1
|
Zhao W, Cui H, Liu J, Sun H, Zhang Z, Zhang Z, Ma D. Herbal Interventions in Parkinson's Disease: A Systematic Review of Preclinical Studies. Cell Mol Neurobiol 2025; 45:50. [PMID: 40410612 PMCID: PMC12102455 DOI: 10.1007/s10571-025-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/14/2025] [Indexed: 05/25/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra of the midbrain. With its incidence rising annually, the multi-mechanistic pathogenesis of PD presents new opportunities for the development of multi-target therapies. While previous studies have explored the therapeutic potential of natural products in PD, existing reviews often focus on single mechanisms or a limited number of compounds. While previous studies have explored the therapeutic potential of natural products in PD, existing reviews often focus on single mechanisms or a limited number of compounds. This article systematically evaluates preclinical studies published between 2018 and 2025, encompassing 32 bioactive components and 10 categories of traditional Chinese medicine (TCM) formulas. It highlights the therapeutic potential of TCM active ingredients for PD by examining key mechanisms, including oxidative stress, ferroptosis, neuroinflammation, gut microbiota imbalance, mitochondrial dysfunction, autophagy, and endoplasmic reticulum stress. By integrating these insights, this review provides an interdisciplinary perspective to guide the development of next-generation botanical drugs for PD.
Collapse
Affiliation(s)
- Wanlin Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Hailiang Cui
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Jihong Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Hongyu Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Zijuan Zhang
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Dongrui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
| |
Collapse
|
2
|
Markovic MD, Panic VV, Pjanovic RV. Polymeric Nanosystems: A Breakthrough Approach to Treating Inflammation and Inflammation Related Diseases. Biopolymers 2025; 116:e70012. [PMID: 40104970 DOI: 10.1002/bip.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Inflammation processes can cause mild to severe damage in the human body and can lead to a large number of inflammation-related diseases (IRD) such as cancer, neural, vascular, and pulmonary diseases. Limitations of anti-inflammatory drugs (AID) application are reflected in high therapeutic doses, toxicity, low bioavailability and solubility, side effects, etc. Polymeric nanosystems (PS) have been recognized as a safe and effective technology that is able to overcome these limitations by AID encapsulation and is able to answer to the specific demands of the IRD treatment. PS are attracting great attention due to their versatility, biocompatibility, low toxicity, fine-tuned properties, functionality, and ability for precise delivery of anti-inflammatory drugs to the targeted sites in the human body. This article offers an overview of three classes of polymeric nanosystems: a) dendrimers, b) polymeric micelles and polymeric nanoparticles, and c) polymeric filomicelles, as well as their properties, preparation, and application in IRD treatment. In the future, the number of PS formulations in clinical practice will certainly increase.
Collapse
Affiliation(s)
- Maja D Markovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna V Panic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Rada V Pjanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Taibi M, Elbouzidi A, Haddou M, Baraich A, Gharsallaoui A, Mothana RA, Alqahtani AM, Asehraou A, Bellaouchi R, Addi M, El Guerrouj B, Chaabane K. Evaluation of the Interaction Between Menthol and Camphor, Major Compounds of Clinopodium nepeta Essential Oil: Antioxidant, Anti-inflammatory and Anticancer Activities Against Breast Cancer Cell Lines. Chem Biodivers 2025; 22:e202403098. [PMID: 39803778 DOI: 10.1002/cbdv.202403098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
This study evaluates the antioxidant, anti-inflammatory, and anticancer activities of camphor, menthol, and their equimolar combination. In silico toxicity analysis confirmed the absence of toxic effects for both compounds. Antioxidant activity, assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, revealed a synergistic effect of the equimolar combination with half-maximal inhibitory concentration (IC50) values of 10.3 µg/mL (DPPH) and 8.9 µg/mL (ABTS), surpassing the efficacy of ascorbic acid (IC50 = 12.4 µg/mL). Evaluation of anti-inflammatory activity showed that the combination more effectively inhibited 5-lipoxygenase (72.5% vs. 48.3% for camphor and 52.9% for menthol) and COX-1 and COX-2 cyclooxygenases (78.1% and 79.4% respectively, vs. 60.4% and 62.7% for camphor, 64.2% and 66.3% for menthol). Anticancer activity, tested on MCF-7, MDA-MB-231, and MDA-MB-436 breast cancer lines, revealed that the equimolar combination exhibited IC50 of 27.6, 31.2, and 36.5 µg/mL, respectively, with an IC50 of 52.3 µg/mL on normal cells, demonstrating remarkable selectivity for cancer cells. These results suggest that the camphor-menthol combination represents a promising therapeutic approach against pathologies associated with oxidative stress, inflammation, and carcinogenesis.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Amine Elbouzidi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mounir Haddou
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Departement, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Adem Gharsallaoui
- LAGEPP UMR 5007, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz M Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Departement, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Departement, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohamed Addi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Bouchra El Guerrouj
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Departement, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Khalid Chaabane
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| |
Collapse
|
4
|
Mollaei Z, Asle-Rousta M, Asaadi Tehrani G. Protective effect of menthol against diethylnitrosamine-induced hepatocellular carcinoma in mice by downregulating CTNNB1 and HIF-1α. AVICENNA JOURNAL OF PHYTOMEDICINE 2025; 15:1167-1176. [PMID: 40365190 PMCID: PMC12068496 DOI: 10.22038/ajp.2024.25230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Objective This study examined the impact of menthol, a natural monoterpene, on diethylnitrosamine (DEN)-induced molecular and histopathological changes in the livers of male mice. Materials and Methods Forty male mice were divided into four groups: Control, Menthol (M), DEN, and DEN-M. The DEN and DEN-M groups received an intraperitoneal injection of DEN (25 mg/kg) at the age of 14 days. The M and DEN-M groups were also given menthol (50 mg/kg, three times a week for six months) via gavage. The expression of genes related to liver carcinoma was analyzed using real-time PCR. Subsequently, the liver tissue was microscopically examined following staining with hematoxylin-eosin. Results After one month, menthol reduced the infiltration of inflammatory cells in the liver tissue of mice injected with DEN. It also prevented the increase in the expression of alpha-fetoprotein (AFP) (p<0.001), programmed cell death 6 (p<0.05), hypoxia-inducible factor-1 alpha (HIF-1α) (p<0.001), and vascular endothelial growth factor (VEGF) (p<0.001) in DEN-M animals compared with DEN group. After six months of session, the expression of AFP (p<0.05), HIF-1α (p<0.05), secreted frizzled-related protein 1 (p<0.001), and catenin beta 1 (p<0.01) was lower in group DEN-M compared with group DEN. Menthol also partially prevented DEN-induced various histopathological changes in the liver after six months of treatment. Conclusion We concluded that menthol inhibits Wnt signaling and suppresses the expression of HIF-1α and VEGF in the liver of DEN-injected mice. It is probably a suitable option for the prevention and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zahra Mollaei
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Golnaz Asaadi Tehrani
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
- Aerospace and Mechanical Engineering Department, Notre Dame University, Indiana, USA
| |
Collapse
|
5
|
Jávega-Cometto M, Naranjo-Viteri AJ, Champarini LG, Hereñú CB, Crespo R. Plant-Derived Monoterpene Therapies in Parkinson's Disease Models: Systematic Review and Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2025; 14:999. [PMID: 40219067 PMCID: PMC11990262 DOI: 10.3390/plants14070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
Monoterpenes (MTs) are plants' secondary metabolites and major components of essential oils (EOs), widely used in the pharmaceutical industry. However, its neuroprotective effects, particularly in Parkinson's disease (PD) have not been fully demonstrated. PD is a progressive neurological disorder marked by dopaminergic neuron loss in the substantia nigra, motor symptoms being the most reported ones. This review evaluates the evidence supporting the use of MTs as potential neuroprotective agents. PubMed, SCOPUS, Google Scholar, and ScienceDirect databases were searched for articles on MTs in murine models with any type of administration. The PRISMA guidelines were followed. After screening 405 records, 32 were included in the systematic review and 30 were included in the meta-analysis. Fifteen MTs, commonly found in EOs, were identified as potential therapeutic agents for PD. The meta-analysis revealed that MTs administration improved motor performance, increased tyrosine hydroxylase levels, reduced oxidative stress markers (malondialdehyde) and proinflammatory cytokines (IL-6, IL-1, TNF-α), and enhanced antioxidant enzymes (catalase, superoxide dismutase) in parkinsonian animals. The antioxidant and anti-inflammatory properties of MTs appear to be key mechanisms in mitigating dopaminergic neurodegeneration. However, further clinical research is essential to translate these findings into practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Rosana Crespo
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (M.J.-C.); (A.J.N.-V.); (L.G.C.); (C.B.H.)
| |
Collapse
|
6
|
Fang Q, Yu L, Tian F, Chen W, Zhai Q, Zhang H. Randomized controlled trials of the effects of capsaicin or menthol on irritable bowel syndrome: a systematic review and meta-analysis. Food Funct 2024; 15:11865-11874. [PMID: 39576289 DOI: 10.1039/d4fo04268a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Irritable bowel syndrome (IBS) is a common intestinal disease characterized by abdominal pain, abdominal distension and irregular defecation frequency, and it has had a high incidence and low cure rate in recent years. Visceral hypersensitivity (VH) is one of the main physiological indicators of IBS, and TRPV1 and TRPM8 (transient receptor potential vanilloid 1 and melastatin 8) play crucial roles in VH and are widely distributed in the intestine, significantly impacting abdominal pain in IBS patients. Under the guidance of PRISMA, four databases were systematically searched at the outset, including PubMed, Web of Science, Embase, and Cochrane Library. Randomized controlled trials (RCTs) reporting specific abdominal pain scores (rather than the incidence rate) in IBS patients receiving capsaicin or menthol (agonist of TRPV1 and TRPM8) interventions were included. A meta-analysis was conducted on the retrieved studies, which consisted of three articles on capsaicin and five articles on menthol, to compare the efficacy of capsaicin and menthol in alleviating abdominal pain in IBS patients under conditions of low heterogeneity. The results demonstrated that menthol had a significant effect in relieving abdominal pain in IBS patients. Conversely, although the effect of capsaicin was not statistically significant, two studies involving long-term capsaicin intervention suggested its potential to reduce VH and subsequently relieve abdominal pain, which may be attributed to the up-regulation of the TRPV1 receptor in the gastrointestinal tract of individuals with IBS.
Collapse
Affiliation(s)
- Qingying Fang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
7
|
Krishnan M, Kumaresan M, Ravi S, Martin LC, Duraisamy P, Manikandan B, Munusamy A, Ramar M. Therapeutic potential of monoterpene molecules acts against 7KCh-mediated oxidative stress and neuroinflammatory amyloidogenic signalling pathways. Prostaglandins Other Lipid Mediat 2024; 175:106910. [PMID: 39343044 DOI: 10.1016/j.prostaglandins.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disorder characterised by amyloid-beta aggregates activated by the accumulation of lipid molecules and their derivatives, especially 7-ketocholesterol (7KCh), an oxidised lipid that plays a great part in the progression of AD. The current therapeutics need bio-potential molecules and their biomedical application preventing 7KCh-induced cytotoxicity. In this study, bornyl acetate (BA) and menthol (ME), the natural monoterpenes were investigated for their neuroprotective effects against 7KCh-induced SH-SY5Y cells and their effects were compared to the standard drug galantamine (GA). 7KCh-induced changes like lipid accumulation, amyloid generation, free radical generation, acetylcholinesterase levels, calcium accumulation and mitochondrial membrane integrity were analysed in SH-SY5Y cells with or without BA and ME treatment. Furthermore, various mediators involved in the amyloidogenic, inflammatory and apoptotic pathways were studied. In our results, the cells induced with 7KCh upon co-treatment with BA and ME significantly reduced lipid accumulation and amyloid generation through toll-like receptor (TLR) 4 suppression and enhanced ATP binding cassette (ABCA) 1-mediated clearance. Co-treatment with BA and ME concurrently regulated oxidative stress, acetylcholinesterase activity, mitochondrial membrane potential and intracellular calcification altered by 7KCh-induced SH-SY5Y cells. Moreover, 7KCh-induced cells showed elevated mRNA levels of misfolded protein markers and apoptotic mediators which were significantly downregulated by BA and ME co-treatment. In addition, the protein expression of amyloidogenic, proinflammatory as well as pro-apoptotic markers was decreased by BA and ME co-treatment in 7KCh-induced cells. Overall, BA and ME mediated inhibition of amyloidogenic activation and cell survival against 7KCh-induced inflammation, thereby preventing the onset and progression of AD in comparison to GA.
Collapse
Affiliation(s)
- Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Arumugam Munusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
8
|
Kaboutari M, Asle-Rousta M, Mahmazi S. Protective effect of menthol against thioacetamide-induced hepatic encephalopathy by suppressing oxidative stress and inflammation, augmenting expression of BDNF and α7-nACh receptor, and improving spatial memory. Eur J Pharmacol 2024; 981:176916. [PMID: 39154831 DOI: 10.1016/j.ejphar.2024.176916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that can occur in people with acute or chronic liver disease. Here, we investigated the effects of menthol, a natural monoterpene, on HE induced by thioacetamide (TA) in male Wistar rats. The rats received 200 mg/kg of TA twice a week for four weeks and were administered 10 mg/kg of menthol intraperitoneally daily for the same period. The results showed that menthol treatment reduced oxidative stress and inflammation in the livers and hippocampi of the rats that received TA. It also lowered the levels of ammonium and liver enzymes AST, ALT, ALP, and GGT in the serum of these animals and prevented liver histopathological damage. In addition, the expression and activity of acetylcholinesterase in the hippocampus of HE model rats were decreased by menthol. Likewise, this monoterpene reduced the expression of TLR4, MyD88, and NF-κB in the hippocampus while increasing the expression of BDNF and α7-nACh receptor. Menthol also reduced neuronal death in the hippocampal cornu ammonis-1 and dentate gyrus regions and reduced astrocyte swelling, which led to improved learning and spatial memory in rats with HE. In conclusion, the study suggests that menthol may have strong protective effects on the liver and brain, making it a potential treatment for HE and neurodegenerative diseases.
Collapse
Affiliation(s)
- Masoud Kaboutari
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Sanaz Mahmazi
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
9
|
Cao XY, Liu Y, Kan JS, Huang XX, Kambey PA, Zhang CT, Gao J. Microglial SIX2 suppresses lipopolysaccharide (LPS)-induced neuroinflammation by up-regulating FXYD2 expression. Brain Res Bull 2024; 212:110970. [PMID: 38688414 DOI: 10.1016/j.brainresbull.2024.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease associated with the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although its pathogenesis remains unclear, microglia-mediated neuroinflammation significantly contributes to the development of PD. Here we showed that the sine oculis homeobox (SIX) homologue family transcription factors SIX2 exerted significant effects on neuroinflammation. The SIX2 protein, which is silenced during development, was reactivated in lipopolysaccharide (LPS)-treated microglia. The reactivated SIX2 in microglia mitigated the LPS induced inflammatory effects, and then reduced the toxic effect of conditioned media (CM) of microglia on co-cultured MES23.5 DA cells. Using the LPS-stimulated Cx3cr1-CreERT2 mouse model, we also demonstrated that the highly-expressed SIX2 in microglia obviously attenuated neuroinflammation and protected the DA neurons in SN. Further RNA-Seq analysis on the inflammatory activated microglia revealed that the SIX2 exerted these effects via up-regulating the FXYD domain containing ion transport regulator 2 (FXYD2). Taken together, our study demonstrated that SIX2 was an endogenous anti-inflammatory factor in microglia, and it exerted anti-neuroinflammatory effects by regulating the expression of FXYD2, which provides new ideas for anti-neuroinflammation in PD.
Collapse
Affiliation(s)
- Xia-Yin Cao
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jia-Shuo Kan
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-Xing Huang
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can-Tang Zhang
- Department of Respiratory and Critical Care, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jin Gao
- Department of Neurobiology and Cellular biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
10
|
Stojanović NM, Ranđelović PJ, Simonović M, Radić M, Todorović S, Corrigan M, Harkin A, Boylan F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int J Mol Sci 2024; 25:5168. [PMID: 38791205 PMCID: PMC11121245 DOI: 10.3390/ijms25105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Microglia are key players in the brain's innate immune response, contributing to homeostatic and reparative functions but also to inflammatory and underlying mechanisms of neurodegeneration. Targeting microglia and modulating their function may have therapeutic potential for mitigating neuroinflammation and neurodegeneration. The anti-inflammatory properties of essential oils suggest that some of their components may be useful in regulating microglial function and microglial-associated neuroinflammation. This study, starting from the ethnopharmacological premises of the therapeutic benefits of aromatic plants, assessed the evidence for the essential oil modulation of microglia, investigating their potential pharmacological mechanisms. Current knowledge of the phytoconstituents, safety of essential oil components, and anti-inflammatory and potential neuroprotective effects were reviewed. This review encompasses essential oils of Thymus spp., Artemisia spp., Ziziphora clinopodioides, Valeriana jatamansi, Acorus spp., and others as well as some of their components including 1,8-cineole, β-caryophyllene, β-patchoulene, carvacrol, β-ionone, eugenol, geraniol, menthol, linalool, thymol, α-asarone, and α-thujone. Essential oils that target PPAR/PI3K-Akt/MAPK signalling pathways could supplement other approaches to modulate microglial-associated inflammation to treat neurodegenerative diseases, particularly in cases where reactive microglia play a part in the pathophysiological mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Pavle J. Ranđelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Maja Simonović
- Department of Psychiatry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Milica Radić
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
- Department of Oncology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stefan Todorović
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Myles Corrigan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
- Trinity Biomedical Sciences Institute (TBSI) and The Trinity Centre for Natural Product Research (NatPro), D02 R590 Dublin, Ireland
| |
Collapse
|
11
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
12
|
Kazemi A, Iraji A, Esmaealzadeh N, Salehi M, Hashempur MH. Peppermint and menthol: a review on their biochemistry, pharmacological activities, clinical applications, and safety considerations. Crit Rev Food Sci Nutr 2024; 65:1553-1578. [PMID: 38168664 DOI: 10.1080/10408398.2023.2296991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this manuscript, we conducted a comprehensive review of the diverse effects of peppermint on human health and explored the potential underlying mechanisms. Peppermint contains three main groups of phytochemical constituents, including essential oils (mainly menthol), flavonoids (such as hesperidin, eriodictyol, naringenin, quercetin, myricetin, and kaempferol), and nonflavonoid phenolcarboxylic acids. Peppermint exhibits antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, anti-cancer, anti-aging, and analgesic properties and may be effective in treating various disorders, including gastrointestinal disorders (e.g., irritable bowel syndrome, dyspepsia, constipation, functional gastrointestinal disorders, nausea/vomiting, and gallbladder stones). In addition, peppermint has therapeutic benefits for psychological and cognitive health, dental health, urinary retention, skin and wound healing, as well as anti-depressant and anti-anxiety effects, and it may improve memory. However, peppermint has paradoxical effects on sleep quality and alertness, as it has been shown to improve sleep quality in patients with fatigue and anxiety, while also increasing alertness under conditions of monotonous work and relaxation. We also discuss its protective effects against toxic agents at recommended doses, as well as its safety and potential toxicity. Overall, this review provides the latest findings and insights into the properties and clinical effects of peppermint/menthol and highlights its potential as a natural therapeutic agent for various health conditions.
Collapse
Affiliation(s)
- Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center (TCMRC), Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Song J, Zhao Y, Shan X, Luo Y, Hao N, Zhao L. Active ingredients of Chinese medicine with immunomodulatory properties: NF-κB pathway and Parkinson's disease. Brain Res 2024; 1822:148603. [PMID: 37748570 DOI: 10.1016/j.brainres.2023.148603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a complex pathogenesis and no cure. Persistent neuroinflammation plays an important role in the development of PD, and activation of microglia and astrocytes within the central nervous system leads to an inflammatory response and production of pro-inflammatory factors, and activation of NF-κB is key to neuroglial activation in chronic inflammation in PD and a hallmark of the onset of neuroinflammatory disease. Therefore, inhibiting NF-κB activation to prevent further loss of dopaminergic nerves is a more effective means of treating PD. It has been found that an increasing number of active ingredients in Chinese medicines, such as flavonoids, alkaloids, saponins, terpenoids, phenols and phenylpropanoids, have anti-inflammatory properties that can regulate neuroglia cell activation and ameliorate neuroinflammation through the NF-κB pathway, and increase dopamine release or protect dopaminergic neurons for neuroprotection to improve behavioural dysfunction in PD. The active ingredients of traditional Chinese medicine are expected to be good candidates for the treatment of PD, as they provide holistic regulation through multi-targeting and multi-level effects, and are safe, inexpensive and readily available. Therefore, this paper summarises that the active ingredients of some relevant Chinese medicines ameliorate the symptoms of PD and delay the development of PD by inhibiting glial cell-mediated neuroinflammation through the NF-κB pathway, which may provide new ideas for exploring the molecular mechanism of PD pathogenesis and developing new anti-PD drugs.
Collapse
Affiliation(s)
- Jingjing Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yang Zhao
- Huiji District People's Hospital, Henan Province, Zhengzhou 450000, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yongyin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
14
|
Bandick R, Busmann LV, Mousavi S, Shayya NW, Piwowarski JP, Granica S, Melzig MF, Bereswill S, Heimesaat MM. Therapeutic Effects of Oral Application of Menthol and Extracts from Tormentil ( Potentilla erecta), Raspberry Leaves ( Rubus idaeus), and Loosestrife ( Lythrum salicaria) during Acute Murine Campylobacteriosis. Pharmaceutics 2023; 15:2410. [PMID: 37896170 PMCID: PMC10610364 DOI: 10.3390/pharmaceutics15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Human food-borne infections with the enteropathogen Campylobacter jejuni are becoming increasingly prevalent worldwide. Since antibiotics are usually not indicated in campylobacteriosis, alternative treatment regimens are important. We here investigated potential disease-alleviating effects of menthol and of extracts from tormentil, raspberry leaves, and loosestrife in acute murine campylobacteriosis. Therefore, C. jejuni-infected microbiota-depleted IL-10-/- mice were orally treated with the compounds alone or all in combination from day 2 until day 6 post-infection. Whereas neither treatment regimen affected gastrointestinal pathogen loads, the combination of compounds alleviated C. jejuni-induced diarrheal symptoms in diseased mice on day 6 post-infection. Furthermore, the therapeutic application of tormentil and menthol alone and the combination of the four compounds resulted in lower colonic T cell numbers in infected mice when compared to placebo counterparts. Notably, pro-inflammatory cytokines measured in mesenteric lymph nodes taken from C. jejuni-infected mice following tormentil, menthol, and combination treatment did not differ from basal concentrations. However, neither treatment regimen could dampen extra-intestinal immune responses, including systemic pro-inflammatory cytokine secretion on day 6 post-infection. In conclusion, the combination of menthol and of extracts from tormentil, raspberry leaves, and loosestrife constitutes an antibiotic-independent approach to alleviate campylobacteriosis symptoms.
Collapse
Affiliation(s)
- Rasmus Bandick
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Lia V Busmann
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Nizar W Shayya
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| |
Collapse
|
15
|
Zhu SM, Xue R, Chen YF, Zhang Y, Du J, Luo FY, Ma H, Yang Y, Xu R, Li JC, Li S, Li CW, Gao X, Zhang YZ. Antidepressant-like effects of L-menthol mediated by alleviating neuroinflammation and upregulating the BDNF/TrkB signaling pathway in subchronically lipopolysaccharide-exposed mice. Brain Res 2023; 1816:148472. [PMID: 37393011 DOI: 10.1016/j.brainres.2023.148472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Affiliation(s)
- Shuai-Ming Zhu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yi-Fei Chen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jun Du
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Fu-Yao Luo
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hao Ma
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yu Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rui Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jing-Cao Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chang-Wei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiang Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - You-Zhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
16
|
Nagai K, Tamura M, Murayama R, Fukuno S, Ito T, Konishi H. Development of multi-drug resistance to anticancer drugs in HepG2 cells due to MRP2 upregulation on exposure to menthol. PLoS One 2023; 18:e0291822. [PMID: 37733713 PMCID: PMC10513270 DOI: 10.1371/journal.pone.0291822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Menthol exerts relaxing, antibacterial, and anti-inflammatory activities, and is marketed as a functional food and therapeutic drug. AIM In the present study, the effects of menthol on the expression of multidrug resistance associated protein 2 (MRP2) and its association with the cytotoxicity of epirubicin (EPI) and cisplatin (CIS) were examined using HepG2 cells. METHODS The expression levels of target genes were examined by real-time PCR. The intracellular concentration of incorporated EPI was measured by high-performance liquid chromatography. Cell viability was evaluated by MTT analysis. RESULTS The expression of MRP2 mRNA was increased by exposing HepG2 cells to menthol for 24 hr. Consistent with a previous report suggesting an inverse correlation between MRP2 and Akt behavior, increased expression of MRP2 was also observed on suppression of the Akt function. Intracellular accumulation of EPI was significantly decreased by exposure of HepG2 cells to menthol, and a significant decrease in the intracellular concentration of EPI remaining was observed in HepG2 cells exposed to menthol. The decreased intracellular accumulation of EPI was significantly suppressed by treatment with MK-571, but not verapamil. Both EPI and CIS exerted cytocidal effects on HepG2 cells, but the decrease in cell viability was significantly attenuated by 24-hr menthol pre-exposure. CONCLUSION These results demonstrate that menthol causes hepatocellular carcinoma to acquire resistance to anticancer drugs such as EPI and CIS by MRP2 induction.
Collapse
Affiliation(s)
- Katsuhito Nagai
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Mayuko Tamura
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Ryuga Murayama
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Shuhei Fukuno
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Hiroki Konishi
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| |
Collapse
|
17
|
Zhao Y, Pan H, Liu W, Liu E, Pang Y, Gao H, He Q, Liao W, Yao Y, Zeng J, Guo J. Menthol: An underestimated anticancer agent. Front Pharmacol 2023; 14:1148790. [PMID: 37007039 PMCID: PMC10063798 DOI: 10.3389/fphar.2023.1148790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Menthol, a widely used natural, active compound, has recently been shown to have anticancer activity. Moreover, it has been found to have a promising future in the treatment of various solid tumors. Therefore, using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect, and China National Knowledge Infrastructure databases, the present study reviewed the anticancer activity of menthol and the underlying mechanism. Menthol has a good safety profile and exerts its anticancer activity via multiple pathways and targets. As a result, it has gained popularity for significantly inhibiting different types of cancer cells by various mechanisms such as induction of apoptosis, cell cycle arrest, disruption of tubulin polymerization, and inhibition of tumor angiogenesis. Owing to the excellent anticancer activity menthol has demonstrated, further research is warranted for developing it as a novel anticancer agent. However, there are limitations and gaps in the current research on menthol, and its antitumor mechanism has not been completely elucidated. It is expected that more basic experimental and clinical studies focusing on menthol and its derivatives will eventually help in its clinical application as a novel anticancer agent.
Collapse
Affiliation(s)
- Yijia Zhao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - E. Liu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingying He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
18
|
Rayff da Silva P, de Andrade JC, de Sousa NF, Portela ACR, Oliveira Pires HF, Remígio MCRB, da Nóbrega Alves D, de Andrade HHN, Dias AL, Salvadori MGDSS, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Computational Studies Applied to Linalool and Citronellal Derivatives Against Alzheimer's and Parkinson's Disorders: A Review with Experimental Approach. Curr Neuropharmacol 2023; 21:842-866. [PMID: 36809939 PMCID: PMC10227923 DOI: 10.2174/1570159x21666230221123059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer's and anti-Parkinson's activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds' pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Maria Caroline Rodrigues Bezerra Remígio
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Danielle da Nóbrega Alves
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T. Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
19
|
Cheng H, An X. Cold stimuli, hot topic: An updated review on the biological activity of menthol in relation to inflammation. Front Immunol 2022; 13:1023746. [PMID: 36439160 PMCID: PMC9682018 DOI: 10.3389/fimmu.2022.1023746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Rising incidence of inflammation-related diseases is an increasing concern nowadays. However, while menthol is a wildly-used and efficacious complementary medicine, its pharmacological mechanism still remains uncertain. Superimposed upon that, the aim of this review is to summarize the contemporary evidence of menthol's anti-inflammatory activity. METHODS Using the pharmacopeias and electronic databases, including Web of Science, PubMed, and CNKI, this study analyzed the relevant research articles and review articles from 2002 to 2022 and concluded those results and conjectures to finish this article. RESULTS The decrease in pro-inflammatory cytokines and related inflammatory markers, as well as associated pathway activation, was found to play the greatest role in the protective effects of menthol against inflammatory damage or association with protection against chronic inflammation. CONCLUSION This review mainly concludes the progress in menthol's anti-inflammatory activity. Further studies are needed to establish relationships between the mechanisms of action and to clarify the clinical relevance of any anti-inflammatory effects.
Collapse
Affiliation(s)
- Haojin Cheng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuemei An
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Matouk AI, El-Daly M, Habib HA, Senousy S, Naguib Abdel Hafez SM, Kasem AW, Almalki WH, Alzahrani A, Alshehri A, Ahmed ASF. Protective effects of menthol against sepsis-induced hepatic injury: Role of mediators of hepatic inflammation, apoptosis, and regeneration. Front Pharmacol 2022; 13:952337. [PMID: 36120368 PMCID: PMC9476320 DOI: 10.3389/fphar.2022.952337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Liver dysfunction in sepsis is a major complication that amplifies multiple organ failure and increases the risk of death. Inflammation and oxidative stress are the main mediators in the pathophysiology of sepsis. Therefore, we investigated the role of menthol, a natural antioxidant, against sepsis-induced liver injury in female Wistar rats. Sepsis was induced by cecal ligation and puncture (CLP). Menthol (100 mg/kg) was given intragastric 2 h after CLP. Blood samples and liver tissues were collected 24 h after surgery. Menthol significantly (p < 0.05) attenuated the sepsis-induced elevation in serum liver enzymes and improved the hepatic histopathological changes. Menthol treatment significantly (p < 0.05) decreased hepatic levels of tumor necrosis factor-alpha, malondialdehyde, total nitrite, and cleaved caspase-3. It restored the hepatic levels of superoxide dismutase and reduced glutathione. Additionally, menthol significantly (p < 0.05) increased hepatic levels of B-cell lymphoma 2 (Bcl-2); an anti-apoptotic factor, and proliferating cell nuclear antigen (PCNA), a biomarker of regeneration and survival. Our results showed the therapeutic potential of menthol against liver injury induced by sepsis.
Collapse
Affiliation(s)
- Asmaa I. Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Heba A. Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Shaymaa Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | | | - AlShaimaa W. Kasem
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Alzahrani
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, AlBaha University, Al Bahah, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, AlBaha University, Al Bahah, Saudi Arabia
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
- *Correspondence: Al-Shaimaa F. Ahmed,
| |
Collapse
|
21
|
Huang SS, Su HH, Chien SY, Chung HY, Luo ST, Chu YT, Wang YH, MacDonald IJ, Lee HH, Chen YH. Activation of peripheral TRPM8 mitigates ischemic stroke by topically applied menthol. J Neuroinflammation 2022; 19:192. [PMID: 35897101 PMCID: PMC9327358 DOI: 10.1186/s12974-022-02553-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
Background No reports exist as to neuroprotective effects associated with topical activation of transient receptor potential melastatin 8 (TRPM8), a noted cold receptor. In the present study, we identified whether activating peripheral TRPM8 can be an adjuvant therapy for ischemic stroke.
Methods Menthol, an agonist of TRPM8, was applied orally or topically to all paws or back of the mouse after middle cerebral artery occlusion (MCAO). We used Trpm8 gene knockout (Trpm8−/−) mice or TRPM8 antagonist and lidocaine to validate the roles of TRPM8 and peripheral nerve conduction in menthol against ischemic stroke. Results Application of menthol 16% to paw derma attenuated infarct volumes and ameliorated sensorimotor deficits in stroke mice induced by MCAO. The benefits of topically applied menthol were associated with reductions in oxidative stress, neuroinflammation and infiltration of monocytes and macrophages in ischemic brains. Antagonizing TRPM8 or Trpm8 knockout dulls the neuroprotective effects of topically application of menthol against MCAO. Immunohistochemistry analyses revealed significantly higher TRPM8 expression in skin tissue samples obtained from the paws compared with skin from the backs, which was reflected by significantly smaller infarct lesion volumes and better sensorimotor function in mice treated with menthol on the paws compared with the back. Blocking conduction of peripheral nerve in the four paws reversed the neuroprotective effects of topical menthol administrated to paws. On the other hand, oral menthol dosing did not assist with recovery from MCAO in our study. Conclusion Our results suggested that activation of peripheral TRPM8 expressed in the derma tissue of limbs with sufficient concentration of menthol is beneficial to stroke recovery. Topical application of menthol on hands and feet could be a novel and simple-to-use therapeutic strategy for stroke patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02553-4.
Collapse
Affiliation(s)
- Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, 40201, Taiwan.,School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.,Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, 40201, Taiwan.,Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Hsin-Yi Chung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Sih-Ting Luo
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Yu-Ting Chu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Yi-Hsin Wang
- Department of Pharmacology, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Iona J MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan
| | - Hsun-Hua Lee
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan. .,Dizziness and Balance Disorder Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan. .,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Department of Neurology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan. .,Department of Computer Science and Information Engineering, Asia University, Wufeng, Taichung, 41354, Taiwan.
| |
Collapse
|
22
|
Zeng J, Wang W, Lin J, Zhang Y, Li H, Liu J, Yan C, Gu Y, Wei Y. Purification of menthone and menthol from Mentha haplocalyx by suspension particle assisted solvent sublation, neuroprotective effect in vitro and molecular docking of menthol on amyloid-β. J Chromatogr A 2022; 1674:463125. [PMID: 35597196 DOI: 10.1016/j.chroma.2022.463125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Suspension particle assisted solvent sublation was designed for the first time. The volatile monoterpenes in Mentha haplocalyx Briq were extracted using this method from a solution containing plant solid particles as the lower phase of solvent sublation. Under the optimum conditions of the solvent sublation (n-hexane/plant solid particles 20% ethanol-water solution system, pH 4, flotation time 30 min and air flow rate 30 mL/min), the extraction yields were 2.0 × 102 mg/kg, 9.5 × 101 mg/kg and 1.2 × 103 mg/kg for menthone, isomenthone and menthol, respectively. Compared with the traditional methods, the established suspension particle assisted solvent sublation might be an economical and efficient extraction method in some aspects. Through a cellular antioxidant activity experiment, menthol could alleviate H2O2-induced oxidative stress. Molecular docking was applied to simulate the molecular recognition process between amyloid-β and menthol. The affinity energy of menthol was -12.59 kJ/mol, indicating that menthol might have neuroprotective activity and the potential to be an amyloid-β inhibitor.
Collapse
Affiliation(s)
- Jiajia Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China
| | - Wenjuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China
| | - Junjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China
| | - Yuchi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China
| | - Hao Li
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, PR China
| | - Jiangang Liu
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, PR China
| | - Chen Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China
| | - Yanxiang Gu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3(rd) Ring North East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
23
|
Menthae Herba Attenuates Neuroinflammation by Regulating CREB/Nrf2/HO-1 Pathway in BV2 Microglial Cells. Antioxidants (Basel) 2022; 11:antiox11040649. [PMID: 35453334 PMCID: PMC9029636 DOI: 10.3390/antiox11040649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Chronic inflammation and oxidative stress cause microglia to be abnormally activated in the brain, resulting in neurodegenerative diseases such as Alzheimer’s disease (AD). Menthae Herba (MH) has been widely used as a medicinal plant with antimicrobial, anti-inflammatory, and antioxidant properties. In this study, we sought to evaluate the effects of MH on the inflammatory response and possible molecular mechanisms in microglia stimulated with lipopolysaccharide (LPS). Transcriptional and translational expression levels of the proinflammatory factors were measured using ELISA, RT-qPCR, and Western blot analysis. MH extract inhibited the production of proinflammatory enzymes and mediators nitric oxide (NO), NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-6 in LPS-stimulated cells. Our molecular mechanism study showed that MH inhibited the production of reactive oxygen species (ROS) and the phosphorylation of mitogen-activated protein kinase and nuclear factor (NF)-κB. In contrast, MH activated HO-1 and its transcriptional factors, cAMP response element-binding protein (CREB), and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Thus, MH reduces ROS and NF-κB-mediated inflammatory signaling and induces CREB/Nrf2/HO-1-related antioxidant signaling in microglia. Together, these results may provide specific prospects for the therapeutic use of MH in the context of neuroinflammatory diseases, including AD.
Collapse
|
24
|
Silva WMF, Bona NP, Pedra NS, Cunha KFD, Fiorentini AM, Stefanello FM, Zavareze ER, Dias ARG. Risk assessment of in vitro cytotoxicity, antioxidant and antimicrobial activities of Mentha piperita L. essential oil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:230-242. [PMID: 34781835 DOI: 10.1080/15287394.2021.1999875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The objective of this study was to determine the chemical composition as well as antioxidant, antibacterial, and cytotoxic properties of the essential oil of Mentha piperita L. (peppermint). Fifteen chemical constituents were identified in the essential oil, for a total of 99.99% of the compounds. The essential oil exhibited antimicrobial activity against two Gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes. The minimum inhibitory concentration (MIC) of essential oil of Mentha piperita L. for Staphylococcus aureus and Listeria monocytogenes was 1.84 μg/ml, whereas the minimum bactericidal concentration (MBC) values were 3.7 and 7.43 μg/ml, respectively. The oil displayed potent antioxidant activity inhibiting up to approximately73% of 2,2'-azinothiobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. In the cytotoxicity assay, the highest essential oil concentration (100 μg/ml) resulted in viability of approximately 90% human epidermal keratinocyte (HaCaT) cells. With respect to antitumor activity in C6 rat glioma cells, there was significant reduction in cell viability: 56-74% in 24 hr, and 71-77% in 48 hr. Data suggest that in presence of the essential oil of Mentha piperita L. antioxidant, antibacterial, antitumor and non-cytotoxic properties were noted.
Collapse
Affiliation(s)
- W M F Silva
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Campus Capão Do Leão, Pelotas, Brazil
| | - N P Bona
- Postgraduate Program in Biochemistry and Bioprospecting - Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/n, Pelotas, Brazil
| | - N S Pedra
- Postgraduate Program in Biochemistry and Bioprospecting - Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/n, Pelotas, Brazil
| | - K F Da Cunha
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - A M Fiorentini
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Campus Capão Do Leão, Pelotas, Brazil
| | - F M Stefanello
- Postgraduate Program in Biochemistry and Bioprospecting - Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/n, Pelotas, Brazil
| | - E R Zavareze
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Campus Capão Do Leão, Pelotas, Brazil
| | - A R G Dias
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Campus Capão Do Leão, Pelotas, Brazil
| |
Collapse
|
25
|
Combination of TRP channel dietary agonists induces energy expending and glucose utilizing phenotype in HFD-fed mice. Int J Obes (Lond) 2022; 46:153-161. [PMID: 34564707 DOI: 10.1038/s41366-021-00967-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bioactive dietary constituents activating Transient receptor potential (TRP) channels have emerged as promising candidates for the prevention of metabolic disorders. OBJECTIVE The present study is an attempt to evaluate anti-obesity potential of a dietary TRP-based tri-agonist, combination of sub-effective doses of capsaicin (TRPV1 agonist), menthol (TRPM8 agonist), and cinnamaldehyde (TRPA1 agonist) in high-fat diet (HFD)-fed mice. DESIGN Male C57BL/6 J mice divided into three groups (n = 8), were fed on normal pellet diet (NPD), or high-fat diet (HFD) (60% energy by fat) and HFD + CB (combination of capsaicin 0.4 mg/Kg, menthol 20 mg/Kg, and cinnamaldehyde 2 mg/Kg; p.o) for 12 weeks. Effects on HFD-induced weight gain, biochemical, histological and genomic changes in the WAT, BAT, liver and hypothalamus tissues were studied. RESULTS Administration of tri-agonist prevented HFD-induced increase in weight gain, improved altered morphometric parameters, glucose homeostasis, and adipose tissue hypertrophy. Tri-agonist supplementation was found to induce browning of white adipose tissue and promote brown adipose tissue activation. Enhanced glucose utilization and prevention of lipid accumulation and insulin resistance in the liver was observed in mice supplemented with a tri-agonist. CONCLUSION The present work provides evidence that the new approach based on combination of sub-effective doses of TRP channel agonists (TRI-AGONIST) can be employed to develop concept-based functional food for therapeutic and preventive strategies against HFD-associated pathological complications.
Collapse
|
26
|
Liu S, Guo W, Jia Y, Ye B, Liu S, Fu S, Liu J, Hu G. Menthol Targeting AMPK Alleviates the Inflammatory Response of Bovine Mammary Epithelial Cells and Restores the Synthesis of Milk Fat and Milk Protein. Front Immunol 2021; 12:782989. [PMID: 35003099 PMCID: PMC8727745 DOI: 10.3389/fimmu.2021.782989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Mastitis is one of the most serious diseases that causes losses in the dairy industry, seriously impairing milk production and milk quality, and even affecting human health. Menthol is a cyclic monoterpene compound obtained from the stem and leaves of peppermint, which has a variety of biological activities, including anti-inflammatory and antioxidant activity. The purpose of this study was to investigate the preventive effect of menthol on the lipopolysaccharide-induced inflammatory response in primary bovine mammary gland epithelial cells (BMECs) and its anti-inflammatory mechanism. First, BMECs were isolated and amplified from the udders of Holstein cows by enzymatic hydrolysis. BMECs were treated with menthol (10, 50, 100, 200 μM) for 1h, followed by lipopolysaccharide (5μg/ml) for 12 h. Lipopolysaccharide treatment upregulated the protein levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (INOS) and the mRNA abundance of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), while menthol was able to inhibit this effect. The inhibitory effect of menthol on proinflammatory factors was significantly reduced when autophagy was blocked using 3-Methyladenine (5μg/ml), an inhibitor of autophagy. Furthermore, lipopolysaccharide treatment reduced the expression levels of milk lipids and milk proteins, which were inhibited by menthol. In addition, menthol (200 μM) treatment was able to significantly upregulate the expression level of autophagy-related protein LC3B, downregulate the expression level of P62, promote the expression abundance of autophagy-related gene mRNA, and enhance significantly enhance autophagic flux. Interestingly, treatment of BMECs with menthol (200 μM) promoted the phosphorylation of AMP-activated protein kinase (AMPK) and unc-51 like kinase 1 (ULK1) and increased the nuclear localization of nuclear factor-E2 associated factor 2 (Nrf-2). When the AMPK pathway was blocked using compound C (10μg/ml), an inhibitor of AMPK, autophagy was significantly inhibited. Autophagy levels were significantly decreased after blocking the Nrf-2 pathway using ML385 (5μg/ml), an inhibitor of Nrf-2. Overall, the data suggest that menthol activates the AMPK-ULK1 pathway to initiate the onset of autophagy and maintains the level of autophagy through the AMPK-Nrf-2 pathway. In conclusion, the findings suggest that menthol may alleviate the inflammatory response in BMECs via the AMPK/ULK1/Nrf-2/autophagy pathway.
Collapse
Affiliation(s)
- Songqi Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuxi Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Application Demonstration Center of Precision Medicine Molecular Diagnosis, The Second Hospital of Jilin University, Changchun, China
| | - Bojian Ye
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shu Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Guiqiu Hu,
| |
Collapse
|
27
|
Wang ZC, Chen Q, Wang J, Yu LS, Chen LW. Sulforaphane mitigates LPS-induced neuroinflammation through modulation of Cezanne/NF-κB signalling. Life Sci 2020; 262:118519. [PMID: 33010279 DOI: 10.1016/j.lfs.2020.118519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
AIM Neuroinflammation is a potent pathological process of various neurodegenerative diseases. Sulforaphane (SFN) is a natural product and acts as a neuroprotective agent to suppress inflammatory response in brain. The present study investigated the protective effect of Sulforaphane (SFN) on lipopolysaccharide (LPS)-induced neuroinflammation. MATERIALS AND METHODS Rats were divided into three groups: control group, LPS group and LPS + SFN group. Morris water maze test was carried out to evaluate the spatial memory and learning function of rats. The inflammatory cytokines levels in hippocampal tissues, plasma were measured by ELISA. The western blot was used to detect Cezanne/NF-κB signalling. For in vitro study, the Cezanne siRNA and scrambled control were transfected into BV2 cells, and then treated with or without 20 μM SFN before exposed to LPS. The inflammatory cytokines levels and Cezanne/NF-κB signalling were detected by ELISA and western blot, respectively. Co-IP assay were applied to investigate the regulation of Cezanne on ubiquitination of TRAF6 and RIP1. KEY FINDINGS SFN improved LPS-induced neurocognitive dysfunction in rats. It inhibited the neuroinflammation and activation of NF-κB pathway induced by LPS. The modulation of TRAF6 and RIP1 ubiquitination by Cezanne was playing a pivotal role in relation to the mechanism of SFN inhibiting NF-κB pathway. SIGNIFICANCE The results of our study demonstrated that SFN could attenuate LPS-induced neuroinflammation through the modulation of Cezanne/NF-κB signalling.
Collapse
Affiliation(s)
- Zeng-Chun Wang
- Department of Cardiovascular Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, China.
| | - Qiang Chen
- Department of Cardiovascular Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Jing Wang
- Department of Cardiovascular Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Ling-Shan Yu
- Department of Cardiovascular Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Liang-Wan Chen
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|