1
|
Ivanova T, Sbirkov Y, Kazakova M, Sarafian V. Lysosomes and LAMPs as Autophagy Drivers of Drug Resistance in Colorectal Cancer. Cells 2025; 14:574. [PMID: 40277899 PMCID: PMC12025563 DOI: 10.3390/cells14080574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Colorectal cancer (CRC) is among the most malignant pathologies worldwide. A major factor contributing to the poor prognosis of neoplastic diseases is the development of drug resistance. It significantly reduces the utility of most therapeutic protocols and necessitates the search for novel biomarkers and treatment strategies to combat cancer. An evolutionarily conserved catabolic mechanism, autophagy maintains nutrient recycling and metabolic adaptation and is also closely related to carcinogenesis, playing a dual role. Autophagy inhibition can limit the growth of tumors and improve the response to cancer therapeutics. Lysosomes, key players in autophagy, are also considered promising targets for anticancer treatment. There are still insufficient data on the role of poorly studied glycoproteins related to autophagy, such as the lysosome-associated membrane glycoproteins (LAMPs). They can act as multifunctional molecules involved in a multitude of processes like autophagy and cancer development. In the current review, we summarize the recent data on the double-faceted role of autophagy in cancer with a focus on drug resistance in CRC and on the roles of lysosomes and LAMPs in these interconnected processes. Several lysosomotropic drugs are discussed as options to overcome cancer cell chemoresistance. The complex networks that underline defined autophagic pathways in the context of CRC carcinogenesis and the role of autophagy, especially of LAMPs as drivers of drug resistance, are outlined.
Collapse
Affiliation(s)
- Tsvetomira Ivanova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Ghorbaninezhad F, Nour MA, Farzam OR, Saeedi H, Vanan AG, Bakhshivand M, Jafarlou M, Hatami-Sadr A, Baradaran B. The tumor microenvironment and dendritic cells: Developers of pioneering strategies in colorectal cancer immunotherapy? Biochim Biophys Acta Rev Cancer 2025; 1880:189281. [PMID: 39929377 DOI: 10.1016/j.bbcan.2025.189281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Colorectal cancer (CRC) is the world's third most frequent cancer, and both its incidence and fatality rates are rising. Despite various therapeutic approaches, neither its mortality rate nor its recurrence frequency has decreased significantly. Additionally, conventional treatment approaches, such as chemotherapy and radiotherapy, have several side effects and risks for patients with CRC. Accordingly, the need for alternative and effective treatments for CRC patients is critical. Immunotherapy that utilizes dendritic cells (DCs) harnesses the patient's immune system to combat cancer cells effectively. DCs are the most potent antigen-presenting cells (APCs), which play a vital role in generating anti-cancer T cell responses. A significant barrier to the immune system's ability to eliminate CRC is the establishment of a potent immunosuppressive tumor milieu by malignant cells. Since DCs are frequently defective in this milieu, the tumor setting significantly reduces the effectiveness of DC-based therapy. Determining central mechanisms contributing to tumor growth by unraveling and comprehending the interaction between CRC tumor milieu and DCs may lead to new therapeutic approaches. This study aims to review DC biology and discuss its role in T-cell-mediated anti-tumor immunity, as well as to highlight the immunosuppressive effects of the CRC tumor milieu on the function of DCs. We will also highlight the tumor microenvironment (TME)-related factors that interfere with DC function as a possible therapeutic target to enhance DC-based cell therapy efficacy.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Ghorbani Vanan
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Gui H, Wang S, Li B. Glycolysis-related gene signatures and the functional role of P4HA1 in osteosarcoma prognosis. Exp Cell Res 2025; 447:114492. [PMID: 40023306 DOI: 10.1016/j.yexcr.2025.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor predominantly affecting children and adolescents, is characterized by aerobic glycolysis, which is intricately linked to tumor progression and metastasis, yet its prognostic implications remain underexplored. This study aimed to develop a prognostic model utilizing glycolysis-related genes and to elucidate the functional role of P4HA1, a key gene within this model, in osteosarcoma prognosis and immune cell infiltration. We collected clinical and transcriptomic data from osteosarcoma patients in the UCSC Xena and GEO databases. Through univariate Cox and LASSO regression analyses, we identified 12 glycolysis-related genes that significantly influence osteosarcoma prognosis. These genes were employed to construct a risk score model, which accurately predicted patient outcomes as demonstrated by survival analysis and ROC curves, with an AUC of 0.899, 0.881, and 0.878 for 1-year, 3-year, and 5-year survival predictions, respectively. The model was particularly effective across different clinical subgroups. Immune cell infiltration analysis revealed that CD8+ T cells, naïve CD4+ T cells, resting dendritic cells, and activated mast cells significantly contributed to the model's predictive power. The model also showed significant enrichment of immune-related signaling pathways, indicating a robust association between immune status and glycolytic-related risk scores in osteosarcoma prognosis. Notably, P4HA1 was upregulated in osteosarcoma tissues and promoted cell proliferation in a glycolysis-dependent manner, as evidenced by increased intracellular ATP levels, inhibited glucose absorption, and elevated lactate levels in P4HA1-overexpressing osteosarcoma cells. The promotion of proliferation by P4HA1 could be significantly attenuated by the glycolysis inhibitor 2-DG, highlighting the glycolysis dependency of P4HA1's action. In conclusion, we developed a prognostic model for osteosarcoma by integrating glycolysis-related genes, with a particular emphasis on the functional role of P4HA1. Our findings highlight the interplay between glycolysis and immune cell infiltration in disease prognosis. This model provides insights for targeted therapies and a foundation for further research into osteosarcoma treatment.
Collapse
Affiliation(s)
- Haoran Gui
- Department of Orthopedics, Yantai Shan Hospital, Yantai, 264008, China
| | - Shuai Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Bo Li
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
| |
Collapse
|
4
|
Petcherski A, Tingley BM, Martin A, Adams S, Brownstein AJ, Steinberg RA, Shabane B, Ngo J, Osto C, Garcia G, Veliova M, Arumugaswami V, Colby AH, Shirihai OS, Grinstaff MW. Endolysosome-targeted nanoparticle delivery of antiviral therapy for coronavirus infections. Life Sci Alliance 2025; 8:e202403182. [PMID: 39900438 PMCID: PMC11790838 DOI: 10.26508/lsa.202403182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
SARS-CoV-2 can infect cells through endocytic uptake, a process that is targeted by inhibition of lysosomal proteases. However, clinically this approach to treat viral infections has afforded mixed results, with some studies detailing an oral regimen of hydroxychloroquine accompanied by significant off-target toxicities. We rationalized that an organelle-targeted approach will avoid toxicity while increasing the concentration of the drug at the target. Here, we describe a lysosome-targeted, mefloquine-loaded poly(glycerol monostearate-co-ε-caprolactone) nanoparticle (MFQ-NP) for pulmonary delivery via inhalation. Mefloquine is a more effective inhibitor of viral endocytosis than hydroxychloroquine in cellular models of COVID-19. MFQ-NPs are less toxic than molecular mefloquine, are 100-150 nm in diameter, and possess a negative surface charge, which facilitates uptake via endocytosis allowing inhibition of lysosomal proteases. MFQ-NPs inhibit coronavirus infection in mouse MHV-A59 and human OC43 coronavirus model systems and inhibit SARS-CoV-2 WA1 and its Omicron variant in a human lung epithelium model. Organelle-targeted delivery is an effective means to inhibit viral infection.
Collapse
Affiliation(s)
- Anton Petcherski
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Brett M Tingley
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Andrew Martin
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sarah Adams
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alexandra J Brownstein
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Cellular Integrative Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ross A Steinberg
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Byourak Shabane
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Ngo
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Corey Osto
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michaela Veliova
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Aaron H Colby
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Orian S Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Zhou S, Yang H. Radiotherapy modulates autophagy to reshape the tumor immune microenvironment to enhance anti-tumor immunity in esophageal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189302. [PMID: 40120778 DOI: 10.1016/j.bbcan.2025.189302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
The combination of radiotherapy and immunotherapy exerts synergistic antitumor in a range of human cancers, and also in esophageal cancer. Radiotherapy-induced tumor immune microenvironment (TIME) reprogramming is an essential basis for the synergistic antitumor between radiotherapy and immunotherapy. Radiotherapy can induce autophagy in tumor cells and immune cells of TIME, and autophagy activation is involved in the modification of immunological characteristics of TIME. The TIME landscape of esophageal cancer, especially ESCC, can be affected by radiotherapy or autophagy regulation. In this review, we depicted that local radiotherapy-induced autophagy could promote the maturation, migration, infiltration, and function of immune cells by complicated mechanisms to make TIME from immune "cold" to "hot", resulting in the synergistic antitumor of RT and IO. We argue that unraveling the relevance of radiotherapy-initiated autophagy to driving radiotherapy reprogramming TIME will open new ideas to explore new targets or more efficiently multimodal therapeutic interventions in ESCC.
Collapse
Affiliation(s)
- Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China.
| |
Collapse
|
6
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Sun D, Yu L, Wang G, Xu Y, Wang P, Wang N, Wu Z, Zhang G, Zhang J, Zhang Y, Tian G, Wei P. Rationally designed catalytic nanoplatform for enhanced chemoimmunotherapy via deploying endogenous plus exogenous copper and remodeling tumor microenvironment. J Nanobiotechnology 2024; 22:551. [PMID: 39252079 PMCID: PMC11385821 DOI: 10.1186/s12951-024-02696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 09/11/2024] Open
Abstract
Chemodynamic therapy represents a novel tumor therapeutic modality via triggering catalytic reactions in tumors to yield highly toxic reactive oxygen species (ROS). Nevertheless, low efficiency catalytic ability, potential systemic toxicity and inefficient tumor targeting, have hindered the efficacy of chemodynamic therapy. Herein, a rationally designed catalytic nanoplatform, composed of folate acid conjugated liposomes loaded with copper peroxide (CP) and chloroquine (CQ; a clinical drug) (denoted as CC@LPF), could power maximal tumor cytotoxicity, mechanistically via maneuvering endogenous and exogenous copper for a highly efficient catalytic reaction. Despite a massive autophagosome accumulation elicited by CP-powered autophagic initiation and CQ-induced autolysosomal blockage, the robust ROS, but not aberrant autophagy, underlies the synergistic tumor inhibition. Otherwise, this combined mode also elicits an early onset, above all, long-term high-level existence of immunogenic cell death markers, associated with ROS and aberrant autophagy -triggered endoplasmic reticulum stress. Besides, CC@LPF, with tumor targeting capability and selective tumor cytotoxicity, could elicit intratumor dendritic cells (mainly attributed to CQ) and tumor infiltrating CD8+ T cells, upon combining with PD-L1 therapeutic antibody, further induce significant anti-tumor effect. Collectively, the rationally designed nanoplatform, CC@LPF, could enhance tumor chemoimmunotherapy via deploying endogenous plus exogenous copper and remodeling tumor microenvironment.
Collapse
Affiliation(s)
- Daxi Sun
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Liting Yu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Gang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuxue Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Peng Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Ningning Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China.
- University of Science and Technology of China, Hefei, 230026, P.R. China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China
- University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yunjiao Zhang
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China.
| | - Pengfei Wei
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
8
|
Li Y, Yin Y, Zhang T, Wang J, Guo Z, Li Y, Zhao Y, Qin R, He Q. A comprehensive landscape analysis of autophagy in cancer development and drug resistance. Front Immunol 2024; 15:1412781. [PMID: 39253092 PMCID: PMC11381251 DOI: 10.3389/fimmu.2024.1412781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Background Autophagy plays important roles in cancer progression and therapeutic resistance, and the autophagy underlying the tumor pathogenesis and further mechanisms of chemoresistance emergence remains unknown. Methods In this study, via the single-sample gene set enrichment analysis (ssGSEA) method, an autophagy 45-gene list was identified to evaluate samples' autophagy activity, verified through six GEO datasets with a confirmed autophagy phenotype. It was further utilized to distinguish tumors into autophagy score-high and score-low subtypes, and analyze their transcriptome landscapes, including survival analysis, correlation analysis of autophagy- and resistance-related genes, biological functional enrichment, and immune- and hypoxia-related and genomic heterogeneity comparison, in TCGA pan-cancer datasets. Furthermore, we performed an analysis of autophagy status in breast cancer chemoresistance combined with multiple GEO datasets and in vitro experiments to validate the mechanisms of potential anticancer drugs for reversing chemoresistance, including CCK-8 cell viability assays, RT-qPCR, and immunofluorescence. Results The 45-gene list was used to identify autophagy score-high and score-low subtypes and further analyze their multi-dimensional features. We demonstrated that cancer autophagy status correlated with significantly different prognoses, molecular alterations, biological process activations, immunocyte infiltrations, hypoxia statuses, and specific mutational processes. The autophagy score-low subtype displayed a more favorable prognosis compared with the score-high subtype, associated with their immune-activated features, manifested as high immunocyte infiltration, including high CD8+T, Tfh, Treg, NK cells, and tumor-associated macrophages M1/M2. The autophagy score-low subtype also showed a high hypoxia score, and hypoxic tumors showed a significantly differential prognosis in different autophagy statuses. Therefore, "double-edged" cell fates triggered by autophagy might be closely correlated with the immune microenvironment and hypoxia induction. Results demonstrated that dysregulated autophagy was involved in many cancers and their therapeutic resistance and that the autophagy was induced by the resistance-reversing drug response, in five breast cancer GEO datasets and validated by in vitro experiments. In vitro, dihydroartemisinin and artesunate could reverse breast cancer doxorubicin resistance, through inducing autophagy via upregulating LC3B and ATG7. Conclusion Our study provided a comprehensive landscape of the autophagy-related molecular and tumor microenvironment patterns for cancer progression and resistance, and highlighted the promising potential of drug-induced autophagy in the activation of drug sensitivity and reversal of resistance.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yin
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Zhang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhua Wang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeqi Guo
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyun Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Zhao
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruihong Qin
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Su R, Yang Y, Wu H, Liu B, Tian X, Zhou C, Hu Y, Liu T. Synergistic Photothermal Tumor Immunotherapy by 1-MT Based on Zeolitic Imidazolate Framework-8 with pH-High Sensitivity. Int J Nanomedicine 2024; 19:8501-8517. [PMID: 39185344 PMCID: PMC11344551 DOI: 10.2147/ijn.s449820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
Background A successful immune response against tumors depends on various cellular processes. Hence, there is an urgent need to construct a proficient nanoplatform for immunotherapy that can concurrently regulate the activities of various cells participating in the immune process. We have developed zeolitic imidazolate framework-8 (ZIF-8) formula, with good pH sensitivity, which is conducive to the release of drugs in the tumor site (acidic environment) and significantly improves immunotherapy. This is achieved through the coordinated action of different therapeutic agents, such as the photothermal agent polydopamine (PDA), the chemodrug camptothecin (CPT), and the immunomodulator 1-methyl-D-tryptophan (1-MT). Materials and Methods In this study, we evaluated the antitumor effect of PDA/(CPT + 1-MT) @ZIF-8 (PCMZ) nanoparticles (NPs) in vitro and in vivo and investigated the molecular mechanism of PCMZ NPs in tumor suppression via photothermal-chemo-immunotherapy. Results MTT and Annexin V-FITC/PI double staining apoptosis test showed that PCMZ NPs could induce apoptosis of 4T1 cell, and PCMZ NPs could cause 4T1 cell necrosis under 808 nm laser irradiation. The objective is to establish a unilateral breast cancer model in mice and investigate the effect of PCMZ NPs on tumor growth and tumor suppression in tumor bearing mice. The results showed that PCMZ NPs showed good heating effect in vivo and effectively inhibited tumor growth under 808 nm laser irradiation. In addition, PCMZ NPs could induce the immunogenic death of tumor cells, promote the maturation of DCs, inhibit IDO pathway, and finally differentiate T cells into cytotoxic T cells and helper T cells, so as to effectively activate the anti-tumor immune response. Conclusion The PCMZ NPs, possessing good photothermal conversion capabilities due to join of PDA, effectively overcome two main challenges in immunotherapy: insufficient stimulation of the immune response and evasion of the immune system. This provides a robust platform against invasive cancer and recurrent tumors.
Collapse
Affiliation(s)
- Ruijing Su
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Yue Yang
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Haiyan Wu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Bo Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Xinyuan Tian
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Chaoyu Zhou
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Yanxin Hu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| |
Collapse
|
10
|
Cui Z, Cong M, Yin S, Li Y, Ye Y, Liu X, Tang J. Role of protein degradation systems in colorectal cancer. Cell Death Discov 2024; 10:141. [PMID: 38485957 PMCID: PMC10940631 DOI: 10.1038/s41420-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/18/2024] Open
Abstract
Protein degradation is essential for maintaining protein homeostasis. The ubiquitin‒proteasome system (UPS) and autophagy-lysosome system are the two primary pathways responsible for protein degradation and directly related to cell survival. In malignant tumors, the UPS plays a critical role in managing the excessive protein load caused by cancer cells hyperproliferation. In this review, we provide a comprehensive overview of the dual roles played by the UPS and autolysosome system in colorectal cancer (CRC), elucidating their impact on the initiation and progression of this disease while also highlighting their compensatory relationship. Simultaneously targeting both protein degradation pathways offers new promise for enhancing treatment efficacy against CRC. Additionally, apoptosis is closely linked to ubiquitination and autophagy, and caspases degrade proteins. A thorough comprehension of the interplay between various protein degradation pathways is highly important for clarifying the mechanism underlying the onset and progression of CRC.
Collapse
Affiliation(s)
- Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, 024000, China
| | - Yuqi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yuguang Ye
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Liu
- Cardiovascular Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, China.
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
11
|
Zhang X, Zhang M, Cui H, Zhang T, Wu L, Xu C, Yin C, Gao J. Autophagy-modulating biomembrane nanostructures: A robust anticancer weapon by modulating the inner and outer cancer environment. J Control Release 2024; 366:85-103. [PMID: 38142964 DOI: 10.1016/j.jconrel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Recently, biomembrane nanostructures, such as liposomes, cell membrane-coated nanostructures, and exosomes, have demonstrated promising anticancer therapeutic effects. These nanostructures possess remarkable biocompatibility, multifunctionality, and low toxicity. However, their therapeutic efficacy is impeded by chemoresistance and radiotherapy resistance, which are closely associated with autophagy. Modulating autophagy could enhance the therapeutic sensitivity and effectiveness of these biomembrane nanostructures by influencing the immune system and the cancer microenvironment. For instance, autophagy can regulate the immunogenic cell death of cancer cells, antigen presentation of dendritic cells, and macrophage polarization, thereby activating the inflammatory response in the cancer microenvironment. Furthermore, combining autophagy-regulating drugs or genes with biomembrane nanostructures can exploit the targeting and long-term circulation properties of these nanostructures, leading to increased drug accumulation in cancer cells. This review explores the role of autophagy in carcinogenesis, cancer progression, metastasis, cancer immune responses, and resistance to treatment. Additionally, it highlights recent research advancements in the synergistic anticancer effects achieved through autophagy regulation by biomembrane nanostructures. The review also discusses the prospects and challenges associated with the future clinical translation of these innovative treatment strategies. In summary, these findings provide valuable insights into autophagy, autophagy-modulating biomembrane-based nanostructures, and the underlying molecular mechanisms, thereby facilitating the development of promising cancer therapeutics.
Collapse
Affiliation(s)
- Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China; Tongji Hospital,School of Medicine, Tongji University, Shanghai 200092, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
12
|
Shi Y, Jiang B, Zhao J. Induction mechanisms of autophagy and endoplasmic reticulum stress in intestinal ischemia-reperfusion injury, inflammatory bowel disease, and colorectal cancer. Biomed Pharmacother 2024; 170:115984. [PMID: 38070244 DOI: 10.1016/j.biopha.2023.115984] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
In recent years, the incidence of intestinal ischemia-reperfusion injury (II/RI), inflammatory bowel disease (IBD), and colorectal cancer (CRC) has been gradually increasing, posing significant threats to human health. Autophagy and endoplasmic reticulum stress (ERS) play important roles in II/RI. Damage caused by ischemia and cellular stress can activate ERS, which in turn initiates autophagy to clear damaged organelles and abnormal proteins, thereby alleviating ERS and maintaining the intestinal environment. In IBD, chronic inflammation damages intestinal tissues and activates autophagy and ERS. Autophagy is initiated by upregulating ATG genes and downregulating factors that inhibit autophagy, thereby clearing abnormal proteins, damaged organelles, and bacteria. Simultaneously, persistent inflammatory stimulation can also trigger ERS, leading to protein imbalance and abnormal folding in the ER lumen. The activation of ERS can maintain cellular homeostasis by initiating the autophagy process, thereby reducing inflammatory responses and cell apoptosis in the intestine. In CRC, excessive cell proliferation and protein synthesis lead to increased ERS. The activation of ERS, regulated by signaling pathways such as IRE1α and PERK, can initiate autophagy to clear abnormal proteins and damaged organelles, thereby reducing the negative effects of ERS. It can be seen that autophagy and ERS play a crucial regulatory role in the development of intestinal diseases. Therefore, the progress in targeted therapy for intestinal diseases based on autophagy and ERS provides novel strategies for managing intestinal diseases. In this paper, we review the advances in regulation of autophagy and ERS in intestinal diseases, emphasizing the potential molecular mechanisms for therapeutic applications.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Jingwen Zhao
- Department of Proctology, Baoji Traditional Chinese Medicine Hospital, Baoji 721001, Shanxi, PR China.
| |
Collapse
|
13
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
14
|
Zhao J, Liu GW, Tao C. Hotspots and future trends of autophagy in Traditional Chinese Medicine: A Bibliometric analysis. Heliyon 2023; 9:e20142. [PMID: 37780780 PMCID: PMC10539644 DOI: 10.1016/j.heliyon.2023.e20142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVE To discuss the hotspots and future trends of autophagy in traditional Chinese medicine (TCM) and provide a reference for researchers in this field. METHOD Using visual analysis tools, metrological statistics and visual research on the pertinent literature in the area of autophagy use in TCM were undertaken in the core collection database of the Web of Science. By examining the authors, keywords, research circumstances, research hotspots, and trends of linked research, the use of autophagy in TCM was investigated. RESULTS AND CONCLUSIONS A total of 916 studies were included, among which Beijing University Chinese Medicine was the largest number of advantageous research institutions, followed by Shanghai University Traditional Chinese Medicine and Guangzhou University Chinese Medicine.The keywords of literature research primarily comprise apoptosis, activation, inhibition, pathway, mechanism, oxidative stress, proliferation, NF-κB, cancer, mtor, etc. At present, the research on autophagy in the field of TCM is increasing on a year-to-year basis. The research has focused on the role played by TCM in malignant tumors, atherosclerosis, Alzheimer's disease through autophagy, and the regulation of autophagy signaling pathways (e.g., PI3K/AKT/mTOR signaling pathway, TLR4 signaling pathway,nrf2 signaling pathway and NF-κB signaling pathway). In the future, the therapeutic effect of TCM on chemotherapy-resistant tumor cells through autophagy pathway, the role of TCM mediating mitophagy and activating autophagy function, and the therapeutic effect of TCM components represented by luteolin on tumors, asthma, myocardial injury and other diseases through autophagy mechanism will be the research hotspots in the future.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Guang-wei Liu
- Department of Gastrointestinal surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Cheng Tao
- Scientific Research Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
15
|
Meng Q, Ding B, Ma P, Lin J. Interrelation between Programmed Cell Death and Immunogenic Cell Death: Take Antitumor Nanodrug as an Example. SMALL METHODS 2023; 7:e2201406. [PMID: 36707416 DOI: 10.1002/smtd.202201406] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Indexed: 05/17/2023]
Abstract
Programmed cell death (PCD, mainly including apoptosis, necrosis, ferroptosis, pyroptosis, and autophagy) and immunogenic cell death (ICD), as important cell death mechanisms, are widely reported in cancer therapy, and understanding the relationship between the two is significant for clinical tumor treatments. Considering that vast nanodrugs are developed to induce tumor PCD and ICD simultaneously, in this review, the interrelationship between PCD and ICD is described using nanomedicines as examples. First, an overview of PCD patterns and focus on the morphological differences and interconnections among them are provided. Then the interrelationship between apoptosis and ICD in terms of endoplasmic reticulum stress is described by introducing various cancer treatments and the recent developments of nanomedicines with inducible immunogenicity. Next, the crosstalk between non-apoptotic (including necrosis, ferroptosis, pyroptosis, and autophagy) signaling pathways and ICD is introduced and their relationship through various nanomedicines as examples is further illustrated. Finally, the relationship between PCD and ICD and its application prospects in the development of new ICD nanomaterials are summarized. This review is believed to deepen the understanding of the relationship between PCD and ICD, extend the biomedical applications of various nanodrugs, and promote the progress of clinical tumor therapy.
Collapse
Affiliation(s)
- Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
16
|
Huang L, Sun F, Liu Z, Jin W, Zhang Y, Chen J, Zhong C, Liang W, Peng H. Probing the Potential of Defense Response-Associated Genes for Predicting the Progression, Prognosis, and Immune Microenvironment of Osteosarcoma. Cancers (Basel) 2023; 15:cancers15082405. [PMID: 37190333 DOI: 10.3390/cancers15082405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The defense response is a type of self-protective response of the body that protects it from damage by pathogenic factors. Although these reactions make important contributions to the occurrence and development of tumors, the role they play in osteosarcoma (OS), particularly in the immune microenvironment, remains unpredictable. METHODS This study included the clinical information and transcriptomic data of 84 osteosarcoma samples and the microarray data of 12 mesenchymal stem cell samples and 84 osteosarcoma samples. We obtained 129 differentially expressed genes related to the defense response (DRGs) by taking the intersection of differentially expressed genes with genes involved in the defense response pathway, and prognostic genes were screened using univariate Cox regression. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression and multivariate Cox regression were then used to establish a DRG prognostic signature (DGPS) via the stepwise method. DGPS performance was examined using independent prognostic analysis, survival curves, and receiver operating characteristic (ROC) curves. In addition, the molecular and immune mechanisms of adverse prognosis in high-risk populations identified by DGPS were elucidated. The results were well verified by experiments. RESULT BNIP3, PTGIS, and ZYX were identified as the most important DRGs for OS progression (hazard ratios of 2.044, 1.485, and 0.189, respectively). DGPS demonstrated outstanding performance in the prediction of OS prognosis (area under the curve (AUC) values of 0.842 and 0.787 in the training and test sets, respectively, adj-p < 0.05 in the survival curve). DGPS also performed better than a recent clinical prognostic approach with an AUC value of only 0.674 [metastasis], which was certified in the subsequent experimental results. These three genes regulate several key biological processes, including immune receptor activity and T cell activation, and they also reduce the infiltration of some immune cells, such as B cells, CD8+ T cells, and macrophages. Encouragingly, we found that DGPS was associated with sensitivity to chemotherapeutic drugs including JNK Inhibitor VIII, TGX221, MP470, and SB52334. Finally, we verified the effect of BNIP3 on apoptosis, proliferation, and migration of osteosarcoma cells through experiments. CONCLUSIONS This study elucidated the role and mechanism of BNIP3, PTGIS, and ZYX in OS progression and was well verified by the experimental results, enabling reliable prognostic means and treatment strategies to be proposed for OS patients.
Collapse
Affiliation(s)
- Liangkun Huang
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fei Sun
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilin Liu
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenyi Jin
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yubiao Zhang
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Junwen Chen
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Changheng Zhong
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wanting Liang
- Department of Clinical Medicine, Xianyue Hospital of Xiamen Medical College, Xiamen 310058, China
| | - Hao Peng
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
17
|
Sui X, Sun Y, Zhang G, Chi N, Guan Y, Wang D, Li X. hsa-mir-133a-2 promotes the proliferation and invasion of cervical cancer cells by targeting the LAMB3-mediated PI3K/ATK pathway. Cancer Med 2023; 12:5874-5888. [PMID: 36305754 PMCID: PMC10028115 DOI: 10.1002/cam4.5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Cervical cancer, one of the common types of malignant tumors progressed in women, is on the rise in developing countries. Numerous previous studies have demonstrated that hsa-mir-133a-2 miRNA is abnormally expressed in cervical cancer cells. However, its fundamental mechanism in cervical cancer needs to be further clarified. Our study set out to investigate the effect of hsa-mir-133a-2 on the phenotypes of cervical cancer cells as well as any potential molecular processes involved in the proliferation and invasion of cervical cancer cells. METHODS The Cancer Genome Atlas-cervical squamous cell carcinoma and endocervical adenocarcinoma(TCGA-CESC) was adopted in order to verify the expression of hsa-mir-133a-2 in cervical cancer tissues and to identify its potential targets. The interaction between Laminin subunit beta-3(LAMB3) and hsa-mir-133a-2 was verified by TargetScan database as well as Luciferase reporter assay. The Cell Counting Kit-8 (CCK8) and transwell methods were utilized to assess the influence of hsa-mir-133a-2 on the proliferation and invasion characteristics of cervical cancer cells. We studied the role that hsa-mir-133a-2 plays in cervical cancer progression through Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis as well as Western Blot (WB) experiment. RESULTS Down-regulation of hsa-mir-133a-2 was detected in cervical cancer tissues. It directly targeted LAMB3 and negatively regulated LAMB3 expression. The overexpression of hsa-mir-133a-2 has a significant inhibiting effect on cervical cancer cell proliferation and invasion. The overexpression of hsa-mir-133a-2 significantly inhibits the proliferation and invasion of cervical cancer cells. Moreover, the LAMB3 was able to up-regulate the phosphorylation levels of AKT and phosphatidylinositol 3-kinase (PI3K) protein in cervical cancer cells. hsa-mir-133a-2 could also modulate the PI3K/AKT signaling pathway by targeting LAMB3. CONCLUSION hsa-mir-133a-2 inhibits cervical cancer cell proliferation and invasion by indirectly regulating the PI3K/AKT signaling pathway, providing us with a new clinical treatment strategy for cervical cancer.
Collapse
Affiliation(s)
- Xiaoyu Sui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Yurong Sun
- Teaching and Research Section of Pathology, Qiqihar Medical University, Qiqihar, P. R. China
| | - Guiyu Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong, P. R. China
| | - Na Chi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Yitong Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Dan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Xiulan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| |
Collapse
|
18
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
19
|
Yu Z, Zhao Y, Ding K, He L, Liao C, Li J, Chen S, Shang K, Chen J, Yu C, Zhang C, Li Y, Wang S, Jia Y. Chloroquine Inhibition of Autophagy Enhanced the Anticancer Effects of Listeria monocytogenes in Melanoma. Microorganisms 2023; 11:microorganisms11020408. [PMID: 36838373 PMCID: PMC9958952 DOI: 10.3390/microorganisms11020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Listeria monocytogenes has been shown to exhibit antitumor effects. However, the mechanism remains unclear. Autophagy is a cellular catabolic process that mediates the degradation of unfolded proteins and damaged organelles in the cytosol, which is a double-edged sword in tumorigenesis and treatment outcome. Tumor cells display lower levels of basal autophagic activity than normal cells. This study examined the role and molecular mechanism of autophagy in the antitumor effects induced by LM, as well as the combined antitumor effect of LM and the autophagy inhibitor chloroquine (CQ). We investigated LM-induced autophagy in B16F10 melanoma cells by real-time PCR, immunofluorescence, Western blotting, and transmission electron microscopy and found that autophagic markers were increased following the infection of tumor cells with LM. The autophagy pathway in B16F10 cells was blocked with the pharmacological autophagy inhibitor chloroquine, which led to a significant increase in intracellular bacterial multiplication in tumor cells. The combination of CQ and LM enhanced LM-mediated cancer cell death and apoptosis compared with LM infection alone. Furthermore, the combination of LM and CQ significantly inhibited tumor growth and prolonged the survival time of mice in vivo, which was associated with the increased colonization and accumulation of LM and induced more cell apoptosis in primary tumors. The data indicated that the inhibition of autophagy by CQ enhanced LM-mediated antitumor activity in vitro and in vivo and provided a novel strategy to improving the anticancer efficacy of bacterial treatment.
Collapse
Affiliation(s)
- Zuhua Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yingying Zhao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Ding
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Songbiao Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Shang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chuan Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chunjie Zhang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yinju Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Correspondence: (S.W.); (Y.J.)
| | - Yanyan Jia
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Correspondence: (S.W.); (Y.J.)
| |
Collapse
|
20
|
Giannopoulos S, Bozkus CC, Zografos E, Athanasiou A, Bongiovanni AM, Doulaveris G, Bakoyiannis CN, Theodoropoulos GE, Zografos GC, Witkin SS, Orfanelli T. Targeting Both Autophagy and Immunotherapy in Breast Cancer Treatment. Metabolites 2022; 12:metabo12100966. [PMID: 36295867 PMCID: PMC9607060 DOI: 10.3390/metabo12100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
As clinical efforts towards breast-conserving therapy and prolonging survival of those with metastatic breast cancer increase, innovative approaches with the use of biologics are on the rise. Two areas of current focus are cancer immunotherapy and autophagy, both of which have been well-studied independently but have recently been shown to have intertwining roles in cancer. An increased understanding of their interactions could provide new insights that result in novel diagnostic, prognostic, and therapeutic strategies. In this breast cancer-focused review, we explore the interactions between autophagy and two clinically relevant immune checkpoint pathways; the programmed cell death-1 receptor with its ligand (PD-L1)/PD-1 and the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)/CD80 and CD86 (B7-1 and B7-2). Furthermore, we discuss emerging preclinical and clinical data supporting targeting both immunotherapy and autophagy pathway manipulation as a promising approach in the treatment of breast cancer.
Collapse
Affiliation(s)
- Spyridon Giannopoulos
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cansu Cimen Bozkus
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Aikaterini Athanasiou
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ann Marie Bongiovanni
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Georgios Doulaveris
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Chris N Bakoyiannis
- First Department of Surgery, Division of Vascular Surgery, Laikon General Hospital, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios E Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios C Zografos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Steven S Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theofano Orfanelli
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| |
Collapse
|
21
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
22
|
Xu J, Zhang J, Mao QF, Wu J, Wang Y. The Interaction Between Autophagy and JAK/STAT3 Signaling Pathway in Tumors. Front Genet 2022; 13:880359. [PMID: 35559037 PMCID: PMC9086235 DOI: 10.3389/fgene.2022.880359] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 01/30/2023] Open
Abstract
Tumor is one of the important factors affecting human life and health in today’s world, and scientists have studied it extensively and deeply, among which autophagy and JAK/STAT3 signaling pathway are two important research directions. The JAK/STAT3 axis is a classical intracellular signaling pathway that assumes a key role in the regulation of cell proliferation, apoptosis, and vascular neogenesis, and its abnormal cell signaling and regulation are closely related to the occurrence and development of tumors. Therefore, the JAK/STAT3 pathway in tumor cells and various stromal cells in their microenvironment is often considered as an effective target for tumor therapy. Autophagy is a process that degrades cytoplasmic proteins and organelles through the lysosomal pathway. It is a fundamental metabolic mechanism for intracellular degradation. The mechanism of action of autophagy is complex and may play different roles at various stages of tumor development. Altered STAT3 expression has been found to be accompanied by the abnormal autophagy activity in many oncological studies, and the two may play a synergistic or antagonistic role in promoting or inhibiting the occurrence and development of tumors. This article reviews the recent advances in autophagy and its interaction with JAK/STAT3 signaling pathway in the pathogenesis, prevention, diagnosis, and treatment of tumors.
Collapse
Affiliation(s)
- Jiangyan Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinrong Zhang
- Department of Science and Education, Dafeng District People's Hospital, Yancheng, China
| | - Qi-Fen Mao
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuan Wang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
23
|
Guo W, Du K, Luo S, Hu D. Recent Advances of Autophagy in Non-Small Cell Lung Cancer: From Basic Mechanisms to Clinical Application. Front Oncol 2022; 12:861959. [PMID: 35600411 PMCID: PMC9115384 DOI: 10.3389/fonc.2022.861959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is characterized by the most common oncological disease and leading cause of cancer death worldwide, of which a group of subtypes known as non-small cell lung cancer (NSCLC) accounts for approximately 85%. In the past few decades, important progression in the therapies of NSCLC has enhanced our understanding of the biology and progression mechanisms of tumor. The application of immunotherapy and small molecule tyrosine kinase inhibitors has brought significant clinical benefits in certain patients. However, early metastasis and the emergence of resistance to antitumor therapy have resulted in the relatively low overall cure and survival rates for NSCLC. Autophagy is a conserved process that allows cells to recycle unused or damaged organelles and cellular components. It has been reported to be related to the progression of NSCLC and resistance to targeted therapy and cytotoxic chemotherapy. Therefore, autophagy is considered as a potential therapeutic target for NSCLC. Mounting results have been reported about the combination of tyrosine kinase inhibitors and inhibitors of autophagy in models of NSCLC. This review aims to provide a comprehensive review on the roles of autophagy in NSCLC, focusing on related clinical data of agents that regulate autophagy in NSCLC. Furthermore, this study will provide a theoretical basis for further improvement of autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Weina Guo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keye Du
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
- Department of immunology, Hubei Clinical Research Center of Cancer Immunotherapy, Wuhan, China
| |
Collapse
|
24
|
Wang X, Hua P, He C, Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm Sin B 2022; 12:3567-3593. [PMID: 36176912 PMCID: PMC9513500 DOI: 10.1016/j.apsb.2022.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
As an emerging cancer therapeutic target, non-apoptotic cell death such as ferroptosis, necroptosis and pyroptosis, etc., has revealed significant potential in cancer treatment for bypassing apoptosis to enhance the undermined therapeutic efficacy triggered by apoptosis resistance. A variety of anticancer drugs, synthesized compounds and natural products have been proven recently to induce non-apoptotic cell death and exhibit excellent anti-tumor effects. Moreover, the convergence of nanotechnology with functional materials and biomedicine science has provided tremendous opportunities to construct non-apoptotic cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only employed in targeted delivery of non-apoptotic inducers, but also used as therapeutic components to induce non-apoptotic cell death to achieve efficient tumor treatment. This review first introduces the main characteristics, the mechanism and various pharmacological modulators of different non-apoptotic cell death forms, including ferroptosis, necroptosis, pyroptosis, autophagy, paraptosis, lysosomal-dependent cell death, and oncosis. Second, we comprehensively review the latest progresses of nanomedicine that induces various forms of non-apoptotic cell death and focus on the nanomedicine targeting different pathways and components. Furthermore, the combination therapies of non-apoptotic cell death with photothermal therapy, photodynamic therapy, immunotherapy and other modalities are summarized. Finally, the challenges and future perspectives in this regard are also discussed.
Collapse
|
25
|
Paskeh MDA, Entezari M, Clark C, Zabolian A, Ranjbar E, Farahani MV, Saleki H, Sharifzadeh SO, Far FB, Ashrafizadeh M, Samarghandian S, Khan H, Ghavami S, Zarrabi A, Łos MJ. Targeted regulation of autophagy using nanoparticles: New insight into cancer therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166326. [DOI: 10.1016/j.bbadis.2021.166326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/31/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022]
|
26
|
Duan Y, Tian X, Liu Q, Jin J, Shi J, Hou Y. Role of autophagy on cancer immune escape. Cell Commun Signal 2021; 19:91. [PMID: 34493296 PMCID: PMC8424925 DOI: 10.1186/s12964-021-00769-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/24/2021] [Indexed: 01/15/2023] Open
Abstract
Autophagy is catabolic process by degradation of intracellular components in lysosome including proteins, lipids, and mitochondria in response to nutrient deficiency or stress such as hypoxia or chemotherapy. Increasing evidence suggests that autophagy could induce immune checkpoint proteins (PD-L1, MHC-I/II) degradation of cancer cells, which play an important role in regulating cancer cell immune escape. In addition to autophagic degradation of immune checkpoint proteins, autophagy induction in immune cells (macrophages, dendritic cells) manipulates antigen presentation and T cell activity. These reports suggest that autophagy could negatively or positively regulate cancer cell immune escape by immune checkpoint protein and antigens degradation, cytokines release, antigens generation. These controversial phenomenon of autophagy on cancer cell immune evasion may be derived from different experimental context or models. In addition, autophagy maybe exhibit a role in regulating host excessive immune response. So rational combination with autophagy could enhance the efficacy of cancer immunotherapy. In this review, the current progress of autophagy on cancer immune escape is discussed. Video Abstract
Collapse
Affiliation(s)
- Yalan Duan
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, 213017, Jiangsu Province, China.,School of Life Sciences, Jiangsu University, Zhenjiang, 213017, Jiangsu Province, China
| | - Xiaoqing Tian
- School of Life Sciences, Jiangsu University, Zhenjiang, 213017, Jiangsu Province, China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, 213017, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu Province, China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, 213017, Jiangsu Province, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu Province, China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 213017, Jiangsu Province, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, 213017, Jiangsu Province, China. .,School of Life Sciences, Jiangsu University, Zhenjiang, 213017, Jiangsu Province, China.
| |
Collapse
|
27
|
Mukhopadhyay S, Mahapatra KK, Praharaj PP, Patil S, Bhutia SK. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin Cancer Biol 2021; 85:196-208. [PMID: 34500075 DOI: 10.1016/j.semcancer.2021.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
28
|
Huang H, He Q, Guo B, Xu X, Wu Y, Li X. Progress in Redirecting Antiparasitic Drugs for Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2747-2767. [PMID: 34188451 PMCID: PMC8235938 DOI: 10.2147/dddt.s308973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Drug repurposing is a feasible strategy in developing novel medications. Regarding the cancer field, scientists are continuously making efforts to redirect conventional drugs into cancer treatment. This approach aims at exploring new applications in the existing agents. Antiparasitic medications, including artemisinin derivatives (ARTs), quinine-related compounds, niclosamide, ivermectin, albendazole derivatives, nitazoxanide and pyrimethamine, have been deeply investigated and widely applied in treating various parasitic diseases for a long time. Generally, their pharmacokinetic and pharmacodynamic properties are well understood, while the side effects are roughly acceptable. Scientists noticed that some of these agents have anticancer potentials and explored the underlying mechanisms to achieve drug repurposing. Recent studies show that these agents inhibit cancer progression via multiple interesting ways, inducing ferroptosis induction, autophagy regulation, mitochondrial disturbance, immunoregulation, and metabolic disruption. In this review, we summarize the recent advancement in uncovering antiparasitic drugs' anticancer properties from the perspective of their pharmacological targets. Instead of paying attention to the previously discovered mechanisms, we focus more on newly emerging ones that are worth noticing. While most investigations are focusing on the mechanisms of their antiparasitic effect, more in vivo exploration in clinical trials in the future is necessary. Moreover, we also paid attention to what limits the clinical application of these agents. For some of these agents like ARTs and niclosamide, drug modification, novel delivery system invention, or drug combination are strongly recommended for future exploration.
Collapse
Affiliation(s)
- Haoyang Huang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Binghua Guo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Xudong Xu
- Department of Clinical Medicine, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| |
Collapse
|
29
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
- Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
30
|
Zhang B, Liu L. Autophagy is a double-edged sword in the therapy of colorectal cancer. Oncol Lett 2021; 21:378. [PMID: 33777202 PMCID: PMC7988732 DOI: 10.3892/ol.2021.12639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-associated mortality worldwide. The limitations of colorectal cancer treatment include various types of multidrug resistance and the contingent damage to neighboring normal cells caused by chemotherapy. Macroautophagy/autophagy and apoptosis are essential mechanisms involved in cancer cell regulation of chemotherapy. Autophagy can either cause cancer cell death or promote tumor survival during colorectal cancer. Given that autophagy is involved in chemotherapy of colorectal cancer, an improved insight into the potential interactions between apoptosis and autophagy is crucial. The present review aimed to summarize the involvement of autophagy in the regulation of colorectal cancer and its association with chemotherapy. Furthermore, the role of natural product extraction, novel chemicals and small molecules, as well as radiation, which induce autophagy in colorectal cancer cells, were reviewed. Finally, the present review aimed to provide an outlook for the regulation of autophagy as a novel approach to the treatment of cancer, particularly chemotherapy-resistant colorectal cancer.
Collapse
Affiliation(s)
- Bo Zhang
- Medical Laboratory for Radiation Research, Beijing Institute for Occupational Disease Prevention and Treatment, Beijing 100093, P.R. China.,College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Lantao Liu
- Medical Laboratory for Radiation Research, Beijing Institute for Occupational Disease Prevention and Treatment, Beijing 100093, P.R. China
| |
Collapse
|
31
|
Xiao M, Benoit A, Hasmim M, Duhem C, Vogin G, Berchem G, Noman MZ, Janji B. Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Front Oncol 2021; 11:626309. [PMID: 33718194 PMCID: PMC7951055 DOI: 10.3389/fonc.2021.626309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a highly regulated multi-step process that occurs at the basal level in almost all cells. Although the deregulation of the autophagy process has been described in several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is currently well established and supported by experimental and clinical evidence. Our understanding of the molecular mechanism of the autophagy process has largely contributed to defining how we can harness this process to improve the benefit of cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is extensively documented, emerging data point toward autophagy as a mechanism of cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore, manipulating autophagy has emerged as a promising strategy to overcome tumor resistance to various anti-cancer therapies, and autophagy modulators are currently evaluated in combination therapies in several clinical trials. In this review, we will summarize our current knowledge of the impact of genetically and pharmacologically modulating autophagy genes and proteins, involved in the different steps of the autophagy process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss the challenges and limitations to developing potent and selective autophagy inhibitors that could be used in ongoing clinical trials.
Collapse
Affiliation(s)
- Malina Xiao
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Meriem Hasmim
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Caroline Duhem
- Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Guillaume Vogin
- Université de Lorraine - UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandoeuvre-lès-Nancy, France.,Centre François Baclesse, Esch-sur-Alzette, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg.,Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| |
Collapse
|
32
|
Gupta G, Borglum K, Chen H. Immunogenic Cell Death: A Step Ahead of Autophagy in Cancer Therapy. JOURNAL OF CANCER IMMUNOLOGY 2021; 3:47-59. [PMID: 34263254 PMCID: PMC8276988 DOI: 10.33696/cancerimmunol.3.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunogenic cell death (ICD) plays a major role in providing long lasting protective antitumor immunity by the chronic exposure of damage associated molecular patterns (DAMPs) in the tumor microenvironment (TME). DAMPs are essential for attracting immunogenic cells to the TME, maturation of DCs, and proper presentation of tumor antigens to the T cells so they can kill more cancer cells. Thus for the proper release of DAMPs, a controlled mechanism of cell death is necessary. Drug induced tumor cell killing occurs by apoptosis, wherein autophagy may act as a shield protecting the tumor cells and sometimes providing multi-drug resistance to chemotherapeutics. However, autophagy is required for the release of ATP as it remains one of the key DAMPs for the induction of ICD. In this review, we discuss the intricate balance between autophagy and apoptosis and the various strategies that we can apply to make these immunologically silent processes immunogenic. There are several steps of autophagy and apoptosis that can be regulated to generate an immune response. The genes involved in the processes can be regulated by drugs or inhibitors to amplify the effects of ICD and therefore serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Gourab Gupta
- Department of Biological Science, Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Kristina Borglum
- Department of Biological Science, Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Hexin Chen
- Department of Biological Science, Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
33
|
de Souza ASC, Gonçalves LB, Lepique AP, de Araujo-Souza PS. The Role of Autophagy in Tumor Immunology-Complex Mechanisms That May Be Explored Therapeutically. Front Oncol 2020; 10:603661. [PMID: 33335860 PMCID: PMC7736605 DOI: 10.3389/fonc.2020.603661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is complex, and its composition and dynamics determine tumor fate. From tumor cells themselves, with their capacity for unlimited replication, migration, and invasion, to fibroblasts, endothelial cells, and immune cells, which can have pro and/or anti-tumor potential, interaction among these elements determines tumor progression. The understanding of molecular pathways involved in immune escape has permitted the development of cancer immunotherapies. Targeting molecules or biological processes that inhibit antitumor immune responses has allowed a significant improvement in cancer patient’s prognosis. Autophagy is a cellular process required to eliminate dysfunctional proteins and organelles, maintaining cellular homeostasis. Usually a process associated with protection against cancer, autophagy associated to cancer cells has been reported in response to hypoxia, nutrient deficiency, and oxidative stress, conditions frequently observed in the TME. Recent studies have shown a paradoxical association between autophagy and tumor immune responses. Tumor cell autophagy increases the expression of inhibitory molecules, such as PD-1 and CTLA-4, which block antitumor cytotoxic responses. Moreover, it can also directly affect antitumor immune responses by, for example, degrading NK cell-derived granzyme B and protecting tumor cells. Interestingly, the activation of autophagy on dendritic cells has the opposite effects, enhancing antigen presentation, triggering CD8+ T cells cytotoxic activity, and reducing tumor growth. Therefore, this review will focus on the most recent aspects of autophagy and tumor immune environment. We describe the dual role of autophagy in modulating tumor immune responses and discuss some aspects that must be considered to improve cancer treatment.
Collapse
Affiliation(s)
- Alana Serrano Campelo de Souza
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Boslooper Gonçalves
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ana Paula Lepique
- Laboratório de Imunomodulação, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Savio de Araujo-Souza
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
34
|
Zamame Ramirez JA, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy. Life Sci 2020; 265:118745. [PMID: 33186569 DOI: 10.1016/j.lfs.2020.118745] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Cytotoxic drugs remain the first-line option for cancer therapy but the development of drug-resistance by tumor cells represents a primary obstacle for successful chemotherapy. Autophagy is a physiological mechanism of cell survival efficiently used by tumor cells to avoid cell death and to induce drug-resistance. It is a macromolecular process, in which cells degrade and recycle intracellular substrates and damaged organelles to alleviate cell stress caused by nutritional deprivation, hypoxia, irradiation, and cytotoxic agents, as well. There is evidence that autophagy prevents cancer during the early steps of carcinogenesis, but once transformed, these cells show enhanced autophagy capacity and use it to survive, grow, and facilitate metastasis. Current basic studies and clinical trials show the feasibility of using pharmacological or molecular blockage of autophagy to improve the anticancer therapy efficiency. In this review, we overviewed the pathways and molecular aspects of autophagy, its role in carcinogenesis, and the evidence for its role in cancer adaptation and drug-resistance. Finally, we reviewed the clinical findings on how the autophagy interference helps to improve conventional anticancer therapy.
Collapse
Affiliation(s)
- Jofer Andree Zamame Ramirez
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil
| | - Graziela Gorete Romagnoli
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil; Oeste Paulista University - UNOESTE, Department of Health Sciences, Jaú, SP, Brazil
| | - Ramon Kaneno
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil.
| |
Collapse
|