1
|
Xia M, Cui Z, Zeng T, Lu L, Sheng L, Cai Z. pH-responsive multi-network composite cellulose-based hydrogels for stable delivery of oral IgY-Fab fragments. Food Chem 2024; 435:137567. [PMID: 37778256 DOI: 10.1016/j.foodchem.2023.137567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Yolk immunoglobulin (IgY) is perfect supplement to mammalian immunoglobulin G in passive immune protection but with poor delivery stability. This work succeeded in pH-responsive oral delivery of IgY-Fab fragments with cellulose based multi-network composite hydrogels. Data displayed that the hydrogel 2 showed superior mechanical properties and load performance (encapsulation efficiency of 99.25% and loading capacity of 45.11 mg/100 mg). The stability of the released Fab was confirmed by HPLC with Fab purity up to 79.65% at the end of digestion. The FTIR spectra revealed the potential interactions between Fab and the hydrogel matrix of the formation of hydrogen bonds or electrostatic interactions between the groups of -OH, -CH2, and -COO-. The excellent rehydration of the hydrogels wouldn't be impacted by low-temperature freeze drying. In sum, this work is of great significance to the development of Fab-themed health-care food, intensive processing of poultry eggs and the economic construction of related industries.
Collapse
Affiliation(s)
- Minquan Xia
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhaoyu Cui
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, China
| | - LiZhi Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, China.
| | - Long Sheng
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
2
|
Hu X, Jia C, Wu J, Zhang J, Jiang Z, Ma K. Towards the Antiviral Agents and Nanotechnology-Enabled Approaches Against Parvovirus B19. Front Cell Infect Microbiol 2022; 12:916012. [PMID: 35795188 PMCID: PMC9250997 DOI: 10.3389/fcimb.2022.916012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Parvovirus B19 (B19V) as a human pathogenic virus, would cause a wide range of clinical manifestations. Besides the supportive and symptomatic treatments, the only FDA-approved antiviral drug for the treatment of B19V is intravenous immunoglobulins, which however, have limited efficacy and high cost. By far, there are still no virus-specific therapeutics clinically available to treat B19V infection. Therefore, exploiting the potential targets with a deep understanding of the life cycle of B19V, are pivotal to the development of B19V-tailored effective antiviral approaches. This review will introduce antiviral agents via blocking viral invasion, inhibiting the enzymes or regulatory proteins involved in DNA synthesis, and so on. Moreover, nanotechnology-enabled approaches against B19V will also be outlined and discussed through a multidisciplinary perspective involving virology, nanotechnology, medicine, pharmaceutics, chemistry, materials science, and other fields. Lastly, the prospects of the antiviral agents and nanosystems in terms of fabrication, clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianyong Wu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Jiang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuifen Ma
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|