone. This trial aims to assess the long-term efficacy and safety of KLTi in combination with chemotherapy for the treatment of advanced NSCLC. Methods This will be an investigator-initiated multicenter open-label randomized controlled trial. We will randomly assign 334 eligible participants with stage IIIA-IV NSCLC to the treatment or control groups in a 1:1 ratio. Patients in both groups will be administered 4–6 cycles of first-line platinum-based double chemotherapy regimens. Patients with complete response, partial response, or stable disease after 4–6 cycles will receive non-platinum single-agent chemotherapy. Patients in the treatment group are to receive intravenous KLTi 200 ml per day continuously for 14 days, commencing on the first day of chemotherapy. The treatment will be discontinued at the time of disease progression or until unacceptable toxicity is noted. The follow-up will be conducted every 2 months until death, loss of follow-up, or 12 months from randomized enrollment. The primary outcome will be progression-free survival (PFS). The secondary outcomes will be the objective response rate, 1-year survival rate, quality of life, living ability, and blood lipids. The safety outcome will be the rate of adverse events. Discussion This study will be the first randomized controlled trial in which PFS is used as the primary outcome to test whether KLTi combined with first-line chemotherapy has superior efficacy and reduced toxicity compared to chemotherapy alone in advanced NSCLC. This will also be the first clinical study to observe the effects of KLTi on blood lipids. Trial registration ClinicalTrials.gov NCT03986528. Prospectively registered on 30 May 2019.
Collapse
Affiliation(s)
- Ruike Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Hou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Guanghui Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Zhe Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| | - Heping Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Lin PC, Wang X, Zhong XJ, Zhou N, Wu L, Li JJ, Hu YT, Shang XY. Chemical characterization of a PD-1/PD-L1 inhibitory activity fraction of the ethanol extract from Gymnadenia conopsea. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:235-249. [PMID: 33263258 DOI: 10.1080/10286020.2020.1844190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Searching for PD-1/PD-L1 inhibitor from medicinal plants has become a potential method to discover small molecular cancer immunotherapy drugs. Using PD-1/PD-L1 inhibitory activity assay in vitro, a bioactive fraction was obtained from the ethanol extract of Gymnadenia conopsea. A sensitive UPLC-HRMS/MS method was established for the rapid screening and identification of compositions from bioactive fraction. Based on the characteristic fragmentation patterns of standards analysis and extracted ion chromatogram (EIC) method, 46 compounds were rapidly screened and identified (including 35 succinic acid ester glycosides and 11 other compounds), among which 17 compounds were tentatively identified as new compounds.
Collapse
Affiliation(s)
- Peng-Cheng Lin
- College of Pharmaceutical Sciences, Qinghai Nationalities University, Xining 810000, China
| | - Xin Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Xiang-Jian Zhong
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Na Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Lei Wu
- College of Pharmaceutical Sciences, Qinghai Nationalities University, Xining 810000, China
| | - Jin-Jie Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Yang-Tao Hu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang 330047 China
| | - Xiao-Ya Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| |
Collapse
|
28
|
Rizzo A, Brandi G. Biochemical predictors of response to immune checkpoint inhibitors in unresectable hepatocellular carcinoma. Cancer Treat Res Commun 2021; 27:100328. [PMID: 33549983 DOI: 10.1016/j.ctarc.2021.100328] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/28/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the most commonly diagnosed liver cancer worldwide, and the overall survival of patients with unresectable disease is poor. In the last five years, immune checkpoint inhibitors (ICIs) have revolutionized the treatment scenario of several hematological and solid tumors, and these agents have been actively explored in unresectable HCC. Firstly, promising findings of phase I and II clinical studies reporting durable responses and a tolerable safety profile have led to the assessment of ICIs as single agents in phase III clinical studies; however, the latter have provided controversial results, and the activity of ICI monotherapy seems limited to a small subgroup of patients. Conversely, the IMbrave150 trial recently showed that, among patients with previously untreated unresectable HCC, treatment with atezolizumab plus bevacizumab resulted in significantly longer overall survival and progression-free survival compared to sorafenib monotherapy. In addition, the activity of several other ICIs is under investigation, as combination immunotherapy as well as combinations of immunotherapy with antiangiogenic agents. Nonetheless, there are currently no validated predictive biomarkers able to guide treatment choice in this setting, where the identification of specific predictors of response to ICIs represents a major challenge. In this review, we aim to provide a critical overview of recent evidence on biochemical predictors of response to ICIs in patients with unresectable HCC, especially focusing on PD-L1, TMB, MSI, and other emerging biomarkers.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy; Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 15 Bologna, Italy.
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy; Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 15 Bologna, Italy
| |
Collapse
|
29
|
Development and in vitro evaluation of BSA-coated liposomes containing Zn (II) phthalocyanine-containing ferrocene groups for photodynamic therapy of lung cancer. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Mazzaschi G, Minari R, Zecca A, Cavazzoni A, Ferri V, Mori C, Squadrilli A, Bordi P, Buti S, Bersanelli M, Leonetti A, Cosenza A, Ferri L, Rapacchi E, Missale G, Petronini PG, Quaini F, Tiseo M. Soluble PD-L1 and Circulating CD8+PD-1+ and NK Cells Enclose a Prognostic and Predictive Immune Effector Score in Immunotherapy Treated NSCLC patients. Lung Cancer 2020; 148:1-11. [PMID: 32768804 DOI: 10.1016/j.lungcan.2020.07.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Upfront criteria to foresee immune checkpoint inhibitors (ICIs) efficacy are far from being identified. Thus, we integrated blood descriptors of pro-inflammatory/immunosuppressive or effective anti-tumor response to non-invasively define predictive immune profiles in ICI-treated advanced non-small cell lung cancer (NSCLC). METHODS Peripheral blood (PB) was prospectively collected at baseline from 109 consecutive NSCLC patients undergoing ICIs as first or more line treatment. Soluble PD-L1 (sPD-L1) (immunoassay), CD8+PD-1+ and NK (FACS) cells were assessed and interlaced to generate an Immune effector Score (IeffS). Lung Immune Prognostic Index (LIPI) was computed by LDH levels and derived Neutrophil-to-Lymphocyte Ratio (dNLR). All these parameters were correlated with survival outcome and treatment response. RESULTS High sPD-L1 and low CD8+PD-1+ and NK number had negative impact on PFS (P < 0.001), OS (P < 0.01) and ICI-response (P < 0.05). Thus, sPD-L1high, CD8+PD-1+low and NKlow were considered as risk factors encompassing IeffS, whose prognostic power outperformed that of individual features and slightly exceeded that of LIPI. Accordingly, the absence of these risk factors portrayed a favorable IeffS characterizing patients with significantly (P < 0.001) prolonged PFS (median NR vs 2.3 months) and OS (median NR vs 4.1) and greater benefit from ICIs (P < 0.01). We then combined each risk parameter composing IeffS and LIPI (LDHhigh, dNLRhigh), thus defining three distinct prognostic classes. A remarkable impact of IeffS-LIPI integration was documented on survival outcome (PFS, HR = 4.61; 95%CI = 2.32-9.18; P < 0.001; OS, HR=4.03; 95%CI=1.91-8.67; P < 0.001) and ICI-response (AUC=0.90, 95%CI=0.81-0.97, P < 0.001). CONCLUSION Composite risk models based on blood parameters featuring the tumor-host interaction might provide accurate prognostic scores able to predict ICI benefit in NSCLC patients.
Collapse
Affiliation(s)
- G Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy; Department of Medicine & Surgery, University of Parma, Italy
| | - R Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy.
| | - A Zecca
- Infectious Diseases and Hepatology Unit, Laboratory of Viral Immunopathology, University Hospital of Parma, Italy
| | - A Cavazzoni
- Department of Medicine & Surgery, University of Parma, Italy
| | - V Ferri
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - C Mori
- Infectious Diseases and Hepatology Unit, Laboratory of Viral Immunopathology, University Hospital of Parma, Italy
| | - A Squadrilli
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - P Bordi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - S Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - M Bersanelli
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - A Leonetti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - A Cosenza
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - L Ferri
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - E Rapacchi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - G Missale
- Department of Medicine & Surgery, University of Parma, Italy; Infectious Diseases and Hepatology Unit, Laboratory of Viral Immunopathology, University Hospital of Parma, Italy
| | - P G Petronini
- Department of Medicine & Surgery, University of Parma, Italy
| | - F Quaini
- Department of Medicine & Surgery, University of Parma, Italy
| | - M Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy; Department of Medicine & Surgery, University of Parma, Italy
| |
Collapse
|
31
|
Lieverse RIY, Van Limbergen EJ, Oberije CJG, Troost EGC, Hadrup SR, Dingemans AMC, Hendriks LEL, Eckert F, Hiley C, Dooms C, Lievens Y, de Jong MC, Bussink J, Geets X, Valentini V, Elia G, Neri D, Billiet C, Abdollahi A, Pasquier D, Boisselier P, Yaromina A, De Ruysscher D, Dubois LJ, Lambin P. Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: a multicentre, randomised controlled open-label phase II trial. BMC Cancer 2020; 20:557. [PMID: 32539805 PMCID: PMC7296663 DOI: 10.1186/s12885-020-07055-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND About 50% of non-small cell lung cancer (NSCLC) patients have metastatic disease at initial diagnosis, which limits their treatment options and, consequently, the 5-year survival rate (15%). Immune checkpoint inhibitors (ICI), either alone or in combination with chemotherapy, have become standard of care (SOC) for most good performance status patients. However, most patients will not obtain long-term benefit and new treatment strategies are therefore needed. We previously demonstrated clinical safety of the tumour-selective immunocytokine L19-IL2, consisting of the anti-ED-B scFv L19 antibody coupled to IL2, combined with stereotactic ablative radiotherapy (SABR). METHODS This investigator-initiated, multicentric, randomised controlled open-label phase II clinical trial will test the hypothesis that the combination of SABR and L19-IL2 increases progression free survival (PFS) in patients with limited metastatic NSCLC. One hundred twenty-six patients will be stratified according to their metastatic load (oligo-metastatic: ≤5 or poly-metastatic: 6 to 10) and randomised to the experimental-arm (E-arm) or the control-arm (C-arm). The C-arm will receive SOC, according to the local protocol. E-arm oligo-metastatic patients will receive SABR to all lesions followed by L19-IL2 therapy; radiotherapy for poly-metastatic patients consists of irradiation of one (symptomatic) to a maximum of 5 lesions (including ICI in both arms if this is the SOC). The accrual period will be 2.5-years, starting after the first centre is initiated and active. Primary endpoint is PFS at 1.5-years based on blinded radiological review, and secondary endpoints are overall survival, toxicity, quality of life and abscopal response. Associative biomarker studies, immune monitoring, CT-based radiomics, stool collection, iRECIST and tumour growth rate will be performed. DISCUSSION The combination of SABR with or without ICI and the immunocytokine L19-IL2 will be tested as 1st, 2nd or 3rd line treatment in stage IV NSCLC patients in 14 centres located in 6 countries. This bimodal and trimodal treatment approach is based on the direct cytotoxic effect of radiotherapy, the tumour selective immunocytokine L19-IL2, the abscopal effect observed distant from the irradiated metastatic site(s) and the memory effect. The first results are expected end 2023. TRIAL REGISTRATION ImmunoSABR Protocol Code: NL67629.068.18; EudraCT: 2018-002583-11; Clinicaltrials.gov: NCT03705403; ISRCTN ID: ISRCTN49817477; Date of registration: 03-April-2019.
Collapse
Affiliation(s)
- Relinde I Y Lieverse
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Cary J G Oberije
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Marie C Dingemans
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Crispin Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Christophe Dooms
- Department of Respiratory Diseases, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Monique C de Jong
- Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066, Amsterdam, CX, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xavier Geets
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, MIRO - IREC Lab, UCL, Bruxelles, Belgium
| | - Vincenzo Valentini
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Istituto di Radiologia, Roma, Italy
| | - Giuliano Elia
- Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Charlotte Billiet
- Department of Radiation Oncology, Iridium Network, Wilrijk (Antwerp), Belgium
- University of Antwerp, Faculty of Medicine and Health Sciences, Campus Drie Eiken, Building S, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Pasquier
- Academic Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center, Lille, France
| | - Pierre Boisselier
- Department of Radiation Oncology, ICM-Val d'Aurelle, Université de Montpellier, Montpellier, France
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ludwig J Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
32
|
Construction of immune-related and prognostic lncRNA clusters and identification of their immune and genomic alterations characteristics in lung adenocarcinoma samples. Aging (Albany NY) 2020; 12:9868-9881. [PMID: 32445554 PMCID: PMC7288974 DOI: 10.18632/aging.103251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in various biological processes of lung adenocarcinoma (LUAD), such as immune response regulation, tumor microenvironment remodeling and genomic alteration. Nevertheless, immune-related lncRNAs and their immune and genomic alterations characteristics in LUAD samples still remain unreported. Here, using various public databases, statistic and software tools, we constructed two immune-related lncRNA clusters with different immune and genomic alterations characteristics. Notably, cluster 1 had a stronger immunosuppressive tumor microenvironment (TME) and a higher mutation frequency than cluster 2, especially the mutant genes, such as Kelch-like ECH-associated protein 1 (KEAP1) and toll like receptor 4 (TLR4). In cluster 1, both the amplified and deleted portions of copy number variation (CNV) segments were enriched and cyclin dependent kinase inhibitor 2A (CDKN2A) was significantly deleted. GSVA analysis revealed that these immune-related lncRNAs may be involved in stem cell and EMT functions. Furthermore, cluster 1 was related to worse prognosis of LUAD patients. Therefore, we constructed two immune-related and prognostic lncRNA clusters and identified their immune and genomic alterations characteristics in LUAD samples, which could well divide LUAD patients into different immune phenotypes and help to understand immune molecular mechanisms of LUAD.
Collapse
|
33
|
Li Q, Li J, Wang S, Wang J, Chen X, Zhou D, Fang Y, Gao A, Sun Y. Overexpressed immunoglobulin-like transcript (ILT) 4 in lung adenocarcinoma is correlated with immunosuppressive T cell subset infiltration and poor patient outcomes. Biomark Res 2020; 8:11. [PMID: 32368343 PMCID: PMC7191800 DOI: 10.1186/s40364-020-00191-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/17/2020] [Indexed: 12/28/2022] Open
Abstract
Background The poor response to current PD-1/PD-L1 inhibitors in lung cancer patients requires development of novel immunotargets. Immunoglobulin-like transcript (ILT)4 is an immunosuppressive molecule mainly expressed in myeloid innate cells. Recent studies showed that ILT4 was highly expressed in multiple malignant cells and regulated tumor biologies including proliferation, invasion and metastasis. However, the immunomodulatory role of tumor cell-derived ILT4 is unclear. Here we aimed to analyze the correlation of tumor cell ILT4 expression with T cell infiltration and subset distribution, illustrate ILT4-regulated immunosuppressive microenvironment, and raise tumor cell-derived ILT4 as a novel immunotherapeutic target and prognostic biomarker for lung adenocarcinoma (LUAD) patients. Methods We collected the tissue samples and corresponding clinicopathological data from 216 primary LUAD patients. Using immunohistochemical staining and public database analyses we investigated the relationship between ILT4 expression and different T cell subset density as well as patient outcomes. Results Enriched ILT4 expression in tumor cells of LUAD tissues indicated reduced T cell infiltration in the tumor microenvironment (TME), advanced diseases and poor patient overall survival (OS). Further T cell subset analyses revealed that ILT4 expression was correlated with decreased CD8+T cell and increased Treg frequency in both cancer nest and stroma, but not with altered CD4+T cell frequency. High ILT4 level combined with low CD8+T cell/high Treg density predicted markedly poorer clinical outcomes compared with any of these biomarkers alone. Conclusions Tumor cell-derived ILT4 is correlated with immunosuppressive T cell subset infiltration and poor clinical outcomes, and might be a potential immunotherapeutic target and prognostic biomarker for LUAD patients. Combined ILT4 expression and CD8+ T cell/Treg frequency in tumor infiltrating lymphocytes (TILs) are stronger predictors for patient outcomes.
Collapse
Affiliation(s)
- Qing Li
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,2Department of Oncology, Yantaishan Hospital, Yantai, 264000 Shandong P.R. China
| | - Juan Li
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| | - Shuyun Wang
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| | - Jingnan Wang
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| | - Xiaozheng Chen
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China
| | - Dongmei Zhou
- 2Department of Oncology, Yantaishan Hospital, Yantai, 264000 Shandong P.R. China
| | - Yuying Fang
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China
| | - Aiqin Gao
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| | - Yuping Sun
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| |
Collapse
|