1
|
Wu X, Ma S, Wang C, Xu Z, Ma N. Effect of Ulinastatin Combined With High-Volume Hemofiltration on Inflammatory Response and MODS Incidence in Severe Sepsis. J Appl Toxicol 2025. [PMID: 40356061 DOI: 10.1002/jat.4804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
This study evaluated the impact of ulinastatin combined with high-volume hemofiltration (HVHF) on inflammation and the development of multiple organ dysfunction syndrome (MODS) in severe sepsis. One hundred patients with severe sepsis were recruited and allocated into two groups based on treatment methods (n = 50 patients). The control group underwent HVHF, while the observation group received ulinastatin-assisted HVHF. Comparisons of general data were made in treatment efficacy (APACHE II score), MODS score, and SOFA score. Inflammatory markers and organ function indicators were also measured before and after treatment. The incidence of disseminated intravascular coagulation (DIC), MODS, and mortality rates at 28 days were also analyzed. The observation group showed significantly reduced APACHE II, MODS, and SOFA scores, along with lower levels of IL-6, IL-10, TNF-α, ALT, and Scr (p < 0.05). Additionally, the observation group had lower incidences of DIC, MODS, and mortality (p < 0.05). Furthermore, elevated CD4+ and CD4+/CD8+ ratios while reduced CD8+ levels were noted in the observation group (p < 0.05). We demonstrate that ulinastatin combined with HVHF effectively reduces inflammatory levels in patients with severe sepsis, improves organ function, lowers the incidence of MODS and mortality, and enhances immune function.
Collapse
Affiliation(s)
- Xuhong Wu
- Department of Intensive Care Unit, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research), Nanjing, Jiangsu, China
| | - Shuliang Ma
- Department of Intensive Care Unit, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research), Nanjing, Jiangsu, China
| | - Chao Wang
- Department of Intensive Care Unit, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research), Nanjing, Jiangsu, China
| | - Zeping Xu
- Department of Intensive Care Unit, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research), Nanjing, Jiangsu, China
| | - Nan Ma
- Department of Intensive Care Unit, The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research), Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Cheng X, Li Y, Wang H. Activation of Wnt/β-catenin signal induces DCs to differentiate into immune tolerant regDCs in septic mice. Mol Immunol 2024; 172:38-46. [PMID: 38870636 DOI: 10.1016/j.molimm.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 04/28/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Sepsis is a common complication among patients in intensive care units, and has a high mortality rate, with no effective therapies to date. As immunosuppression has become the research focus of sepsis, the regulatory role of dendritic cells (DCs) in the immune response to sepsis has received attention. OBJECTIVE To investigate the role of the Wnt/β-catenin signaling pathway in inducing the differentiation of splenic DCs in mice with sepsis caused by cecal ligation and puncture (CLP). METHODS C57bl/6 mice were randomly divided into three groups, namely the sham, 24 h post-CLP, and 72 h post-CLP groups. Levels of regulatory T cells (Tregs) among splenic mononuclear cells, suppressor T cells (TSs), and surface markers, such as major histocompatibility complex class II (MHC-II), co-stimulatory molecules (CD80 and CD86), negative co-stimulatory molecule death-ligand 1 (PD-L1), CC chemokine receptor-5 (CCR5), and CC chemokine receptor-7 (CCR7), were analyzed via flow cytometry for each group of mice post-surgery. CD11c+ DCs were purified from the splenic mononuclear cells of each group, and the expression of β-catenin, Wnt5a, and Wnt3a was detected using RT-PCR and western blotting.Each group of DCs was incubated with LPS-containing culture solution, and the supernatant of the culture solution was collected after 24 hours to detect the level of Tumor necrosis factor-α(TNF-α), interleukin (IL)-6, IL-12, and IL-10. RESULTS Compared with that in the sham group, the expression of β-catenin, Wnt5a, and Wnt3a in splenic DCs of the other two groups of mice increased with prolonged CLP exposure (P<0.05). Meanwhile, the proportion of Tregs and TSs increased in the mouse spleens after CLP, and levels of DC surface molecules, such as CCR5, CCR7, CD80, CD86, and MHC-II, decreased to different degrees, whereas those of PD-L1 increased. These results suggested that DCs differentiate towards regulatory DCs (regDCs) after CLP in mice. The results of ELISA showed that the longer the exposure time after CLP, the lower the ability of DCs to secrete TNF-α and IL-12, but the higher the level of IL-10 and IL-6. CONCLUSION The Wnt/β-catenin signaling pathway activates and induces regDCs differentiation in the splenic DCs of mice with sepsis and participates in the regulation of immune tolerance in the organism.
Collapse
Affiliation(s)
- Xia Cheng
- Graduate Training Base of Jinzhou Medical University (Department of Pathology, Fourth Medical Center, General Hospital of Chinese People's Liberation Army), Beijing 100048, China; Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yazhuo Li
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hongwei Wang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
3
|
Muhammad M, Hassan TM, Baba SS, Radda MI, Mutawakkil MM, Musa MA, AbuBakar S, Loong SK, Yusuf I. Exploring NF κB pathway as a potent strategy to mitigate COVID-19 severe morbidity and mortality. J Public Health Afr 2022; 13:1679. [PMID: 36313924 PMCID: PMC9614690 DOI: 10.4081/jphia.2022.1679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), for which there does not appear to be an approved cure, the primary treatment options consist of non-pharmacological preventive measures and supportive treatment that are aimed at halting the progression of the disease. Nuclear factor kappa B (NFkB) presents a promising therapeutic opportunity to mitigate COVID-19-induced cytokine storm and reduce the risk of severe morbidity and mortality resulting from the disease. However, the effective clinical application of NFkB modulators in COVID-19 is hampered by a number of factors that must be taken into consideration. This paper therefore explored the modulation of the NFB pathway as a potential strategy to mitigate the severe morbidity and mortality caused by COVID-19. The paper also discusses the factors that form the barrier, and it offers potential solutions to the various limitations that may impede the clinical use of NFkB modulators against COVID-19. This paper revealed and identified three key potential solutions for the future clinical use of NFkB modulators against COVID-19. These solutions are pulmonary tissue-specific NFkB blockade, agents that target common regulatory proteins of both canonical and non-canonical NFkB pathways, and monitoring clinical indicators of hyperinflammation and cytokine storm in COVID-19 prior to using NFkB modulators.
Collapse
Affiliation(s)
- Mubarak Muhammad
- Department of Physiology, College of Medicine, University of Ibadan, Nigeria,Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Tasneem M. Hassan
- Department of Physiotherapy, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Sani S. Baba
- Department of Human Physiology, College of Health Sciences, Bayero University Kano, Nigeria
| | - Mustapha I. Radda
- Department of Human Physiology, College of Health Sciences, Bayero University Kano, Nigeria
| | - Mubarak M. Mutawakkil
- Pharmacology and Therapeutics, College of Health Sciences, Bayero University Kano, Nigeria
| | - Majida A. Musa
- Pharmacology and Therapeutics, College of Health Sciences, Bayero University Kano, Nigeria
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre, Higher Institution Centre of Excellence, Universiti of Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research and Education Centre, Higher Institution Centre of Excellence, Universiti of Malaya, Kuala Lumpur, Malaysia
| | - Ibrahim Yusuf
- Department of Pathology, Aminu Kano Teaching Hospital, Kano, Nigeria
| |
Collapse
|
4
|
Tang M, Zheng Y, Li J, Hu Y. The X box binding protein 1/C/EBP homologous protein pathway induces apoptosis of endothelial cells under hyperglycemia. Exp Ther Med 2022; 24:454. [PMID: 35720621 DOI: 10.3892/etm.2022.11381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/16/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maoshun Tang
- Department of Neurosurgery, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Yi Zheng
- Department of Science and Education, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Jianping Li
- Department of Cardiology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Yuanlang Hu
- Department of Obstetrics and Gynecology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| |
Collapse
|
5
|
Clinical Efficacy of Ulinastatin Combined with Meglumine Adenosine Cyclophosphate in the Treatment of Acute Myocardial Infarction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2172412. [PMID: 35479188 PMCID: PMC9038408 DOI: 10.1155/2022/2172412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
Ulinastatin, a common adjuvant drug in the clinical treatment of acute circulatory failure, has a good effect on various inflammatory diseases. In this study, we aim to explore the clinical efficacy of ulinastatin combined with meglumine adenosine cyclophosphate in patients with acute myocardial infarction (AMI) and its effect on cardiac function and endothelial function of patients. 100 AMI patients treated in our hospital (February 2020-October 2020) were randomly chosen and divided into group J and group Q, with 50 cases in each group. Group Q was treated with meglumine adenosine cyclophosphate only, while group J was treated with ulinastatin combined with meglumine adenosine cyclophosphate to compare the treatment efficiency, cardiac structure indexes, cardiac systolic function, blood lipid levels, vascular endothelial function, QLI (quality of life) scores, BI indexes, and FMA (motor function) scores between the two groups. The treatment efficiency, QLI score, BI index, and FMA score in group J were notably higher compared with group Q (P < 0.05). The cardiac structure indexes, cardiac systolic function, blood lipid level, and vascular endothelial function in group J were notably better compared with group Q (P < 0.05). Ulinastatin combined with meglumine adenosine cyclophosphate can obviously enhance the therapeutic effect of AMI patients and improve the endothelial function and cardiac function of patients, which is very promising in this medical area.
Collapse
|
6
|
Wang LX, Ren C, Yao RQ, Luo YN, Yin Y, Wu Y, Dong N, Zhu XM, Yao YM. Sestrin2 protects against lethal sepsis by suppressing the pyroptosis of dendritic cells. Cell Mol Life Sci 2021; 78:8209-8227. [PMID: 34741186 PMCID: PMC8629895 DOI: 10.1007/s00018-021-03970-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sestrin2 (SESN2), a highly evolutionarily conserved protein, is critically involved in the cellular response to various stresses and has been confirmed to maintain the homeostasis of the internal environment. However, the potential effects of SESN2 in regulating dendritic cells (DCs) pyroptosis in the context of sepsis and the related mechanisms are poorly characterized. In this study, we found that SESN2 was capable of decreasing gasdermin D (GSDMD)-dependent pyroptosis of splenic DCs by inhibiting endoplasmic reticulum (ER) stress (ERS)-related nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-mediated ASC pyroptosome formation and caspase-1 (CASP-1) activation. Furthermore, SESN2 deficiency induced NLRP3/ASC/CASP-1-dependent pyroptosis and the production of proinflammatory cytokines by exacerbating the PERK–ATF4–CHOP signaling pathway, resulting in an increase in the mortality of septic mice, which was reversed by inhibiting ERS. These findings suggest that SESN2 appears to be essential for inhibiting NLRP3 inflammasome hyperactivation, reducing CASP-1-dependent pyroptosis, and improving sepsis outcomes through stabilization of the ER. The present study might have important implications for exploration of novel potential therapeutic targets for the treatment of sepsis complications.
Collapse
Affiliation(s)
- Li-Xue Wang
- Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing, 100853, People's Republic of China.,Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China.,Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Yi-Nan Luo
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Yue Yin
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Xiao-Mei Zhu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China.
| | - Yong-Ming Yao
- Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing, 100853, People's Republic of China. .,Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China.
| |
Collapse
|
7
|
Ulinastatin Attenuates LPS-Induced Inflammation and Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis in Renal Tubular Epithelial Cells via Regulation of the TLR4/NF-κB and Nrf2/HO-1 Pathways. Inflammation 2021; 44:2323-2332. [PMID: 34585338 DOI: 10.1007/s10753-021-01505-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Acute kidney injury (AKI) is one of the most common diseases in patients treated in intensive care units. This study was intended to explore the underlying mechanism by which ulinastatin (UTI) influenced the inflammation and apoptosis of renal tubular epithelial cells, HK-2.The effects of UTI on the cell viability of HK-2 cells were first measured by MTT and lactate dehydrogenase (LDH) detection kit. The apoptosis and inflammation of HK-2 cells were then determined by TUNEL, western blot, ELISA, and RT-qPCR. Then, the proteins in the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathways were measured by western blot for confirming the relationship between UTI and these pathways. Finally, Nrf-2 inhibitor ML385 and TLR4 activator CCL-34 were respectively used on LPS-induced HK-2 cells exposed to UTI for the conduction of gain-of-function and loss-of-function assays.UTI treatment boosted the cell viability of HK-2 cells damaged by LPS. Furthermore, UTI exposure cut down the apoptosis rate and inhibited the expression inflammatory factors of HK-2 cells induced by LPS. UTI treatment decreased the expression of proteins in the TLR4/NF-κB pathway, increased the HO-1 expression, and prompted the translocation of Nrf2 from the cytoplasm to the nucleus. The alleviated effects of UTI on inflammation and apoptosis LPS-induced HK-2 cells were abolished by ML385 and TLR4, respectively.UTI attenuates LPS-induced inflammation and inhibits endoplasmic reticulum stress-induced apoptosis in renal tubular epithelial cells by regulating TLR4/NF-κB and Nrf2/HO-1 pathways.
Collapse
|
8
|
Tang D, Wang H, Billiar TR, Kroemer G, Kang R. Emerging mechanisms of immunocoagulation in sepsis and septic shock. Trends Immunol 2021; 42:508-522. [PMID: 33906793 DOI: 10.1016/j.it.2021.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
Sepsis and septic shock driven by microbial infections are still among the most challenging health problems, causing 11 million deaths worldwide every year. How does the host's response to pathogen infections effectively restore homeostasis instead of precipitating pathogenic and potentially fatal feedforward reactions? Recently, there have been significant new advances in our understanding of the interface between mammalian immunity and coagulation ('immunocoagulation') and its impact on sepsis. In particular, the release and activation of F3 (the main initiator of coagulation) from and on myeloid or epithelial cells is facilitated by activating inflammasomes and consequent gasdermin D (GSDMD)-mediated pyroptosis, coupled to signaling via high mobility group box 1 (HMGB1), stimulator of interferon response CGAMP interactor 1 (STING1), or sequestosome 1 (SQSTM1). Pharmacological modulation of the immunocoagulation pathways emerge as novel and potential therapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP; 75015 Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|