1
|
Patil P, Chaudhary A, Bhandare VV, Patil VS, Beerwala FA, Karoshi V, Sonawane KD, Mali A, Kaul-Ghanekar R. Sesamin regulates breast cancer through reprogramming of lipid metabolism. J Biomol Struct Dyn 2025:1-21. [PMID: 40233124 DOI: 10.1080/07391102.2024.2333991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2025]
Abstract
Metabolic reprogramming is one of the hallmarks of breast cancer (BC), involving elevated synthesis and uptake of lipids, for catering to increased energy demand of cancer cells and to suppress the host immune system. Besides promoting proliferation and survival of BC cells, lipid metabolism reprogramming (LMR) is associated with stemness and chemoresistance. Recently, lignans have been reported for their therapeutic potential against different cancers, including BC. Here, we explored the potential of lignans to target LMR pathways in BC through computational approach. Initially, 88 lignans having potential anticancer activities, underwent druglikeness and pharmacokinetics analysis, displaying promising pharmacokinetic properties, except for 13 molecules with violations. Molecular docking assessed the interaction of 88 lignans (NPACT) with therapeutic targets of LMR including 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), Sterol regulatory element-binding proteins 1 and 2 (SREBP1 and 2), Low-density lipoprotein receptor (LDLR), Acetyl-CoA Acetyltransferase 1 (ACAT1), ATP-binding cassette transporter (ABCA1), Liver X receptor α (LXRα), Apolipoprotein A1 (APOA1), Fatty Acid Synthase (FASN), Peroxisome proliferator-activated receptor gamma (PPARG), Stearoyl-CoA desaturase (SCD1), Acetyl-CoA carboxylase 1 and 2 (ACC1/ACACA, and ACC2/ACACB). In silico screening revealed sesamin (SE) as the best-identified hit that showed stable and consistent binding with all the selected targets of LMR. The stability of these complexes was validated by a 100 ns simulation run, and their binding free energy calculation was determined by MM-PBSA method. Interestingly, SE modulated the mRNA expression of genes involved in LMR in BC cell lines, MCF-7 and MDA-MB-231, thereby suggesting its potential as an inhibitor of LMR.
Collapse
Affiliation(s)
- Prajakta Patil
- Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Amol Chaudhary
- Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | | | - Vishal S Patil
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Faizan A Beerwala
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | | | | | - Aniket Mali
- Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
- Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International Deemed University (SIU), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International Deemed University (SIU), Pune, India
| |
Collapse
|
2
|
Huang Z, Peng Q, Mao L, Ouyang W, Xiong Y, Tan Y, Chen H, Zhang Z, Li T, Hu Y, Wang Y, Zhang W, Yao H, Yu Y. Neoadjuvant Strategies for Triple Negative Breast Cancer: Current Evidence and Future Perspectives. MEDCOMM – FUTURE MEDICINE 2025; 4. [DOI: 10.1002/mef2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
ABSTRACTTriple‐negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by poor prognosis and limited therapeutic options. Although neoadjuvant chemotherapy (NACT) remains the established treatment approach, its suboptimal efficacy associated with TNBC highlight the urgent need for optimized treatment strategies to improve pathological complete response (pCR) rates. This review provides a comprehensive overview of recent advancements in neoadjuvant treatment for TNBC, emphasizing pivotal breakthroughs in therapeutic strategies and the ongoing pursuit of innovative approaches to enhance precision medicine. It emphasizes the clinical value of platinum‐based agents, such as carboplatin and cisplatin, which have shown significant improvements in pCR rates, particularly in TNBC patients with BRCA mutations. Additionally, the review explores progress in targeted therapies, including PARP inhibitors, AKT inhibitors, and Antiangiogenic agents, showcasing their potential for personalized treatment approaches. The integration of immunotherapy, particularly immune checkpoint inhibitor like pembrolizumab and atezolizumab, with chemotherapy has demonstrated substantial efficacy in high‐risk TNBC cases. Future research priorities include refining biomarker‐driven strategies, optimizing therapeutic combinations, developing antibody‐drug conjugates (ADCs) targeting TROP2 and other biomarkers, and reducing treatment‐related toxicity to develop safer and highly personalized neoadjuvant therapies. Furthermore, artificial intelligence has also emerged as a transformative tool in predicting treatment response and optimizing therapeutic decision‐making in TNBC. These advancements aim to improve long‐term outcomes and quality of life for patients with TNBC.
Collapse
Affiliation(s)
- Zhenjun Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Qing Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Luhui Mao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Yunjing Xiong
- The Second Clinical Medical College Nanchang University Nanchang China
| | - Yujie Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Haizhu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Zebang Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Tang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Taipa Macau China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital Jinan University Guangzhou China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
- Department of Breast Surgery, The First Affiliated Hospital Jinan University Guangzhou China
- Shenshan Medical Center, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
- Faculty of Medicine Macau University of Science and Technology Taipa Macao China
- Guangdong Provincial Key Laboratory IRADS BNU‐HKBU United International College Zhuhai China
| |
Collapse
|
3
|
Liu D, Liu L, Li H, Huang Z, Wang Y. Sphingosine kinase 1 counteracts chemosensitivity and immune evasion in diffuse large B cell lymphoma cells via the PI3K/AKT/PD-L1 axis. Int Immunopharmacol 2024; 143:113361. [PMID: 39418735 DOI: 10.1016/j.intimp.2024.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/30/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive neoplasm of lymphatic system that represent 38-58 % of non-Hodgkin lymphoma. Chemoresistance and immune escape constitute the major obstacles to the treatment of patients. Sphingosine kinase 1 (SphK1) is involved in multiple processes of cancer. Up to now, little research focuses on its function in DLBCL. In the current research, GEPIA and human Protein Atlas databases confirmed high expression of SphK1 in DLBCL tissues. Analogously, increased expression of SphK1 were determined in DLBCL tissues and cells. Intriguingly, knockdown of SphK1 suppressed DLBCL cell viability and increased chemosensitivity to doxorubicin by decreasing cell viability and increasing caspase-3 activity. Reversely, SphK1 elevation facilitated cancer cell resistance to doxorubicin. Furthermore, loss of SphK1 increased the productions of inflammatory cytokine IFN-γ and TNF-α, but reduced IL-10 levels in co-culture model of CD8 + T cells and DLBCL cells. Importantly, SphK1 knockdown enhanced T cell cytotoxicity to DLBCL cells, while its elevation restrained the ability of T cells to kill cancer cells. Concomitantly, targeting SphK1 enhanced the percentage of CD8 + T cells and attenuated co-culture-evoked CD8 + T cell apoptosis, indicating the important roles in T cell escape. Mechanically, SphK1 overexpression enhanced and its knockdown suppressed activation of the PI3K/AKT/PD-L1 pathway. After blockage of this pathway by its antagonist, the beneficial effects of SpHK1 on chemoresistance and immune escape were abrogated. In vivo, targeting SphK1 inhibited tumor growth and enhanced the anti-tumor efficacy of doxorubicin in DLBCL xenograft tumor, concomitant with the inhibition of the PI3K/AKT/PD-L1 signaling. Collectively, SphK1 knockdown counteracted chemoresistance and immune escape from T cell killing by inhibiting the PI3K/AKT/PD-L1 pathway. Therefore, targeting SphK1 may represent a promising therapeutic strategy for overcoming chemoresistance and immune escape in DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Drug Resistance, Neoplasm
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Signal Transduction
- Phosphatidylinositol 3-Kinases/metabolism
- Mice
- Tumor Escape/drug effects
- Immune Evasion
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Xenograft Model Antitumor Assays
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Dan Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Longlong Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Haiming Li
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Yaya Wang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
4
|
Malla R, Jyosthsna K, Rani G, Purnachandra Nagaraju G. CD44/PD-L1-mediated networks in drug resistance and immune evasion of breast cancer stem cells: Promising targets of natural compounds. Int Immunopharmacol 2024; 138:112613. [PMID: 38959542 DOI: 10.1016/j.intimp.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Cancer stem cells (CSCs) significantly interfere with immunotherapy, leading to challenges such as low response rates and acquired resistance. PD-L1 expression is associated with the CSC population's overexpression of CD44. Mounting evidence suggests that the breast cancer stem cell (BCSC) marker CD44 and the immune checkpoint PD-L1 contribute to treatment failure through their networks. Natural compounds can overcome therapy resistance in breast cancer by targeting mechanisms underlying resistance in BCSCs. This review provides an updated insight into the CD44 and PD-L1 networks of BCSCs in mediating metastasis and immune evasion. The review critically examines existing literature, providing a comprehensive understanding of the topic and emphasizing the impact of natural flavones on the signaling pathways of BCSCs. Additionally, the review discusses the potential of natural compounds in targeting CD44 and PD-L1 in breast cancer (BC). Natural compounds consistently show potential in targeting regulatory mechanisms of BCSCs, inducing loss of stemness, and promoting differentiation. They offer a promising approach for developing alternative therapeutic strategies to manage breast cancer.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Kattula Jyosthsna
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - G Rani
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| |
Collapse
|
5
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Alqathama A. Natural products as promising modulators of breast cancer immunotherapy. Front Immunol 2024; 15:1410300. [PMID: 39050852 PMCID: PMC11266008 DOI: 10.3389/fimmu.2024.1410300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and is considered a major global health challenge worldwide due to its high incidence and mortality rates. Treatment strategies for BC is wide-ranging and include surgery, radiotherapy, chemotherapy, targeted hormonal therapy and immunotherapy. Immunotherapy has gained popularity recently and is often integrated as a component of personalized cancer care because it aims to strengthen the immune system and enable it to recognize and eradicate transformed cells. It has fewer side-effects and lower toxicity than other treatment strategies, such as chemotherapy. Many natural products are being investigated for a wide range of therapeutic pharmacological properties, such as immune system modulation and activity against infection, auto-immune disease, and cancer. This review presents an overview of the major immune response-related pathways in BC, followed by detailed explanation of how natural compounds can act as immunomodulatory agents against biomolecular targets. Research has been carried out on many forms of natural products, including extracts, isolated entities, synthetic derivatives, nanoparticles, and combinations of natural compounds. Findings have shown significant regulatory effects on immune cells and immune cytokines that lead to immunogenic cancer cell death, as well as upregulation of macrophages and CD+8 T cells, and increased natural killer cell and dendritic cell activity. Natural products have also been found to inhibit some immuno-suppressive cells such as Treg and myeloid-derived suppressor cells, and to decrease immunosuppressive factors such as TGF-β and IL-10. Also, some natural compounds have been found to target and hinder immune checkpoints such as PD-L1.
Collapse
Affiliation(s)
- Aljawharah Alqathama
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Ziroglu N, Koluman A, Kaleci B, Tanriverdi B, Tanriverdi G, Kural A, Bilgili MG. Modified and alternative bone cements can improve the induced membrane: Critical size bone defect model in rat femur. Injury 2024; 55:111627. [PMID: 38834011 DOI: 10.1016/j.injury.2024.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND As a two-stage surgical procedure, Masquelet's technique has been used to care for critical-size bone defects (CSD). We aimed to determine the effects of modified and altered bone cement with biological or chemical enriching agents on the progression of Masquelet's induced membrane (IM) applied to a rat femur CSD model, and to compare the histopathological, biochemical, and immunohistochemical findings of these cements to enhance IM capacity. METHODS Thirty-five male rats were included in five groups: plain polymethyl methacrylate (PMMA), estrogen-impregnated PMMA (E+PMMA), bone chip added PMMA (BC+PMMA), hydroxyapatite-coated PMMA (HA) and calcium phosphate cement (CPC). The levels of bone alkaline phosphatase (BALP), osteocalcin (OC), and tumor necrosis factor-alpha (TNF-α) were analyzed in intracardiac blood samples collected at the end of 4 weeks of the right femur CSD intervention. All IMs collected were fixed and prepared for histopathological scoring. The tissue levels of rat-specific Transforming Growth Factor-Beta (TGF-β), Runt-related Transcription Factor 2 (Runx2), and Vascular Endothelial Growth Factor (VEGF) were analyzed immunohistochemically. RESULTS Serum levels of BALP and OC were significantly higher in E+PMMA and BC+PMMA groups than those of other groups (P = 0.0061 and 0.0019, respectively). In contrast, TNF-α levels of all groups with alternative bone cement significantly decreased compared to bare PMMA (P = 0.0116). Histopathological scores of E+PMMA, BC+PMMA, and CPC groups were 6.86 ± 1.57, 4.71 ± 0.76, and 6.57 ± 1.51, respectively, which were considerably higher than those of PMMA and HA groups (3.14 ± 0.70 and 1.86 ± 0.69, respectively) (P < 0.0001). Significant increases in TGF-β and VEGF expressions were observed in E+PMMA and CPC groups (P = 0.0001 and <0.0001, respectively) whereas Runx2 expression significantly increased only in the HA group compared to other groups (P < 0.0001). CONCLUSIONS The modified PMMA with E and BC, and CPC as an alternative spacer resulted in a well-differentiated IM and increased IM progression by elevating BALP and OC levels in serum and by mediating expressions of TGF-β and VEGF at the tissue level. Estrogen-supplemented cement spacer has yielded promising findings between modified and alternative bone cement.
Collapse
Affiliation(s)
- Nezih Ziroglu
- Department of Orthopedics and Traumatology, Acibadem University School of Medicine, Acibadem Atakent Hospital, Kucukcekmece/Istanbul, Turkey.
| | - Alican Koluman
- Department of Orthopedics and Traumatology, Istanbul Bakirkoy Dr. Sadi Konuk Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Belisa Kaleci
- Department of Histology and Embryology, Istanbul University-Cerrahpasa Istanbul, Turkey; Faculty of Medical Sciences, Albanian University, Tirane, Albania
| | - Bulent Tanriverdi
- Department of Orthopedics and Traumatology, Istanbul Bakirkoy Dr. Sadi Konuk Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Istanbul University-Cerrahpasa Istanbul, Turkey
| | - Alev Kural
- Department of Biochemistry, University of Health Sciences, Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Gokhan Bilgili
- Department of Orthopedics and Traumatology, Istanbul Bakirkoy Dr. Sadi Konuk Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
8
|
Zhang L, Gu X. 4-hydroxysesamin protects rat with right ventricular failure due to pulmonary hypertension by inhibiting JNK/p38 MAPK signaling. Aging (Albany NY) 2024; 16:8142-8154. [PMID: 38728253 PMCID: PMC11131979 DOI: 10.18632/aging.205808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
The specific mechanism of 4-hydroxysesamin (4-HS), a modification of Sesamin, on right ventricular failure due to pulmonary hypertension (PH) is ominous. By creating a rat model of PH in vivo and a model of pulmonary artery smooth muscle cell (PASMC) hypoxia and inflammation in vitro, the current work aimed to investigate in depth the molecular mechanism of the protective effect of 4-HS. In an in vitro model of hypoxia PASMC, changes in cell proliferation and inflammatory factors were detected after treatment with 4-HS, followed by changes in the JNK/p38 MAPK signaling pathway as detected by Western blot signaling pathway. The findings demonstrated that 4-HS was able to minimize PASMC cell death, block the JNK/p38 MAPK signaling pathway, and resist the promoting effect of hypoxia on PASMC cell proliferation. Following that, we found that 4-HS could both mitigate the right ventricular damage brought on by MCT and had a protective impact on rats Monocrotaline (MCT)-induced PH in in vivo investigations. The key finding of this study is that 4-HS may protect against PH by inhibiting the JNK/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Lingnan Zhang
- Department of Cardiovascular, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
- Department of Cardiovascular Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Xinshun Gu
- Department of Cardiovascular, The Second Hospital of Hebei Medicine University, Shijiazhuang 050000, Hebei, China
- Department of Cardiovascular Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| |
Collapse
|
9
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
10
|
Pham TH, Lee GH, Jin SW, Lee SY, Han EH, Kim ND, Choi CY, Jeong GS, Ki Lee S, Kim HS, Jeong HG. Sesamin ameliorates lipotoxicity and lipid accumulation through the activation of the estrogen receptor alpha signaling pathway. Biochem Pharmacol 2023; 216:115768. [PMID: 37652106 DOI: 10.1016/j.bcp.2023.115768] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been linked to fat accumulation in the liver and lipid metabolism imbalance. Sesamin, a lignan commonly found in sesame seed oil, possesses antioxidant, anti-inflammatory, and anticancer properties. However, the precise mechanisms by which sesamin prevents hepatic steatosis are not well understood. This study aimed to explore the molecular mechanisms by which sesamin may improve lipid metabolism dysregulation. A in vitro hepatic steatosis model was established by exposing HepG2 cells to palmitate sodium. The results showed that sesamin effectively mitigated lipotoxicity and reduced reactive oxygen species production. Additionally, sesamin suppressed lipid accumulation by regulating key factors involved in lipogenesis and lipolysis, such as fatty acid synthase (FASN), sterol regulatory element-binding protein 1c (SREBP-1c), forkhead box protein O-1, and adipose triglyceride lipase. Molecular docking results indicated that sesamin could bind to estrogen receptor α (ERα) and reduce FASN and SREBP-1c expression via the Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK) signaling pathway. Sesamin attenuated palmitate-induced lipotoxicity and regulated hepatic lipid metabolism in HepG2 cells by activating the ERα/CaMKKβ/AMPK signaling pathway. These findings suggest that sesamin can improve lipid metabolism disorders and is a promising candidate for treating hepatic steatosis.
Collapse
Affiliation(s)
- Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea; Molecular Microbiology Lab, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
| | - Nam Doo Kim
- VORONOI BIO Inc., Incheon, Republic of Korea
| | - Chul Yung Choi
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Ki Lee
- Department of Sport Science, College of Natural Science, Chungnam National University, Daejeon, Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Wudtiwai B, Kodchakorn K, Shwe TH, Pothacharoen P, Phitak T, Suninthaboonrana R, Kongtawelert P. Brazilein inhibits epithelial-mesenchymal transition (EMT) and programmed death ligand 1 (PD-L1) expression in breast cancer cells. Int Immunopharmacol 2023; 118:109988. [PMID: 36933493 DOI: 10.1016/j.intimp.2023.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Triple-negative breast cancer (TNBC) exhibits high levels of Epithelial-mesenchymal transition (EMT) and Programmed death ligand 1 (PD-L1) expression, which promotes immune escape and metastasis. Brazilein is a natural compound extracted from Caesalpinia sappan L., and has been demonstrated to be an anti-inflammatory anti- proliferative and apoptosis-inducer in various cancer cells. Here, we investigated the effect of brazilein on EMT and PD-L1 expression in breast cancer cells and its related molecular mechanisms using MCF-7 and MDA-MB-231 cells as a model. Since the AKT, NF-κB, and GSK3β/β-catenin signaling were reported to be important mechanisms in immune escape and metastasis, the effect of brazilein on these signaling pathways were also found out in our study. Firstly, brazilein was treated on breast cancer cells at various concentrations to study cell viability, apoptosis, and apoptosis proteins. Then, breast cancer cells were treated with non-toxic concentrations of brazilein to study its influence on EMT and expression of PD-L1 protein using MTT, flow cytometry, western blot, and wound healing analysis, respectively. We found that brazilein exerts an anti-cancer effect by reducing cell viability via induction of apoptosis, while it also downregulated EMT and PD-L1 through suppression of phosphorylation of AKT, NF-κB, and GSK3β/β-catenin. Moreover, the migration ability was diminished by inhibiting the activation of MMP-9 and MMP-2. Taken together, brazilein might delay cancer progression through inhibition of EMT, PD-L1, and metastasis suggesting it might be a potential therapeutic option in breast cancer patients having a high level of EMT and PD-L1.
Collapse
Affiliation(s)
- Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Kanchanok Kodchakorn
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thuzar Hla Shwe
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thanyaluck Phitak
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
12
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
13
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
14
|
A Comprehensive Review on Distribution, Pharmacological Properties, and Mechanisms of Action of Sesamin. J CHEM-NY 2022. [DOI: 10.1155/2022/4236525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sesamin is a kind of fat-soluble lignan extracted from sesame seeds or other plants. It has attracted more and more attention because of its extensive pharmacological activities. In this study, we systematically summarized the pharmacological activities of sesamin including antioxidant, anti-inflammatory, anticancer, protection of liver and kidney, prevention of diabetes, hypertension, and atherosclerosis. Studies focus on the abilities of sesamin to attenuate oxidative stress by reducing the levels of ROS and MDA, to inhibit the release of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, etc.), and to induce apoptosis and autophagy in cancer cells through a variety of signaling pathways such as NF-κB, JNK, p38 MAPK, PI3K/AKT, caspase-3, and p53. By inhibiting the production of ROS, sesamin can also enhance the biological activities of NO in blood vessels, improve endothelial dysfunction and hypertension, and change the process of atherosclerotic lesion formation. In line with this, the various pharmacological properties of sesamin have been discussed in this review so that we can have a deeper understanding of the pharmacological activities of sesamin and clear the future development direction of sesamin.
Collapse
|
15
|
Gupta M, Chandan K, Sarwat M. Natural Products and their Derivatives as Immune Check Point Inhibitors: Targeting Cytokine/Chemokine Signalling in Cancer. Semin Cancer Biol 2022; 86:214-232. [PMID: 35772610 DOI: 10.1016/j.semcancer.2022.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapy is the new generation and widely accepted form of tumour treatment. It is, however, associated with exclusive challenges which include organ-specific inflammation, and single-target strategies. Therefore, approaches that can enhance the efficiency of existing immunotherapies and expand their indications are required for the further development of immunotherapy. Natural products and medicines are stated to have this desired effect on cancer immunotherapy (adoptive immune-cells therapy, cancer vaccines, and immune-check point inhibitors). They refurbish the immunosuppressed tumour microenvironment, which is the primary location of interaction of tumour cells with the host immune system. Various immune cell subsets, via interaction with cytokine/chemokine receptors, are recruited into this microenvironment, and these subsets have roles in tumour progression and treatment responsiveness. This review summarises cytokine/chemokine signalling, types of cancer immunotherapy and the herbal medicine-derived natural products targeting cytokine/chemokines and immune checkpoints. These natural compounds possess immunomodulatory activities and exert their anti-tumour effect by either blocking the interaction or modulating the expression of the proteins linked with immune checkpoint signaling pathways. Some compounds also show a synergistic effect in combination with existing monoclonal antibody drugs to reverse the tumour microenvironment. Additionally, we have also reported some studies about the derivatives and formulations used to overcome the limitations of natural forms. This review can provide important insights for directing future research.
Collapse
Affiliation(s)
- Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India.
| |
Collapse
|
16
|
Antioxidant Properties and Aldehyde Reactivity of PD-L1 Targeted Aryl-Pyrazolone Anticancer Agents. Molecules 2022; 27:molecules27103316. [PMID: 35630791 PMCID: PMC9143004 DOI: 10.3390/molecules27103316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Small molecules targeting the PD-1/PD-L1 checkpoint are actively searched to complement the anticancer arsenal. Different molecular scaffolds have been reported, including phenyl-pyrazolone derivatives which potently inhibit binding of PD-L1 to PD-1. These molecules are structurally close to antioxidant drug edaravone (EDA) used to treat amyotrophic lateral sclerosis. For this reason, we investigated the capacity of five PD-L1-binding phenyl-pyrazolone compounds (1–5) to scavenge the formation of oxygen free radicals using electron spin resonance spectroscopy with DPPH/DMPO probes. In addition, the reactivity of the compounds toward the oxidized base 5-formyluracil (5fU) was assessed using chromatography coupled to mass spectrometry and photodiode array detectors. The data revealed that the phenyl-pyrazolone derivatives display antioxidant properties and exhibit a variable reactivity toward 5fU. Compound 2 with a N-dichlorophenyl-pyrazolone moiety cumulates the three properties, being a potent PD-L1 binder, a robust antioxidant and an aldehyde-reactive compound. On the opposite, the adamantane derivative 5 is a potent PD-L1 binding with a reduced antioxidant potential and no aldehyde reactivity. The nature of the substituent on the phenyl-pyrazolone core modulates the antioxidant capacity and reactivity toward aromatic aldehydes. The molecular signature of the compound can be adapted at will, to confer additional properties to these PD-L1 binders.
Collapse
|
17
|
Yang Z, Feng L, Wang M, Li Y, Bai S, Lu X, Wang H, Zhang X, Wang Y, Lin S, Tortorella MD, Li G. Sesamin Promotes Osteoporotic Fracture Healing by Activating Chondrogenesis and Angiogenesis Pathways. Nutrients 2022; 14:2106. [PMID: 35631249 PMCID: PMC9147588 DOI: 10.3390/nu14102106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoporotic fracture has been regarded as one of the most common bone disorders in the aging society. The natural herb-derived small molecules were revealed as potential treatment approaches for osteoporotic fracture healing. Sesamin is a member of lignan family, which possesses estrogenic activity and plays a significant role in modulating bone homeostasis. Our previous study reported the promoting effect of sesamin on postmenopausal osteoporosis treatment. However, the role of sesamin in osteoporotic fracture healing has not been well studied yet. In this study, we further investigated the putative treatment effect of sesamin on osteoporotic fracture healing. Our study indicated that sesamin could activate bone morphogenetic protein 2 (BMP2) signaling pathway and further promotes in vitro chondrogenesis and angiogenesis activities. This promoting effect was abolished by the treatment of ERα inhibitor. In the osteoporotic bone fracture model, we demonstrated that sesamin markedly improves the callus formation and increases the cartilaginous area at the early-stage, as well as narrowing the fracture gap, and expands callus volume at the late-stage fracture healing site of the OVX mice femur. Furthermore, the angiogenesis at the osteoporotic fracture site was also significantly improved by sesamin treatment. In conclusion, our research illustrated the therapeutic potential and underlying regulation mechanisms of sesamin on osteoporotic fracture healing. Our studies shed light on developing herb-derived bioactive compounds as novel drugs for the treatment of osteoporotic fracture healing, especially for postmenopausal women with low estrogen level.
Collapse
Affiliation(s)
- Zhengmeng Yang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (Z.Y.); (M.W.); (Y.L.); (S.B.); (X.L.); (H.W.); (X.Z.); (S.L.)
| | - Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China; (L.F.); (Y.W.)
| | - Ming Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (Z.Y.); (M.W.); (Y.L.); (S.B.); (X.L.); (H.W.); (X.Z.); (S.L.)
| | - Yucong Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (Z.Y.); (M.W.); (Y.L.); (S.B.); (X.L.); (H.W.); (X.Z.); (S.L.)
| | - Shanshan Bai
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (Z.Y.); (M.W.); (Y.L.); (S.B.); (X.L.); (H.W.); (X.Z.); (S.L.)
| | - Xuan Lu
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (Z.Y.); (M.W.); (Y.L.); (S.B.); (X.L.); (H.W.); (X.Z.); (S.L.)
| | - Haixing Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (Z.Y.); (M.W.); (Y.L.); (S.B.); (X.L.); (H.W.); (X.Z.); (S.L.)
| | - Xiaoting Zhang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (Z.Y.); (M.W.); (Y.L.); (S.B.); (X.L.); (H.W.); (X.Z.); (S.L.)
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China; (L.F.); (Y.W.)
| | - Sien Lin
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (Z.Y.); (M.W.); (Y.L.); (S.B.); (X.L.); (H.W.); (X.Z.); (S.L.)
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China; (L.F.); (Y.W.)
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (Z.Y.); (M.W.); (Y.L.); (S.B.); (X.L.); (H.W.); (X.Z.); (S.L.)
| |
Collapse
|
18
|
Kumar US, Natarajan A, Massoud TF, Paulmurugan R. FN3 linked nanobubbles as a targeted contrast agent for US imaging of cancer-associated human PD-L1. J Control Release 2022; 346:317-327. [PMID: 35469983 DOI: 10.1016/j.jconrel.2022.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
PD-L1 (programmed death-ligand 1) targeted therapies may be useful for several cancers. The use of non-invasive diagnostic and prognostic molecular imaging platforms could improve clinical assessment of PD-L1 tumor status during these therapies. Contrast enhanced ultrasound molecular imaging (CE-USMI) techniques may offer versatile and cost-effective ways to detect and quantify the expression levels of cellular targets in vivo. However, conventional use of microbubbles as a blood pool contrast agent for CE-USMI is limited to accessing intravascular biomarkers rather than reflecting the tumor molecular status. Using a microfluidic based reconstruction process we therefore developed ultra-stable nanobubbles (NBs) as a contrast agent for molecular imaging of vascular and extravascular cell surface markers. We then functionalized these NBs by covalently linking to nanobody (FN3hPD-L1) targeting human (h)PD-L1 to measure the expression of human PD-L1 in the tumor microenvironment (TME) in vivo. We showed the specific binding of hPD-L1 targeted NBs in cell culture, and in xenografted mouse models of hPD-L1 expressing CT26 tumors. CE-USMI of hPD-L1 in the TME in vivo showed ~3-fold increase in contrast signal compared to non-targeted NBs. Overall, in vivo use of CE-USMI with hPD-L1 targeted NBs has the potential for clinical translation and imaging of human cancers during immunotherapy, and for prognostic evaluation of patient response to PD-L1 targeted immunotherapy.
Collapse
Affiliation(s)
- Uday S Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arutselvan Natarajan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Pharmacological Properties to Pharmacological Insight of Sesamin in Breast Cancer Treatment: A Literature-Based Review Study. Int J Breast Cancer 2022; 2022:2599689. [PMID: 35223101 PMCID: PMC8872699 DOI: 10.1155/2022/2599689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
The use of dietary phytochemical rather than conventional therapies to treat numerous cancers is now a well-known approach in medical science. Easily available and less toxic dietary phytochemicals present in plants should be introduced in the list of phytochemical-based treatment areas. Sesamin, a natural phytochemical, may be a promising chemopreventive agent aiming to manage breast cancer. In this study, we discussed the pharmacological properties of sesamin that determine its therapeutics opportunity to be used in breast cancer treatment and other diseases. Sesamin is available in medicinal plants, especially in Sesamum indicum, and is easily metabolized by the liver. To better understand the antibreast cancer consequence of sesamin, we postulate some putative pathways related to the antibreast cancer mechanism: (1) regulation of estrogen receptor (ER-α and ER-β) activities, (2) suppressing programmed death-ligand 1 (PD-L1) overexpression, (3) growth factor receptor inhibition, and (4) some tyrosine kinase pathways. Targeting these pathways, sesamin can modulate cell proliferation, cell cycle arrest, cell growth and viability, metastasis, angiogenesis, apoptosis, and oncogene inactivation in various in vitro and animal models. Although the actual tumor intrinsic signaling mechanism targeted by sesamin in cancer treatment is still unknown, this review summarized that this phytoestrogen suppressed NF-κB, STAT, MAPK, and PIK/AKT signaling pathways and activated some tumor suppressor protein in numerous breast cancer models. Cotreatment with γ-tocotrienol, conventional drugs, and several drug carriers systems increased the anticancer potentiality of sesamin. Furthermore, sesamin exhibited promising pharmacokinetics properties with less toxicity in the bodies. Overall, the shreds of evidence highlight that sesamin can be a potent candidate to design drugs against breast cancer. So, like other phytochemicals, sesamin can be consumed for better therapeutic advantages due to having the ability to target a plethora of molecular pathways until clinically trialed standard drugs are not available in pharma markets.
Collapse
|
20
|
Tang N, Li L, Xie F, Lu Y, Zuo Z, Shan H, Zhang Q, Zhang L. A living cell-based fluorescent reporter for high-throughput screening of anti-tumor drugs. J Pharm Anal 2022; 11:808-814. [PMID: 35028187 PMCID: PMC8740116 DOI: 10.1016/j.jpha.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022] Open
Abstract
Suppression of cellular O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) can repress proliferation and migration of various cancer cells, which opens a new avenue for cancer therapy. Based on the regulation of insulin gene transcription, we designed a cell-based fluorescent reporter capable of sensing cellular O-GlcNAcylation in HEK293T cells. The fluorescent reporter mainly consists of a reporter (green fluorescent protein (GFP)), an internal reference (red fluorescent protein), and an operator (neuronal differentiation 1), which serves as a “sweet switch” to control GFP expression in response to cellular O-GlcNAcylation changes. The fluorescent reporter can efficiently sense reduced levels of cellular O-GlcNAcylation in several cell lines. Using the fluorescent reporter, we screened 120 natural products and obtained one compound, sesamin, which could markedly inhibit protein O-GlcNAcylation in HeLa and human colorectal carcinoma-116 cells and repress their migration in vitro. Altogether, the present study demonstrated the development of a novel strategy for anti-tumor drug screening, as well as for conducting gene transcription studies. The reporter developed in this study is living cell-based with convenient utility. The method can be used for high-throughput screening. The reporter is versatile with potential applicability in the discovery of OGT/GFAT inhibitors and antitumor drugs.
Collapse
Affiliation(s)
- Ningning Tang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Ling Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Fei Xie
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Ying Lu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Zifan Zuo
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Hao Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Quan Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Lianwen Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| |
Collapse
|
21
|
Anticancer Targets and Signaling Pathways Activated by Britannin and Related Pseudoguaianolide Sesquiterpene Lactones. Biomedicines 2021; 9:biomedicines9101325. [PMID: 34680439 PMCID: PMC8533303 DOI: 10.3390/biomedicines9101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Sesquiterpene lactones (SLs) are abundant in plants and display a large spectrum of bioactivities. The compound britannin (BRT), found in different Inula species, is a pseudoguaianolide-type SL equipped with a typical and highly reactive α-methylene-γ-lactone moiety. The bioproperties of BRT and related pseudoguaianolide SLs, including helenalin, gaillardin, bigelovin and others, have been reviewed. Marked anticancer activities of BRT have been evidenced in vitro and in vivo with different tumor models. Three main mechanisms are implicated: (i) interference with the NFκB/ROS pathway, a mechanism common to many other SL monomers and dimers; (ii) blockade of the Keap1-Nrf2 pathway, with a covalent binding to a cysteine residue of Keap1 via the reactive α-methylene unit of BRT; (iii) a modulation of the c-Myc/HIF-1α signaling axis leading to a downregulation of the PD-1/PD-L1 immune checkpoint and activation of cytotoxic T lymphocytes. The non-specific reactivity of the α-methylene-γ-lactone moiety with the sulfhydryl groups of proteins is discussed. Options to reduce or abolish this reactivity have been proposed. Emphasis is placed on the capacity of BRT to modulate the tumor microenvironment and the immune-modulatory action of the natural product. The present review recapitulates the anticancer effects of BRT, some central concerns with SLs and discusses the implication of the PD1/PD-L1 checkpoint in its antitumor action.
Collapse
|
22
|
Pang L, Shah H, Xu Y, Qian S. Delta-5-desaturase: A novel therapeutic target for cancer management. Transl Oncol 2021; 14:101207. [PMID: 34438249 PMCID: PMC8390547 DOI: 10.1016/j.tranon.2021.101207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
D5D is an independent prognostic factor in cancer. D5D aggravates cancer progression via mediating AA/PGE2 production from DGLA. AA/PGE2 promotes cancer progression via regulating the tumor microenvironment. Inhibition of D5D redirects COX-2 catalyzed DGLA peroxidation, producing 8-HOA. 8-HOA suppress cancer by regulating proliferation, apoptosis, and metastasis.
Delta-5 desaturase (D5D) is a rate-limiting enzyme that introduces double-bonds to the delta-5 position of the n-3 and n-6 polyunsaturated fatty acid chain. Since fatty acid metabolism is a vital factor in cancer development, several recent studies have revealed that D5D activity and expression could be an independent prognostic factor in cancers. However, the mechanistic basis of D5D in cancer progression is still controversial. The classical concept believes that D5D could aggravate cancer progression via mediating arachidonic acid (AA)/prostaglandin E2 production from dihomo-γ-linolenic acid (DGLA), resulting in activation of EP receptors, inflammatory pathways, and immunosuppression. On the contrary, D5D may prevent cancer progression through activating ferroptosis, which is iron-dependent cell death. Suppression of D5D by RNA interference and small-molecule inhibitor has been identified as a promising anti-cancer strategy. Inhibition of D5D could shift DGLA peroxidation pattern from generating AA to a distinct anti-cancer free radical byproduct, 8-hydroxyoctanoic acid, resulting in activation of apoptosis pathway and simultaneously suppression of cancer cell survival, proliferation, migration, and invasion. Hence, understanding the molecular mechanisms of D5D on cancer may therefore facilitate the development of novel therapeutical applications. Given that D5D may serve as a promising target in cancer, in this review, we provide an updated summary of current knowledge on the role of D5D in cancer development and potentially useful therapeutic strategies.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA.
| | - Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| | - Yi Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| |
Collapse
|
23
|
Zhao M, Yang X, Fu H, Chen C, Zhang Y, Wu Z, Duan Y, Sun Y. Immune/Hypoxic Tumor Microenvironment Regulation-Enhanced Photodynamic Treatment Realized by pH-Responsive Phase Transition-Targeting Nanobubbles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32763-32779. [PMID: 34235912 DOI: 10.1021/acsami.1c07323] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to a special pathological type of triple-negative breast cancer (TNBC) and the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her 2), targeted therapies are not effective. The lack of effective treatment drugs and insensitivity to the current single-treatment methods are the biggest problems that we face with the TNBC treatment. Therefore, new strategies to achieve selective treatment and further visual efficacy evaluation will be powerful tools against TNBC. Herein, a novel tumor-targeted nanosized ultrasound contrast nanobubble loaded with chlorin e6 (Ce6), metformin (MET), and perfluorohexane (PFH) and covalently connected to the anti-PD-L1 peptide (DPPA-1) in the outer shell was fabricated. When accumulated in acidic tumor tissues, poly(ethylene glycol) (PEG) ligands detach, and DPPA-1 is exposed for programmed death-ligand 1 (PD-L1) targeting and blocking. The released metformin can relieve hypoxia by inhibiting mitochondrial complex I in the tumor microenvironment (TME) and enhance the therapeutic efficacy of Ce6 while synergizing with DPPA-1 by reducing PD-L1 expression. More significantly, photodynamic therapy (PDT) using multifunctional tumor-targeted nanosized ultrasound contrast agents (PD-L1-targeted pH-sensitive chlorin e6 (Ce6) and metformin (MET) drug-loaded phase transitional nanoparticles (Ce6/MET NPs-DPPA-1)) combined with PD-L1 checkpoint blocking can not only reduce tumor-mediated immunosuppression but also produce strong antitumor immunity. This finding provides a new idea for constructing multifunctional TNBC therapeutic nanoagents.
Collapse
Affiliation(s)
- Meng Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yanhua Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|