1
|
Song Y, Lu J, Qin P, Chen H, Chen L. Interferon-I modulation and natural products: Unraveling mechanisms and therapeutic potential in severe COVID-19. Cytokine Growth Factor Rev 2025; 82:18-30. [PMID: 39261232 DOI: 10.1016/j.cytogfr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global public health threat, particularly to older adults, pregnant women, and individuals with underlying chronic conditions. Dysregulated immune responses to SARS-CoV-2 infection are believed to contribute to the progression of COVID-19 in severe cases. Previous studies indicates that a deficiency in type I interferon (IFN-I) immunity accounts for approximately 15 %-20 % of patients with severe pneumonia caused by COVID-19, highlighting the potential therapeutic importance of modulating IFN-I signals. Natural products and their derivatives, due to their structural diversity and novel scaffolds, play a crucial role in drug discovery. Some of these natural products targeting IFN-I have demonstrated applications in infectious diseases and inflammatory conditions. However, the immunomodulatory potential of IFN-I in critical COVID-19 pneumonia and the natural compounds regulating the related signal pathway remain not fully understood. In this review, we offer a comprehensive assessment of the association between IFN-I and severe COVID-19, exploring its mechanisms and integrating information on natural compounds effective for IFN-I regulation. Focusing on the primary targets of IFN-I, we also summarize the regulatory mechanisms of natural products, their impact on IFNs, and their therapeutic roles in viral infections. Collectively, by synthesizing these findings, our goal is to provide a valuable reference for future research and to inspire innovative treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yuheng Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Ren M, Li Z, Wang Z, Han W, Wang F, Li Y, Zhang W, Liu X, Zhang J, Luo DQ. Antiviral Chlorinated Drimane Meroterpenoids from the Fungus Talaromyces pinophilus LD-7 and Their Biosynthetic Pathway. JOURNAL OF NATURAL PRODUCTS 2024; 87:2034-2044. [PMID: 39126395 DOI: 10.1021/acs.jnatprod.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Ten new drimane meroterpenoids talarines A-J (1-10), along with six known analogues (11-16), were isolated from desert soil-derived fungus Talaromyces pinophilus LD-7. Their 2D structures were elucidated by comprehensive interpretation of NMR and HRESIMS data. Electronic circular dichroism calculation was used to establish their absolute configurations. Compounds 2, 10, and 11 showed antiviral activities toward vesicular stomatitis virus with IC50 values of 18, 15, and 23 nM, respectively. The structure-bioactivity relationship indicated that chlorine substitution at C-5 contributed greatly to their antiviral activities. Finally, we identified a new halogenase outside the biosynthetic gene cluster, which was responsible for C-5 halogenation of the precursor isocoumarin 17 as a tailoring step in chlorinated meroterpenoids assembly.
Collapse
Affiliation(s)
- Meng Ren
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, China
| | - Zhuang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zixuan Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenjie Han
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fengxiao Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yu Li
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenrong Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xingjian Liu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jun Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, China
| | - Du-Qiang Luo
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Wu J, Cai Y, Jiang N, Qian Y, Lyu R, You Q, Zhang F, Tao H, Zhu H, Nawaz W, Chen D, Wu Z. Pralatrexate inhibited the replication of varicella zoster virus and vesicular stomatitis virus: An old dog with new tricks. Antiviral Res 2024; 221:105787. [PMID: 38145756 DOI: 10.1016/j.antiviral.2023.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Varicella zoster virus (VZV) is associated with herpes zoster (HZ) or herpes zoster ophthalmicus (HZO). All antiviral agents currently licensed for the management of VZV replication via modulating different mechanisms, and the resistance is on the rise. There is a need to develop new antiviral agents with distinct mechanisms of action and adequate safety profiles. Pralatrexate (PDX) is a fourth-generation anti-folate agent with an inhibitory activity on folate (FA) metabolism and has been used as an anti-tumor drug. We observed that PDX possessed potent inhibitory activity against VZV infection. In this study, we reported the antiviral effects and the underlying mechanism of PDX against VZV infection. The results showed that PDX not only inhibited VZV replication in vitro and in mice corneal tissues but also reduced the inflammatory response and apoptosis induced by viral infection. Furthermore, PDX treatment showed a similar anti-VSV inhibitory effect in both in vitro and in vivo models. Mechanistically, PDX inhibited viral replication by interrupting the substrate supply for de novo purine and thymidine synthesis. In conclusion, this study discovered the potent antiviral activity of PDX with a novel mechanism and presented a new strategy for VZV treatment that targets a cellular metabolic mechanism essential for viral replication. The present study provided a new insight into the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Jing Wu
- Medical School of Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Na Jiang
- Medical School of Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruining Lyu
- Medical School of Nanjing University, Nanjing, China
| | - Qiao You
- Medical School of Nanjing University, Nanjing, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongji Tao
- Medical School of Nanjing University, Nanjing, China
| | - Haotian Zhu
- Medical School of Nanjing University, Nanjing, China
| | - Waqas Nawaz
- Hȏpital Maisonneuve-Rosemont, School of Medicine, University of Montreal, Canada
| | - Deyan Chen
- Medical School of Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- Medical School of Nanjing University, Nanjing, China; Northern Jiangsu People's Hospital, Affiliated Teaching Hospital of Medical School, Nanjing University, Yangzhou, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; School of Life Science, Ningxia University, Yinchuan, China.
| |
Collapse
|
4
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
5
|
Serpeloni JM, Oliveira LCBD, Fujiike A, Tuttis K, Ribeiro DL, Camara MBP, Rocha CQD, Cólus IMDS. Flavone cirsimarin impairs cell proliferation, migration, and invasion in MCF-7 cells grown in 2D and 3D models. Toxicol In Vitro 2022; 83:105416. [PMID: 35710092 DOI: 10.1016/j.tiv.2022.105416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023]
Abstract
The present study investigates the mechanisms underlying the in vitro antitumoral activity of cirsimarin (CIR 10 to 320 μM), a flavone extracted from the aerial parts of Scoparia dulcis L., on MCF-7 cells cultured in 2D and multicellular tumor spheroids (3D). CIR (from 40 μM) decreased cell viability in the resazurin assay and colony formation in the 2D model. In the same way, in the 3D model, CIR (from 40 μM) induced cell death (triple staining assay) and decreased spheroid integrity after 16 days with no induction of intracellular reactive species (CM-H2DCFDA). In 2D, CIR decreased the invasion (transwell) and horizontal migration (wound healing), while in 3D, CIR diminished cell migration (ECM® gel) and induced DNA damage (comet assay) possibly related to cell death. CIR mediated antitumoral effects in 3D spheroids by negative modulation of genes associated with cell proliferation (CCND1, CCNA2, CDK2, CDK4, and TNF) and death (BCL-XL, BAX, CASP9, and BIRC5). BIRC5 and CDKs inhibitors have been proposed as versatile anticancer drugs, which makes our results quite interesting. TNF negative modulation may also be related to the downregulation of MMP9 and MMP11 and anti-migration/invasion of MCF-7 cells cultured in 2D and 3D models. These are relevant properties for long-term strategies to avoid metastasis and improve the prognosis of breast cancer.
Collapse
Affiliation(s)
- Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | | | - Andressa Fujiike
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Katiuska Tuttis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Marcos Bispo Pinheiro Camara
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
| | - Claudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| |
Collapse
|
6
|
Phillygenin activates PKR/eIF2α pathway and induces stress granule to exert anti-avian infectious bronchitis virus. Int Immunopharmacol 2022; 108:108764. [PMID: 35421804 DOI: 10.1016/j.intimp.2022.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022]
Abstract
The prevalence of avian infectious bronchitis virus (IBV) is still one of causes inducing severe losses of production in the poultry industry worldwide. Vaccination does not completely prevent IBV infection and spread due to immune failure and viral mutations. ForsythiaeFructus and its compounds have been widely used in a lot of prescriptions of the traditional Chinese medicine for a long history, and it is well-known as safety and efficiency in heat-clearing and detoxifying. This study aims to investigate the anti-IBV activity and mechanism of phillygenin. The results showed that phillygenin inhibited IBV replication by disturbing multiple stages of the virus life cycle, including viral adsorption, invasion, internalization, and release in Vero cells. After being treated with 100, 125 and 150 μg/mL phillygenin, the expression of G3BP1 was significantly increased and the phosphorylation of PKR/eIF2α was activated, which increased stress granule, thereby triggering the antiviral response in Vero cells. The anti-virus activity of PHI was decreased when G3BP1 was interfered by si-RNA, and G3BP1 was down-regulated when PKR/eIF2α was interfered by si-RNA. In conclusion, our findings indicate that phillygenin activates PKR/eIF2α pathway and induces stress granule formation to exert anti-IBV, which holds promise to develop into a novel anti-IBV drug. Further study in vivo is needed to explore phillygenin as a potential and effective drug to prevent IB in poultry.
Collapse
|
7
|
Zhao J, Roy P, Tang H, Ma X, Di Q, Quan J, Guan Y, Li X, Xiao W, Chen W. Indole derivative XCR-5a alleviates LPS-induced inflammation in vitro and in vivo. Immunopharmacol Immunotoxicol 2021; 44:157-167. [PMID: 34958291 DOI: 10.1080/08923973.2021.2020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Few studies on anti-inflammatory drugs with indole groups have been published. This is the first study that demonstrates the anti-inflammatory effects of indole derivative XCR-5a in vitro and in vivo. OBJECTIVE This study aimed to discover more anti-inflammatory drugs with indole groups and investigate their anti-inflammatory mechanisms. MATERIALS AND METHODS First, a series of indole derivatives was synthesized, then screened for XCR-5a, a compound with anti-inflammatory effects. Second, the in vitro production of IL-1β, IL-6, TNF-α, inducible nitric oxide synthase (iNOS), and cyclo-oxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced primary cells of mice pretreated with XCR-5a was determined using qPCR and ELISA. Finally, the effect of XCR-5a on LPS-induced NF-κB signaling activation was determined by Western blotting. An in vivo mouse sepsis model was established. In mouse lung tissue, the production of IL-1β, IL-6, and TNF-α was determined and H&E staining was performed. RESULTS Our findings showed that XCR-5a could suppress the production of LPS-induced IL-1β, IL-6, and TNF-α, as well as mRNA expression of iNOS and COX-2. Pretreatment with XCR-5a inhibited the LPS-induced inflammatory response in septic mice in vivo by decreasing pro-inflammatory cytokines production in serum and reducing immune cell infiltration. Mechanistically, XCR-5a suppressed LPS-induced activation of the NF-κB signaling pathway. CONCLUSIONS XCR-5a has anti-inflammatory effects in vitro and in vivo. Therefore, XCR-5a could be a potential drug candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jiajing Zhao
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Prasanta Roy
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, PR China
| | - Haimei Tang
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Xingyu Ma
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Qianqian Di
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Jiazheng Quan
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Yonghong Guan
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, PR China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, PR China
| | - Weilin Chen
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| |
Collapse
|
8
|
Shao Q, Huang J, Li J. Intracellular Replication Inhibitory Effects of Tea Tree Oil on Vesicular Stomatitis Virus and Anti-inflammatory Activities in Vero Cells. Front Vet Sci 2021; 8:759812. [PMID: 34869732 PMCID: PMC8635969 DOI: 10.3389/fvets.2021.759812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Viral disease management has been proven difficult, and there are no broadly licensed vaccines or therapeutics. Vesicular stomatitis virus (VSV) is an active pathogen of wild ungulates and livestock; its infection frequently caused irreversible vesicles on the tongue or other positions, leading to enormous economic loss. Tea tree oil (TTO) has been shown to be a popular remedy for many skin diseases owing to its antibacterial, antipruritic, and anti-inflammatory effects. However, the potential effect of TTO on VSV proliferation and the corresponding inflammatory response in cells remain unclear. In this study, methyl thiazolyl tetrazolium assay was used to evaluate the cell viability of TTO, and cytotoxic concentration 50 (CC50) was calculated. Then, fluorescence observation, reverse transcription-quantitative polymerase chain reaction, Western blot (WB), and flow cytometry (FCM) assay were used to evaluate the antiviral effect of TTO against VSV under three manners of pre-infection before medication, co-administration, pretreatment before infection at safe doses to Vero cells. Meanwhile, the mRNA expressions of interleukin 8, tumor necrosis factor α, and ISG56 in cells were also detected. The results showed that the maximum safe concentration of TTO to Vero cells was 0.063% and the CC50 is 0.32%. Most notably, TTO dose-dependently inhibited the VSV GFP fluorescence generation and restrained the replication of VSV in gene and protein levels regardless of the treatment modes. Based on the results of the FCM, effective concentration 50 of TTO against VSV is 0.019%. Similarly, the mRNA expression of the above cytokines induced by viral infection was also remarkably curbed. These findings suggest that TTO emerged blocking, prophylaxis, and treatment action against VSV replication and suppressed the related inflammation in Vero cells. This study provides a novel potential for TTO fighting against viral infection and anti-inflammatory activities in Vero cells.
Collapse
Affiliation(s)
- Qi Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junjie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Zou H, Wu T, Wang Y, Kang Y, Shan Q, Xu L, Jiang Z, Lin X, Ye XY, Xie T, Zhang H. 5-Hydroxymethylfurfural Enhances the Antiviral Immune Response in Macrophages through the Modulation of RIG-I-Mediated Interferon Production and the JAK/STAT Signaling Pathway. ACS OMEGA 2021; 6:28019-28030. [PMID: 34723002 PMCID: PMC8552330 DOI: 10.1021/acsomega.1c03862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 05/13/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) exists in a wide range of sugar-rich foods and traditional Chinese medicines. The role of 5-HMF in antiviral innate immunity and its mechanism have not been reported previously. In this study, we reveal for the first time that 5-HMF upregulates the production of retinoic acid-inducible gene I (RIG-I)-mediated type I interferon (IFN) as a response to viral infection. IFN-β and IFN-stimulated chemokine gene expressions induced by the vesicular stomatitis virus (VSV) are upregulated in RAW264.7 cells and primary peritoneal macrophages after treatment with 5-HMF, a natural product that appears to inhibit the efficiency of viral replication. Meanwhile, 5-HMF-pretreated mice show enhanced innate antiviral immunity, increased serum levels of IFN-β, and reduced morbidity and viral loads upon infection with VSV. Thus, 5-HMF can be seen to have a positive effect on enhancing type I IFN production. Mechanistically, 5-HMF upregulates the expression of RIG-I in macrophages, resulting in an acceleration of the RIG-I signaling pathway activation. Additionally, STAT1 and STAT2 phosphorylations, along with the expression of IFN-stimulated chemokine genes induced by IFN-α/β, were also enhanced in macrophages cotreated with 5-HMF. In summary, these findings indicate that 5-HMF not only can induce type I IFN production but also can enhance IFN-JAK/STAT signaling, leading to a novel immunomodulatory mechanism against viral infection. In conclusion, our study reveals a previously unrecognized effect of 5-HMF in the antiviral innate immune response and suggests new potential of utilizing 5-HMF for controlling viral infection.
Collapse
Affiliation(s)
- Han Zou
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Tingyue Wu
- School
of Life Science, University of Science &
Technology of China, Hefei 230026, Anhui, China
- Key
Laboratory of Animal Models and Human Disease Mechanisms of the Chinese
Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Yuan Wang
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Yanhua Kang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Qingye Shan
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Liqing Xu
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Zheyi Jiang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiaohan Lin
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiang-Yang Ye
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Tian Xie
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Hang Zhang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| |
Collapse
|