1
|
de Oliveira Rios É, Albino SL, Olimpio de Moura R, Nascimento IJDS. Targeting cysteine protease B to discover antileishmanial drugs: Directions and advances. Eur J Med Chem 2025; 289:117500. [PMID: 40085977 DOI: 10.1016/j.ejmech.2025.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Leishmaniasis is a severe disease and results in high mortality rates. Despite this, there are few drugs to treat and with various limitations such as toxicity and resistance, which justifies the search for new drugs. Thus, cysteine protease B (CPB) is a promising target against leishmania due to its immunomodulatory function related to the parasite's virulence and its interaction with the host. Thus, this perspective showed the potential of CPB in drug design and the main insights that can be used in subsequent drug design works. In fact, the aziridine analogs are the most explored against CPB due to the promising results and provide several insights into drug design. Also, it is noteworthy that one of the biggest challenges is target selectivity. Knowledge about substrate binding and other factors, such as the reversibility of inhibitors, is also needed. In addition, exploring target selectivity patterns is critical to developing CP inhibitors for clinical use to combat this threatening agent.
Collapse
Affiliation(s)
| | - Sonaly Lima Albino
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, PB, Brazil; Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, PB, Brazil; Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, Brazil
| | - Igor José Dos Santos Nascimento
- Cesmac University Center, Pharmacy Department, Maceió, Brazil; Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, PB, Brazil; Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
2
|
Ullah A, Bano A, Khan N. Antinutrients in Halophyte-Based Crops. FRONT BIOSCI-LANDMRK 2024; 29:323. [PMID: 39344318 DOI: 10.31083/j.fbl2909323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 10/01/2024]
Abstract
The cultivation of halophytes is an alternative approach to sustain agricultural productivity under changing climate. They are densely equipped with a diverse group of metabolites that serve multiple functions, such as providing tolerance to plants against extreme conditions, being used as a food source by humans and ruminants and containing bioactive compounds of medicinal importance. However, some metabolites, when synthesized in greater concentration above their threshold level, are considered antinutrients. Widely reported antinutrients include terpenes, saponins, phytate, alkaloids, cyanides, tannins, lectins, protease inhibitors, calcium oxalate, etc. They reduce the body's ability to absorb essential nutrients from the diet and also cause serious health problems. This review focuses on antinutrients found both in wild and edible halophytes and their beneficial as well as adverse effects on human health. Efforts were made to highlight such antinutrients with scientific evidence and describe some processing methods that might help in reducing antinutrients while using halophytes as a food crop in future biosaline agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biology, The Peace College, 24420 Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, 47000 Wah Cantt, Punjab, Pakistan
| | - Naeem Khan
- Agronomy Department, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
3
|
Pacheco JS, Teixeira ÉMGF, Paschoal RG, Torres-Santos EC, Simone SGDE, Silva-López REDA. Antileishmanial effects of Crotalaria spectabilis Roth aqueous extracts on Leishmania amazonensis. AN ACAD BRAS CIENC 2023; 95:e20220613. [PMID: 37672397 DOI: 10.1590/0001-3765202320220613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/22/2023] [Indexed: 09/08/2023] Open
Abstract
Fifteen polar extracts from leaf, seed, pod, stem, flower and root of Crotalaria spectabilis were prepared using aqueous systems, based on the principles of green chemistry, and showed different protease inhibitor (PI) activities on trypsin, papain, pepsin and the extracellular L. amazonensis serine protease (LSPIII). The most pronounced inhibitory effect on LSPIII was observed in leaf (CS-P), root, stem, flower (CS-FPVPP) and pod (CS-VA) extracts. Crotalaria extracts exhibited low cytotoxicity on macrophages; however, they decreased the viability of L. amazonensis promastigotes and amastigotes, as observed in leaf (CS-AE, CS-P, CS-T and CS-PVPP), seed (CS-ST), flower and root (CS-RA) extracts. CS-P was chosen to study PI and secondary metabolites and a 10-12 kDa protein, analyzed by mass spectrometry, was identified as a serine PI homologous with papaya latex serine PI. Glycosylated flavonoids, such as quercetins, vitexin and tricin were the major secondary metabolites of CS-P. The presence of PIs in C. spectabilis is a new finding, especially in other organs than seeds since PIs have been reported only in seed legumes. Besides, this is the first report of antileishmanial activity of C. spectabilis extracts and the identification of serine polypeptide PI and glycosylated flavonoids from leaf.
Collapse
Affiliation(s)
- Juliana S Pacheco
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Nethergate, Dundee, DD1 4HN, Scotland, United Kingdom
| | - Érika Maria G F Teixeira
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Ramon G Paschoal
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Eduardo Caio Torres-Santos
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanossomatídeos, Avenida Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Salvatore Giovanni DE Simone
- FIOCRUZ, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Instituto Nacional de Ciências e Tecnologia para Inovação em Doenças Negligenciadas (INCT-IDN), Avenida Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Raquel Elisa DA Silva-López
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Jayaraman A, Srinivasan S, Kar A, Harish B, Charan Raja MR, Uppuluri KB, Kar Mahapatra S. Oceanimonas sp. BPMS22-derived protein protease inhibitor induces anti-leishmanial immune responses through macrophage M2 to M1 repolarization. Int Immunopharmacol 2022; 112:109281. [DOI: 10.1016/j.intimp.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
|
5
|
Santos FA, Cruz GS, Vieira FA, Queiroz BR, Freitas CD, Mesquita FP, Souza PF. Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta Trop 2022; 236:106675. [DOI: 10.1016/j.actatropica.2022.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/01/2022]
|
6
|
Kumari D, Mahajan S, Kour P, Singh K. Virulence factors of Leishmania parasite: Their paramount importance in unraveling novel vaccine candidates and therapeutic targets. Life Sci 2022; 306:120829. [PMID: 35872004 DOI: 10.1016/j.lfs.2022.120829] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a neglected tropical disease and remains a global concern for healthcare. It is caused by an opportunistic protozoan parasite belonging to the genus Leishmania and affects millions worldwide. This disease is mainly prevalent in tropical and subtropical regions and is associated with a high risk of public morbidity and mortality if left untreated. Transmission of this deadly disease is aggravated by the bite of female sand-fly vectors (Phlebotomus and Lutzomyia). With time, significant advancement in leishmaniasis-related research has been carried out to cope with the disease burden. Still, the Leishmania parasite has also co-evolved with its host and adapted successfully within the host's lethal milieu/environment. Thus, understanding and knowledge of various leishmanial virulence factors responsible for the parasitic infection are essential for exploring drug targets and vaccine candidates. The present review elucidates the importance of virulence factors in pathogenesis and summarizes the major leishmanial virulence molecules contributing to the parasitic infection during host-pathogen interaction. Furthermore, we have also elaborated on the potential contribution of leishmanial virulence proteins in developing vaccine candidates and exploring novel therapeutics against this parasitic disease. We aim to represent a clearer picture of parasite pathogenesis within the human host that can further aid in unraveling new strategies to fight against the deadly infection of leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shavi Mahajan
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Parampreet Kour
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|