1
|
Jurić I, Kelam N, Racetin A, Filipović N, Čarić D, Rošin M, Vukojević K. WNT Signaling Factors as Potential Synovial Inflammation Moderators in Patients with Hip Osteoarthritis. Biomedicines 2025; 13:995. [PMID: 40299569 PMCID: PMC12025112 DOI: 10.3390/biomedicines13040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
Background: The main feature of osteoarthritis (OA) is the deterioration of articular cartilage, but numerous studies have demonstrated the role of synovial inflammation in the early stages of the disease, leading to further progression of OA. The WNT signaling pathway is involved in numerous activities in joint tissue, but there is a lack of evidence considering the role of WNT in OA synovitis. Our research aims to investigate the expression of WNT Family Member 5A/B (WNT5A/B), β-catenin, acetyl-α-tubulin, Dishevelled-1 (DVL-1), and Inversin (INV) in the synovial membrane of osteoarthritis (OA) hips. Methods: The immunohistochemical expressions of the aforementioned proteins in the synovial membrane were analyzed and compared with samples of control group participants with fractured femoral necks. Results: The immunoexpression of acetyl-α-tubulin was significantly increased in the intima (p < 0.0001) and subintima (p < 0.0001) of the group with OA compared with the intima and subintima of the control group. At the same time, acetyl-α-tubulin was also more highly expressed in the intima of the OA group than in the subintima of the OA group (p < 0.05); we found the same expression pattern in the control group (p < 0.0001). The differential analysis of the GEO dataset did not show significant differences between the osteoarthritis (OA) and control groups in the expression of TUBA1A. β-catenin was significantly increased in the subintima (p < 0.01) of the group with OA compared to the subintima of the control group. WNT expression has significantly higher positivity in the subintima than in the intima, especially in the control group (p < 0.01). WNT5A and WNT5B were significantly down-regulated in OA compared to the control in the differential analysis of the GEO dataset. The expression of INV and DVL-1 in our study and the differential analysis of the GEO dataset did not differ significantly between the osteoarthritis (OA) and control groups. Conclusions: Based on our results, we suggest that acetyl-α-tubulin and β-catenin might be involved in synovial membrane inflammation in OA and serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Ivana Jurić
- Department of Emergency Medicine, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia;
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
| | - Davor Čarić
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (D.Č.); (M.R.)
| | - Matko Rošin
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (D.Č.); (M.R.)
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
- Mediterranean Institute for Life Sciences, University of Split, Meštrovićevo Šetalište 45, 21000 Split, Croatia
| |
Collapse
|
2
|
Yan W, Yang H, Duan D, Wu Y, Liu Y, Mao J, Zhao Y, Ye J. Bone marrow mesenchymal stem cells-derived exosomal miR-145-5p reduced non-small cell lung cancer cell progression by targeting SOX9. BMC Cancer 2024; 24:883. [PMID: 39039505 PMCID: PMC11265358 DOI: 10.1186/s12885-024-12523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND The role of miR-145-5p in non-small cell lung cancer (NSCLC) has been studied, however, the regulation of hBMSCs-derived exosomes (Exo) transmitted miR-145-5p in NSCLC was still unknown. This study aimed to investigate the role of hBMSCs-derived exosomes (Exo) in the progression of NSCLC. METHODS The Exo was extracted from hBMSCs and added to A549 and H1299 cell culture, followed by the detection of cell proliferation, migration, and invasion. The correlation between the expression of miR-145-5p and SOX9, as well as their binding relationship was determined by correlation analysis, luciferase gene reporter assay and RNA pull-down assays. The in vivo animal model was established to further verify the impact of hBMSCs-Exo. RESULTS It showed that miR-145-5p was downregulated and SOX9 was upregulated in NSCLC tissues. HBMSCs-derived Exo, and hBMSCs-Exo with overexpression of miR-145-5p could inhibit cell proliferation, migration, and invasion of both A549 and H1299 cells, and prevent against tumor progression in vivo. MiR-145-5p and SOX9 were found to be able to bind to each other, and a negative correlation were observed between the expression of them in NSCLC tissues. Furthermore, inhibition of SOX9 could reversed the suppressed role of miR-145-5p in vitro and in vivo. CONCLUSION Therefore, HBMSCs-Exo effectively transmitted miR-145-5p, leading to the suppression of malignant development in NSCLC through the regulation of SOX9.
Collapse
Affiliation(s)
- Wu Yan
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Haiyu Yang
- Drugs and Medical Devices Clinical Trial Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Dekun Duan
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Yufeng Wu
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Youhu Liu
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Jianping Mao
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Yong Zhao
- Jiangxi Beizheng Stem Cell Science Co. Ltd., Ganzhou, Jiangxi, 341000, PR China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
3
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
4
|
Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res 2024; 38:2764-2799. [PMID: 38522945 DOI: 10.1002/ptr.8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune inflammatory disease characterized by immune response overexpression, causing pain and swelling in the synovial joints. This condition is caused by auto-reactive antibodies that attack self-antigens due to their incapacity to distinguish between self and foreign molecules. Dysregulated activity within numerous signalling and immunological pathways supports the disease's development and progression, elevating its complexity. While current treatments provide some alleviation, their effectiveness is accompanied by a variety of adverse effects that are inherent in conventional medications. As a result, there is a deep-rooted necessity to investigate alternate therapeutic strategies capable of neutralizing these disadvantages. Medicinal herbs display a variety of potent bioactive phytochemicals that are effective in the complementary management of disease, thus generating an enormous potency for the researchers to delve deep into the development of novel phytomedicine against autoimmune diseases, although additional evidence and understanding are required in terms of their efficacy and pharmacodynamic mechanisms. This literature-based review highlights the dysregulation of immune tolerance in rheumatoid arthritis, analyses the pathophysiology, elucidates relevant signalling pathways involved, evaluates present and future therapy options and underscores the therapeutic attributes of a diverse array of medicinal herbs in addressing this severe disease.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Monisha Jayaprakasan
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | | | | | | | | |
Collapse
|
5
|
周 铎, 杨 德. [miRNA Is Involved in the Pathogenesis of Multiple Diseases by Targeting Osteoprotegerin]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:777-782. [PMID: 38948285 PMCID: PMC11211783 DOI: 10.12182/20240560607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 07/02/2024]
Abstract
As a member of the tumor necrosis factor receptor family, osteoprotegerin (OPG) is highly expressed in adults in the lung, heart, kidney, liver, spleen, thymus, prostate, ovary, small intestines, thyroid gland, lymph nodes, trachea, adrenal gland, the testis, and bone marrow. Together with the receptor activator of nuclear factor-κB (RANK) and the receptor activator of nuclear factor-κB ligand (RANKL), it forms the RANK/RANKL/OPG pathway, which plays an important role in the molecular mechanism of the development of various diseases. MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs performing regulatory functions in eukaryotes, with a size of about 20-25 nucleotides. miRNA genes are transcribed into primary transcripts by RNA polymerase, bind to RNA-induced silencing complexes, identify target mRNAs through complementary base pairing, with a single miRNA being capable of targeting hundreds of mRNAs, and influence the expression of many genes through pathways involved in functional interactions. In recent years, a large number of studies have been done to explore the mechanism of action of miRNA in diseases through miRNA isolation, miRNA quantification, miRNA spectrum analysis, miRNA target detection, in vitro and in vivo regulation of miRNA levels, and other technologies. It was found that miRNA can play a key role in the pathogenesis of osteoporosis, rheumatoid arthritis, and other diseases by targeting OPG. The purpose of this review is to explore the interaction between miRNA and OPG in various diseases, and to propose new ideas for studying the mechanism of action of OPG in diseases.
Collapse
Affiliation(s)
- 铎 周
- 重庆医科大学附属口腔医院 牙体牙髓科 (重庆 401147)Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验室(重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - 德琴 杨
- 重庆医科大学附属口腔医院 牙体牙髓科 (重庆 401147)Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验室(重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
6
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. Bridging autoimmunity and epigenetics: The influence of lncRNA MALAT1. Pathol Res Pract 2024; 254:155041. [PMID: 38199135 DOI: 10.1016/j.prp.2023.155041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Autoimmune disorders represent a heterogeneous spectrum of conditions defined by an immune system's atypical reactivity against endogenous constituents. In the complex anatomy of autoimmune pathogenesis, lncRNAs have appeared as pivotal arbiters orchestrating the mechanisms of ailment initiation, immune cascades, and transcriptional modulation. One such lncRNA, MALAT1, has garnered attention for its potential association with the aetiology of several autoimmune diseases. MALAT1 has been shown to influence a wide spectrum of cellular processes, which include cell multiplication and specialization, as well as apoptosis and inflammation. In autoimmune diseases, MALAT1 exhibits both disease-specific and shared patterns of dysregulation, often correlating with disease severity. The molecular mechanisms underlying MALAT1's impact on autoimmune disorders include epigenetic modifications, alternative splicing, and modulation of gene expression networks. Additionally, MALAT1's intricate interactions with microRNAs, other lncRNAs, and protein-coding genes further underscore its role in immune regulation and autoimmune disease progression. Understanding the contribution of MALAT1 in autoimmune pathogenesis across different diseases could offer valuable insights into shared pathways, thereby clearing a path for the creation of innovative and enhanced therapeutic approaches to address these complex disorders. This review aims to elucidate the complex role of MALAT1 in autoimmune disorders, encompassing rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease (Crohn's disease and ulcerative colitis), type 1 diabetes, systemic lupus erythematosus, and psoriasis. Furthermore, it discusses the potential of MALAT1 as a diagnostic biomarker, therapeutic target, and prognostic indicator.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Senthilkumar MB, Sarangi P, Amit S, Senguttuvan S, Kumar N, Jayandharan GR. Targeted delivery of miR125a-5p and human Factor VIII attenuates molecular mediators of hemophilic arthropathy. Thromb Res 2023; 231:8-16. [PMID: 37741049 DOI: 10.1016/j.thromres.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Hemophilic arthropathy (HA) due to repeated bleeding into the joint cavity is a major cause of morbidity in patients with hemophilia. The molecular mechanisms contributing to this condition are not well characterized. MicroRNAs (miRs) are known to modulate the phenotype of multiple joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). Since miR125a is known to modulate disease progression in OA and RA, we performed a targeted screen of miR125a-5p and its target genes in a murine model of chronic HA. A digital PCR analysis demonstrated significant downregulation of miR125a-5p (2-fold vs control joint). Further molecular evaluation revealed elevated expression of the immunological markers STAT1 (7.6-fold vs control joint) and TRAF6 (10.6 fold vs control joint), which are direct targets of miR125a-5p. We then studied the impact of targeted overexpression of miR125a-5p using an Adeno-associated virus (AAV) vector in modulating the molecular mediators of HA. AAV5-miR125a vectors were administered intra-articularly either alone or in combination with a low dose of AAV8-based human factor 8 (F8) gene in a murine model of HA. We observed significantly increased expression of miR125a-5p in AAV5-miR125a administered mice (~12 fold vs injured joint) or in combination with AAV8-F8 vectors (~44 fold vs injured joint). The activity assay revealed ~17 %-20 % FVIII levels in mice that received low dose liver-directed F8 gene therapy. Further immunohistochemical analysis, demonstrated a decrease in inflammatory markers (STAT1 and TRAF6) and cartilage-degrading matrix metalloproteinases (MMPs) 3, 9, 13 in the joints of treated animals. These data highlight the crucial role of miR125a-5p in the development of HA.
Collapse
Affiliation(s)
- Mohankumar B Senthilkumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Pratiksha Sarangi
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Sonal Amit
- Department of Pathology, Government Medical College, Jalaun (Orai), Uttar Pradesh, India
| | | | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Giridhara R Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India.
| |
Collapse
|
8
|
Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol 2023; 14:1243820. [PMID: 37637408 PMCID: PMC10450980 DOI: 10.3389/fphar.2023.1243820] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/β-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.
Collapse
Affiliation(s)
- Mengyuan Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Fei Tian
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Guo
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Cui X, Wang J, Fan C, Jiang H, Li W. Astragalosides inhibit proliferation of fibroblast-like synoviocytes in experimental arthritis by modulating LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis. Int J Rheum Dis 2023; 26:1547-1556. [PMID: 37317788 DOI: 10.1111/1756-185x.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
AIM Astragalus membranaceus (Fisch.) Bunge., the dried root of the plant A. membranaceus, is widely used in the treatment of rheumatoid arthritis (RA) in many Chinese herbal remedies. Astragalosides (AST) is the primary medicinal ingredient of A. membranaceus and has a therapeutic effect on RA, but the specific mechanism of this effect has yet to be elucidated. METHODS In this study, MTT and flow cytometry were used to determine the effects of AST on fibroblast-like synoviocyte (FLS) proliferation and cell cycle progression. Additionally, real-time quantitative polymerase chain reaction and Western blotting were used to determine the effects of AST on the LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis and on critical genes that are essential to the Wnt pathway. RESULTS The data showed that after the administration of AST, FLS proliferation and LncRNA S56464.1, β-catenin, C-myc, Cyclin D1, and p-GSK-3β(Ser9)/GSK-3β expression were significantly reduced, and miR-152 and SFRP4 expression was notably increased. CONCLUSION These results suggest that AST can inhibit FLS proliferation by modulating the LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis and that AST may be a potential therapeutic drug for RA.
Collapse
Affiliation(s)
- Xiaoya Cui
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Basic Medical, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui, China
| | - Weiping Li
- College of Basic Medical, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Yang X, Tao Y, Jin O, Lai J, Yang X. MiR-17-5p promoter methylation regulated by DNA methyltransferase 3 beta (DNMT3B) expedites endometriosis via the Krüppel-like factor 12 (KLF12)/Wnt/β-catenin axis. J Reprod Immunol 2023; 158:103974. [PMID: 37290172 DOI: 10.1016/j.jri.2023.103974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Endometriosis (EM) is a common chronic disease in women with a high incidence, and aberrant DNA methylation and circulating endometrial cells (CECs) have been reported to be involved in the development of EM. However, the underlying mechanisms by which DNA methylation regulates EM progression have not been fully elucidated. In our study, we demonstrated that the DNA methyltransferase 3 beta (DNMT3B)-mediated DNA methylation modification enhanced EM progression through regulating miR-17-5p/KLF12/Wnt/β-catenin axis. In detail, expression levels of miR-17-5p were significantly downregulated in EM tissues and serums, and we found that DNMT3B elevated the methylation modification of the miR-17-5p promoter, thereby suppressing the expression of miR-17-5p. Subsequently, functional experiments showed that silencing DNMT3B inhibited cell viability and epithelial-mesenchymal transition (EMT) and promoted cell apoptosis in CECs, whereas this effect could be reversed by knocking down miR-17-5p. Besides, overexpression of miR-17-5p repressed EM progression in vivo. Moreover, we found that miR-17-5p could target negative regulation of Krüppel-like factor 12 (KLF12) and KLF12 overexpression could rescue the effect of over-miR-17-5p. Besides, miR-17-5p was able to suppress the Wnt/β-catenin signaling pathway, and blocked Wnt/β-catenin pathway by XAV-939 reversed the influence of knockdown of miR-17-5p. Overall, our data indicated that DNMT3B-mediated DNA methylation leading to miR-17-5p inhibition exacerbated the process of EM by targeting KLF12/Wnt/β-catenin axis, which provided a new perspective on targeted therapies for EM.
Collapse
Affiliation(s)
- Xiaomin Yang
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215031, China.
| | - Yueping Tao
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Jiaxing University Affiliated TCM Hospital, Jiaxing, Zhejiang Province 314000, China.
| | - Ou Jin
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Jiaxing University Affiliated TCM Hospital, Jiaxing, Zhejiang Province 314000, China.
| | - Juan Lai
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Jiaxing University Affiliated TCM Hospital, Jiaxing, Zhejiang Province 314000, China.
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215031, China.
| |
Collapse
|
11
|
Sun Y, Zhao J, Wu Q, Zhang Y, You Y, Jiang W, Dai K. Chondrogenic primed extracellular vesicles activate miR-455/SOX11/FOXO axis for cartilage regeneration and osteoarthritis treatment. NPJ Regen Med 2022; 7:53. [PMID: 36114225 PMCID: PMC9481593 DOI: 10.1038/s41536-022-00250-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractOsteoarthritis (OA) is the leading cause of disability worldwide. Considerable progress has been made using stem-cell-derived therapy. Increasing evidence has demonstrated that the therapeutic effects of BMSCs in chondrogenesis could be attributed to the secreted small extracellular vesicles (sEVs). Herein, we investigated the feasibility of applying engineered EVs with chondrogenic priming as a biomimetic tool in chondrogenesis. We demonstrated that EVs derived from TGFβ3-preconditioned BMSCs presented enriched specific miRNAs that could be transferred to native BMSCs to promote chondrogenesis. In addition, We found that EVs derived from TGFβ3-preconditioned BMSCs rich in miR-455 promoted OA alleviation and cartilage regeneration by activating the SOX11/FOXO signaling pathway. Moreover, the designed T3-EV hydrogel showed great potential in cartilage defect treatment. Our findings provide new means to apply biosafe engineered EVs from chondrogenic primed-BMSCs for cartilage repair and OA treatment, expanding the understanding of chondrogenesis and OA development modulated by EV-miRNAs in vivo.
Collapse
|
12
|
Geng X, Zhao C, Zhang Z, Liu Y, Zhang X, Ding P. Circ_0088036 facilitates the proliferation and inflammation and inhibits the apoptosis of fibroblast-like synoviocytes through targeting miR-326/FZD4 axis in rheumatoid arthritis. Autoimmunity 2022; 55:157-167. [PMID: 35352610 DOI: 10.1080/08916934.2022.2027920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The function and pathological significance of circular RNAs (circRNAs) in autoimmune diseases, such as rheumatoid arthritis (RA), are barely known. Here, we explored the role of circ_0088036 in RA progression and its associated mechanism. METHODS The synovial lining layer tissues of RA patients and non-RA control patients were collected for clinical study in vivo, and tumour necrosis factor α (TNF-α)-induced RA-fibroblast-like synoviocytes (RA-FLSs) were used for the experiments in vitro. Cell proliferation was assessed by Cell Counting Kit 8 (CCK8) assay and flow cytometry. Cell apoptosis was analyzed by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was conducted to analyze the release of pro-inflammatory cytokines. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the target interaction between microRNA-326 (miR-326) and circ_0088036 or frizzled class receptor 4 (FZD4). RESULTS Circ_0088036 expression was elevated in the synovial lining layer tissues of RA patients and TNF-α-treated RA-FLSs. Circ_0088036 interference largely reversed TNF-α-induced proliferation and inflammation in RA-FLSs. The interaction between circ_0088036 and miR-326 was verified, and miR-326 silencing largely reversed circ_0088036 knockdown-mediated effects in TNF-α-treated RA-FLSs. MiR-326 bound to the 3' untranslated region (3'UTR) of FZD4 in RA-FLSs. FZD4 overexpression largely diminished miR-326 accumulation-mediated influences in TNF-α-treated RA-FLSs. Circ_0088036 could up-regulate FZD4 by sponging miR-326 in RA-FLSs. CONCLUSION Circ_0088036 contributed to TNF-α-induced RA progression partly by targeting miR-326/FZD4 signalling.
Collapse
Affiliation(s)
- Xueli Geng
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Chunnan Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Zezhi Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Yanling Liu
- Department of Rheumatism Immunity, Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Xiuqin Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Peijian Ding
- Department of Gastric & Intestine, Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
13
|
Liu L, Chen H, Jiang T, He D. MicroRNA-106b Overexpression Suppresses Synovial Inflammation and Alleviates Synovial Damage in Patients with Rheumatoid Arthritis. Mod Rheumatol 2021; 32:1054-1063. [PMID: 34850088 DOI: 10.1093/mr/roab108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To explore the effect of miR-106b on synovial inflammation and damage in rheumatoid arthritis (RA) patients, and further to investigate its possible mechanism. METHODS : Quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence, in situ hybridization and immunohistochemistry assay were separately used to verify the levels of miR-106b and cytokines in the synovial tissues of patients with RA or osteoarthritis (OA). Pearson correlation analysis was conducted to examine the bivariate relationship between miR-106b and cytokines or RANKL. Following the isolation and culture of fibroblast-like synoviocytes (FLS), the cells were transfected with lentivirus-mediated miR-106b mimic, miR-106b inhibitor, and negative control miR-106b mimic, respectively. Thereafter, cell proliferation was measured by Cell Counting Kit-8 assay, and cell invasion and migration capacity was assessed by Transwell assay. Furthermore, concentration and expression of cytokines were separately detected by Enzyme linked immunosorbent assay and Western blot. RESULTS Compared with osteoarthritis, validation by qRT-PCR showed that RA patients had a lower level of miR-106b and higher levels of receptor activator of nuclear factor-κ B ligand (RANKL), tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6). Additionally, the scatter plot showed that the relative transcription of miR-106b level was negatively correlated to the level of TNF-a, IL-6, and RNKAL in the synovial tissues of both RA and OA patients (All P<0.05). Furthermore, miR-106b overexpression suppressed cell proliferation, migration and invasion capacity of human RA-FLS. CONCLUSIONS miR-106b overexpression suppresses synovial inflammation and alleviates synovial damage, thus it may be served as a potential therapeutic target for RA patients.
Collapse
Affiliation(s)
- Linchen Liu
- Department of Rheumatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing China
| | - Haiyan Chen
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai China
| | - Ting Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai China
| | - Dongyi He
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
14
|
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021; 17:692-705. [PMID: 34588660 DOI: 10.1038/s41584-021-00687-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.
Collapse
Affiliation(s)
- Shabana A Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Michelle J Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Li J, Liu D, Wu K, Chen Q, Lei J. Circ_0003972 Promotes the Proliferation and Inflammation of Fibroblast-like Synovial Cells in Rheumatoid Arthritis through Regulation of the miR-654-5p/FZD4 Axis. Immunol Invest 2021; 51:1437-1451. [PMID: 34325604 DOI: 10.1080/08820139.2021.1958837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to play an important role in rheumatoid arthritis (RA) progression. This study aims to explore the role and mechanism of circ_0003972 in RA progression. METHODS Quantitative real-time PCR was used to determine gene expression. The proliferation and apoptosis of human RA fibroblast-like synovial (HFLS-RA) cells were measured using cell counting kit 8 assay, EdU staining and flow cytometry. Western blot analysis was performed to measure protein expression, and ELISA assay was used to examine the concentrations of inflammation factors. The interaction between miR-654-5p and circ_0003972 or FZD4 was confirmed by dual-luciferase reporter assay and RIP assay. RESULTS Circ_0003972 was highly expressed in RA patients and HFLS-RA cells. Circ_0003972 knockdown inhibited the proliferation, inflammation, while promoted the apoptosis of TNFα-induced HFLS-RA cells. MiR-654-5p was downregulated in RA patients and HFLS-RA cells, and it could be sponged by circ_0003972. MiR-654-5p inhibitor reversed the effect of circ_0003972 silencing on the proliferation, inflammation, and apoptosis of TNFα-induced HFLS-RA cells. Frizzled-4 (FZD4) could be targeted by miR-654-5p, and its expression was positively regulated by circ_0003972. Furthermore, FZD4 overexpression also reversed the effects of miR-654-5p on proliferation, inflammation and apoptosis in TNFα-induced HFLS-RA cells. CONCLUSION Our data suggested that circ_0003972 might promote the proliferation and inflammation of HFLS-RA cells to accelerate RA progression via regulating miR-654-5p/FZD4.
Collapse
Affiliation(s)
- Juan Li
- Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an City, China
| | - Dan Liu
- Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an City, China.,Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Jianhong Lei
- Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an City, China
| |
Collapse
|
16
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
17
|
Wang J, Kong X, Hu H, Shi S. Knockdown of long non-coding RNA PVT1 induces apoptosis of fibroblast-like synoviocytes through modulating miR-543-dependent SCUBE2 in rheumatoid arthritis. J Orthop Surg Res 2020; 15:142. [PMID: 32293498 PMCID: PMC7158104 DOI: 10.1186/s13018-020-01641-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Rheumatoid arthritis (RA), a kind of autoimmune disorder, is featured by many physical symptoms and proliferation of fibroblast-like synoviocytes (FLSs). The relevance of long non-coding RNAs (lncRNAs) in the progression of RA has been probed. Hence, the goal of this report was to investigate the action of plasmacytoma variant translocation 1 (PVT1), a lncRNA, in FLSs and the basic mechanism. Methods Initially, RA rats were developed to evaluate the expression of PVT1, microRNA-543 (miR-543), and signal peptide-CUB-EGF-like containing protein 2 (SCUBE2) in synovial tissues. Enhancement or loss of PVT1 or miR-543 was achieved to explore their effects on proliferation, cell cycle, and apoptosis of FLSs. The interaction between PVT1 and miR-543 and between miR-543 and its putative target SCUBE2 was examined to elucidate the correlations. Finally, the protein expression of proliferation- and apoptosis-associated genes were assessed by western blot assays. Results PVT1 was overexpressed in synovial tissues from RA patients through microarray expression profiles. The PVT1 and SCUBE2 expression was boosted, and miR-543 was reduced in synovial tissues of rats with RA. PVT1 specifically bound to miR-543, and miR-543 negatively regulated SCUBE2 expression. Overexpression of PVT1 or silencing of miR-543 enhanced SCUBE2 expression, thereby promoting proliferation and interleukin-1β (IL-1β) secretion, while inhibiting apoptosis rate of FLSs. Conversely, si-SCUBE2 reversed the role of miR-543 inhibitor. Conclusion The key findings support that PVT1 knockdown has the potency to hinder RA progression by inhibiting SCUBE2 expression to sponge miR-543.
Collapse
Affiliation(s)
- Junxia Wang
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China
| | - Xianghui Kong
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China
| | - Haijian Hu
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China
| | - Shunfang Shi
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China.
| |
Collapse
|