1
|
Sun M, Xu D, Liu D, Ran X, Li F, Wang J, Ge Y, Liu Y, Guo W, Liu J, Cao Y, Fu S. Stigmasterol from Prunella vulgaris L. Alleviates LPS-induced mammary gland injury by inhibiting inflammation and ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156362. [PMID: 39809030 DOI: 10.1016/j.phymed.2025.156362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Dairy mastitis, a prevalent condition affecting dairy cattle, represents a significant challenge to both animal welfare and the quality of dairy products. However, current treatment options remain limited. Stigmasterol (ST) is a bioactive component of Prunella vulgaris L. (PV) with various pharmacological functions such as anti-inflammatory and anti-oxidation. At present, the specific effects and underlying mechanisms of PV and ST on dairy mastitis are still not fully understood. PURPOSE The aim of this research was to evaluate the pharmacological effects of PV and its active component ST on lipopolysaccharide (LPS) -stimulated bovine mammary epithelial cells (BMECs) and a mouse mastitis model, and to elucidate the possible mechanisms of action. METHODS UPLC-Q-TOF-MS/MS was employed to identify the constituents of PV. BMECs and mice were used to establish in vitro and in vivo models of mastitis. Western Blotting, RT-qPCR, immunofluorescence and other techniques were used to explore the effects of PV and ST on inflammatory factors, blood-milk barrier integrity, ferroptosis related indicators and their potential molecular mechanisms. RESULTS PV significantly attenuated the production of inflammatory mediators by LPS-stimulated BMECs. Subsequently, ST was found to be a potent anti-inflammatory agent in PV by inhibiting TLR4/NF-κB signaling pathway. This inhibition inhibits the myosin light chain (MLC)/MLC kinase signaling cascade and alleviates blood-milk barrier (BMB) disruption in BMECs. In addition, ferroptosis occurred in BMECs after LPS stimulation, and ST inhibited ferroptosis by stimulating Nrf2/GPX4 signaling pathway. Treatment of BMECs with the Nrf2 inhibitor ML385 significantly attenuated the therapeutic effect of ST. In vivo experiments further confirmed that both PV and ST attenuated LPS-induced breast tissue damage while reducing ferroptosis levels and restoring BMB. CONCLUSION ST from PV exhibits substantial anti-inflammatory properties and is a promising candidate for the treatment of dairy mastitis.
Collapse
Affiliation(s)
- Mingyang Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dianwen Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Dianfeng Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Xin Ran
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yusong Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuhao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Gholijani N, Azarpira N, Abolmaali SS, Tanideh N, Ravanrooy MH, Taki F, Daryabor G. Piperine and piperine-loaded albumin nanoparticles ameliorate adjuvant-induced arthritis and reduce IL-17 in rats. Exp Mol Pathol 2024; 140:104937. [PMID: 39353355 DOI: 10.1016/j.yexmp.2024.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
AIM Rheumatoid arthritis (RA) is one of the most common chronic, inflammatory, autoimmune diseases affecting mainly the joints. Piperine (PIP), an alkaloid found in black pepper, has anti-inflammatory properties and its use in drug delivery systems such as nanoparticles might be a treatment for RA. This study aims to evaluate the possible anti-inflammatory and anti-arthritic effects of PIP and its use in albumin nanoparticles as a possible approach for the treatment of Adjuvant-induced arthritis (AIA) rats. METHODS PIP-loaded Bovine Serum Albumin nanoparticles (PIP-BSA NPs) were prepared using a desolvation method. AIA rats were given intraperitoneal injections of either 40 mg PIP or 131 mg PIP-BSA NPs every two days until day 28 when animals were sacrificed. Clinical score, histopathology, X-ray radiography, and serum levels of pro-inflammatory cytokines such as IL-1β, IL-17, and TNF-α were evaluated. RESULTS PIP and PIP-BSA NPs significantly reduced clinical scores, and alleviated inflammation within the joints. PIP was superior to PIP-BSA NPs for the alleviation of fibrin deposition and periosteal reactions while bone inflammation and erosion were less severe in the case of PIP-BSA NPs. Besides, both of the treatments suppressed serum levels of IL-17 in AIA rats (p = 0.003 and p = 0.02; respectively). CONCLUSIONS PIP and PIP-BSA NPs effectively alleviate the severity of AIA and suppress inflammation. Due to the superiority of PIP in improving fibrin deposition and periosteal reactions and the efficacy of PIP-BSA NPs in suppressing bone inflammation and erosion, their simultaneous use might be investigated.
Collapse
Affiliation(s)
- Nasser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira-Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology and Nanotechnology in Drug Delivery Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farzane Taki
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Kumar D, Rahman Sarkar A, Iqbal Andrabi N, Assim Haq S, Ahmed M, Kumar Shukla S, Ahmed Z, Rai R. Synthesis, characterization, and anti-inflammatory activity of tetrahydropiperine, piperic acid, and tetrahydropiperic acid via down regulation of NF-κB pathway. Cytokine 2024; 178:156578. [PMID: 38484621 DOI: 10.1016/j.cyto.2024.156578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The present study describes the synthesis, characterization, and evaluation of tetrahydropiperine (THP), piperic acid (PA), and tetrahydropiperic acid (THPA) as anti-inflammatory agents. THPA demonstrated potent anti-inflammatory activity among all the compounds. The anti-inflammatory potential was investigated in both in-vitro and in-vivo experimental models. Our findings demonstrated that THPA effectively suppressed the production of pro-inflammatory mediators, including nitric oxide and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in both in vitro and in vivo. Additionally, THPA attenuated the expression of i-NOS and COX-2 in RAW 264.7 macrophages. The oral administration of THPA significantly reduced carrageenan induced paw edema thickness and alleviated liver, lung, and kidney injury induced by LPS. THPA also reduced the infiltration of inflammatory cells, prevented the occurrence of significant lesions, and mitigated tissue damage. Moreover, THPA significantly improved the survival rate of mice challenged with LPS. Our western blot studies also found that LPS induced NF-κB activation was downregulated by treatment with THPA in an in vivo system. These results collectively illustrated the potential of THPA as a therapeutic agent for treating inflammatory diseases.
Collapse
Affiliation(s)
- Diljeet Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aminur Rahman Sarkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Nusrit Iqbal Andrabi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Assim Haq
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manzoor Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanket Kumar Shukla
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Zabeer Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajkishor Rai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India.
| |
Collapse
|
4
|
Zhang L, Kuang G, Gong X, Huang R, Zhao Z, Li Y, Wan J, Wang B. Piperine attenuates hepatic ischemia/reperfusion injury via suppressing the TLR4 signaling cascade in mice. Transpl Immunol 2024; 84:102033. [PMID: 38484898 DOI: 10.1016/j.trim.2024.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Piperine, the major active substance in black pepper, has been shown to have anti-inflammatory and antioxidant effects in several ischemic diseases. However, the role of piperine in hepatic ischemia/reperfusion injury (HIRI) and its underlying mechanisms remain unclear. In this study, the mice were administered piperine (30 mg/kg) intragastric administration before surgery. After 24 h of hepatic ischemia-reperfusion, liver histopathological evaluation, serum transaminase measurements, and TUNEL analysis were performed. The infiltration of inflammatory cells and production of inflammatory mediators in the liver tissue were determined by immunofluorescence and immunohistochemical staining. The protein levels of toll-like receptor 4 (TLR4) and related proteins such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-1 receptor-associated kinase 1 (IRAK1), p65, and p38 were detected by western blotting. The results showed that plasma aminotransferase (ALT), aspartate aminotransferase (AST), hepatocyte apoptosis, oxidative stress, and inflammatory cell infiltration significantly increased in HIRI mice. Piperine pretreatment notably repaired liver function, improved the histopathology and apoptosis of liver cells, alleviated oxidative stress injury, and reduced inflammatory cell infiltration. Further analysis showed that piperine attenuated tumor necrosis factor-a (TNF-α) and interleukin 6 (IL-6) production and reduced TLR4 activation and phosphorylation of IRAK1, p38, and NF-κB in HIRI. Piperine has a protective effect against HIRI through the TLR4/IRAK1/NF-κB signaling pathway and may be a safer option for future clinical treatment and prevention of ischemia-related diseases.
Collapse
Affiliation(s)
- Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ge Kuang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Rui Huang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
He X, Wang J, Sun L, Ma W, Li M, Yu S, Zhou Q, Jiang J. Wogonin attenuates inflammation and oxidative stress in lipopolysaccharide-induced mastitis by inhibiting Akt/NF-κB pathway and activating the Nrf2/HO-1 signaling. Cell Stress Chaperones 2023; 28:989-999. [PMID: 37910344 PMCID: PMC10746643 DOI: 10.1007/s12192-023-01391-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Mastitis is a disease involved in inflammation of breast which affects human and animals. Wogonin is one bioactive compound from many Chinese herbal medicines, which have multiple properties, including anti-inflammatory activity. However, the roles of wogonin in mastitis progression are largely undefined. Mastitis models were established using LPS-treated mice and mammary epithelial cells (MECs). Infiltration of inflammatory cells was analyzed by hematoxylin-eosin staining and myeloperoxidase (MPO) activity. Inflammatory cytokine (TNF-α and IL-1β) levels were detected via ELISA. The phosphorylation and total of Akt and NF-κB levels and content of Nrf2 and HO-1 were measured via western blot. Cell viability was examined by CCK-8 assay. Oxidative stress was assessed by ROS generation and levels of MDA, GSH, and SOD. Wogonin attenuated LPS-induced infiltration of inflammatory cells, increase of MPO activity and levels of TNF-α and IL-1β, and activation of the Akt/NF-κB pathway in murine mammary gland tissues, and promoted activation of Nrf2/HO-1 signaling. Wogonin did not affect MEC viability, but mitigated LPS-induced inflammation in MECs by reducing TNF-α and IL-1β levels. Wogonin relieved LPS-induced oxidative stress in MECs through decreasing ROS generation and MDA level and increasing GSH and SOD levels. Wogonin repressed LPS-induced activation of the Akt/NF-κB pathway in MECs and increased Nrf2/HO-1 signaling activation. Activated Akt/NF-κB signaling or Nrf2/HO-1 signaling inactivation reversed the suppressive effects of wogonin on LPS-induced inflammation and oxidative stress in MECs. Wogonin mitigates LPS-induced inflammation and oxidative stress of MECs via suppressing activation of the Akt/NF-κB signaling and activating Nrf2/HO-1 pathway, indicating the therapeutic potential of wogonin in mastitis.
Collapse
Affiliation(s)
- Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Juan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenqi Ma
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Miao Li
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
6
|
Li K, Ran X, Zeng Y, Li S, Hu G, Wang X, Li Y, Yang Z, Liu J, Fu S. Maslinic acid alleviates LPS-induced mice mastitis by inhibiting inflammatory response, maintaining the integrity of the blood-milk barrier and regulating intestinal flora. Int Immunopharmacol 2023; 122:110551. [PMID: 37406397 DOI: 10.1016/j.intimp.2023.110551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Mastitis occurs frequently in breastfeeding women and not only affects the women's health but also hinders breastfeeding. Maslinic acid is a type of pentacyclic triterpenoid widely found in olives that has good anti-inflammatory activity. This study aims to discuss the protective function of maslinic acid against mastitis and its underlying mechanism. For this, mice models of mastitis were established using lipopolysaccharide (LPS). The results revealed that maslinic acid reduced the pathological lesions in the mammary gland. In addition, it reduced the generation of pro-inflammatory factors and enzymes (IL-6, IL-1β, TNF-α, iNOS, and COX2) in both mice mammary tissue and mammary epithelial cells. The high-throughput 16S rDNA sequencing of intestinal flora showed that in mice with mastitis, maslinic acid treatment altered β-diversity and regulated microbial structure by increasing the abundance of probiotics such as Enterobacteriaceae and downregulating harmful bacteria such as Streptococcaceae. In addition, maslinic acid protected the blood-milk barrier by maintaining tight-junction protein expression. Furthermore, maslinic acid downregulated mammary inflammation by inhibiting the activation of NLRP3 inflammasome, AKT/NF-κB, and MAPK signaling pathways. Thus, in a mice model of LPS-induced mastitis, maslinic acid can inhibit the inflammatory response, protect the blood-milk barrier, and regulate the constitution of intestinal flora.
Collapse
Affiliation(s)
- Kefei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xin Ran
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yiruo Zeng
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang 110164, China
| | - Guiqiu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaoxuan Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ying Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhanqing Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Zhao L, Jin L, Yang B. Protocatechuic acid inhibits LPS-induced mastitis in mice through activating the pregnane X receptor. J Cell Mol Med 2023; 27:2321-2327. [PMID: 37328960 PMCID: PMC10424283 DOI: 10.1111/jcmm.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
Mastitis refers to the inflammation in the mammary gland caused by various reasons. Protocatechuic acid (PCA) exerts anti-inflammatory effect. However, no studies have shown the protective role of PCA on mastitis. We investigated the protective effect of PCA on LPS-induced mastitis in mice and elucidated its possible mechanism. LPS-induced mastitis model was established by injection of LPS into the mammary gland. The pathology of mammary gland, MPO activity and inflammatory cytokine production were detected to evaluate the effects of PCA on mastitis. In vivo, PCA significantly attenuated LPS-induced mammary pathological changes, MPO activity, TNF-α and IL-1β production. In vitro, the production of inflammatory cytokines TNF-α and IL-1β was significantly reduced by PCA. Furthermore, LPS-induced NF-κB activation was also inhibited by PCA. In addition, PCA was found to activate pregnane X receptor (PXR) transactivation and PCA dose-dependently increased the expression of PXR downstream molecule CYP3A4. In addition, the inhibitory effect of PCA on inflammatory cytokine production was also reversed when PXR was knocked down. In conclusion, the protective effects of PCA on LPS-induced mastitis in mice through regulating PXR.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinChina
| | - Lei Jin
- Department of AnesthesiologyChina‐Japan Union Hospital of Jilin UniversityJilinChina
| | - Bin Yang
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinChina
| |
Collapse
|
8
|
Health benefits of bioactive components in pungent spices mediated via the involvement of TRPV1 channel. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Newerli-Guz J, Śmiechowska M. Health Benefits and Risks of Consuming Spices on the Example of Black Pepper and Cinnamon. Foods 2022; 11:2746. [PMID: 36140874 PMCID: PMC9498169 DOI: 10.3390/foods11182746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study is to present the benefits and risks associated with the consumption of black pepper and cinnamon, which are very popular spices in Poland. The article presents the current state of knowledge about health properties and possible dangers, such as liver damage, associated with their consumption. The experimental part presents the results of the research on the antioxidant properties against the DPPH radical, which was 80.85 ± 3.84-85.42 ± 2.34% for black pepper, and 55.52 ± 7.56-91.87 ± 2.93% for cinnamon. The total content of polyphenols in black pepper was 10.67 ± 1.30-32.13 ± 0.24 mg GAE/g, and in cinnamon 52.34 ± 0.96-94.71 ± 3.34 mg GAE/g. In addition, the content of piperine and pepper oil in black pepper was determined, as well as the content of coumarin in cinnamon. The content of piperine in the black pepper samples was in the range of 3.92 ± 0.35-9.23 ± 0.05%. The tested black pepper samples contained 0.89 ± 0.08-2.19 ± 0.15 mL/100 g d.m. of essential oil. The coumarin content in the cinnamon samples remained in the range of 1027.67 ± 50.36-4012.00 ± 79.57 mg/kg. Taking into account the content of coumarin in the tested cinnamon samples, it should be assumed that the majority of cinnamon available in Polish retail is Cinnamomum cassia (L.) J. Presl.
Collapse
Affiliation(s)
- Joanna Newerli-Guz
- Department of Quality Management, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland
| | | |
Collapse
|
10
|
Sun WJ, Wu EY, Zhang GY, Xu BC, Chen XG, Hao KY, Wang Y, He LZ, Lv QZ. Total flavonoids of Abrus cantoniensis inhibit CD14/TLR4/NF-κB/MAPK pathway expression and improve gut microbiota disorders to reduce lipopolysaccharide-induced mastitis in mice. Front Microbiol 2022; 13:985529. [PMID: 36090098 PMCID: PMC9449526 DOI: 10.3389/fmicb.2022.985529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Established a model of lipopolysaccharide (LPS)-induced mastitis in mice, pathological sections and myeloperoxidase were used to detect the degree of tissue damage, enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression of pro-inflammatory cytokines, meanwhile fluorescence quantitative PCR experiments were performed to detect the mRNA expression of CD14/TLR4/NF-κB/MAPK signalling pathway, and the faeces of mice were collected for 16S measurement of flora. The results showed that Abrus cantoniensis total flavonoids (ATF) could significantly reduce the damage of LPS on mammary tissue in mice and inhibit the secretion of inflammatory factors such as TNF-α, IL-1β and IL-6. At the mRNA level, ATF inhibited the expression of CD14/TLR4/NF-κB/MAPK pathway and enhanced the expression of tight junction proteins in the blood-milk barrier. In the results of the intestinal flora assay, ATF were found to be able to regulate the relative abundance of the dominant flora from the phylum level to the genus level, restoring LPS-induced gut microbial dysbiosis. In summary, ATF attenuated the inflammatory response of LPS on mouse mammary gland by inhibiting the expression of CD14/TLR4/NF-κB/MAPK pathway, enhancing the expression of tight junction proteins and restoring LPS-induced gut microbial dysbiosis. This suggests that ATF could be a potential herbal remedy for mastitis.
Collapse
Affiliation(s)
- Wen-Jing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, Guangxi, China
| | - En-Yun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ge-Yin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bai-Chang Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiao-Gang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kai-Yuan Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ling-Zhi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qi-Zhuang Lv
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, Guangxi, China
- *Correspondence: Qi-Zhuang Lv,
| |
Collapse
|
11
|
Geng N, Gao X, Wang X, Cui S, Wang J, Liu Y, Chen W, Liu J. Hydrogen helps to ameliorate Staphylococcus aureus-induced mastitis in mice. Int Immunopharmacol 2022; 109:108940. [PMID: 35700582 DOI: 10.1016/j.intimp.2022.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
Abstract
Many studies have shown that hydrogen has anti-inflammatory and anti-oxidant effects. Because of its ability to quickly pass through cell membranes, hydrogen has become a hot spot in the research of inflammatory diseases. Vitamin E glycerin (VEG) and hydrogen-rich Vitamin E glycerin (HR-VEG) were prepared, aiming to explore their anti-inflammatory activities in mice mastitis induced by Staphylococcus aureus (S. aureus). In the early part of this study, the prepared vitamin E medium (VEM) and hydrogen-rich vitamin E medium (HR-VEM) were added to mammary epithelial cells infected with S. aureus. HR-VEM was found to be more effective in reducing the phosphorylation of p65 and p38 and in reducing the production of interleukin-1 beta (IL-1β) than VEM. Whereafter, the mice model of mastitis was established by injecting S. aureus from the mammary duct. Then VEG and HR-VEG were applied to the mammary gland for seven consecutive days. After that, the clinical symptoms, histopathology, bacterial load, inflammatory factors, as well as the related pathway were analyzed. The results showed that HR-VEG can more significantly alleviate the damage of mammary tissue than VEG, and reduce the production of tumor necrosis factor-alpha (TNF-α), IL-1β and interleukin 6 (IL-6). In addition, HR-VEG inhibited the TLR2 and Nod2 signaling pathways and reduced the phosphorylation level of MAPK and NF-κB signaling pathways in S. aureus-induced murine mastitis. This study indicates that hydrogen helps to ameliorate S. aureus-induced mastitis in mice through attenuating TLR2 and Nod2 mediated NF-κB and MAPK activation.
Collapse
Affiliation(s)
- Na Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xin Gao
- Research Center for Animal Disease Control Engineering, Tai'an, Shandong 271018, China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuai Cui
- Modern Animal Husbandry Development Service Center of Dongying City, Dongying, Shandong 257091, China
| | - Jinji Wang
- Shandong Zhongnong Puning Pharmaceutical Co. LTD. Tai an, Shandong 271027, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Tai'an, Shandong 271018, China.
| | - Wei Chen
- School of Basic Medical Science, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Tai'an, Shandong 271000, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
12
|
Protective effects of fraxin on cerebral ischemia-reperfusion injury by mediating neuroinflammation and oxidative stress through PPAR-γ/NF-κB pathway. Brain Res Bull 2022; 187:49-62. [PMID: 35772607 DOI: 10.1016/j.brainresbull.2022.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammation and oxidative stress are associated with the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. Fraxin, one of the primary active ingredients of Cortex Fraxini, may have potent anti-inflammatory activity. This study intended to investigate the function and mechanism of fraxin in a middle cerebral artery occlusion (MCAO) model. METHODS A middle cerebral artery occlusion (MCAO) rat model was engineered. Both in-vivo and in-vitro models were dealt with Fraxin. The profiles of inflammation-concerned cytokines, proteins and oxidative stress factors were determined by RT-PCR, western blot, and enzyme-linked immunosorbent assay (ELISA), and neuronal apoptosis and reactive oxygen species (ROS) levels were measured. The neurological functions of rats were evaluated by Morris water maze and modified neurological severity scores (mNSS). RESULTS The data revealed that fraxin abated the OGD/R-mediated release of inflammatory and oxidative stress mediators, enhanced "M2″-like BV2 microglia polarization, and mitigated HT22 cell apoptosis. Mechanistically, fraxin boosted PPAR-γ expression, activated the Nrf2/HO-1 pathway, and suppressed NF-κB, IKK-β,p38 MAPK, ERK1/2 and Keap1 in a dose-dependent manner. Furthermore, attenuating PPAR-γ through pharmacological treatment with GW9662 (a PPAR-γ antagonist) mainly weakened the neuroprotective and anti-inflammatory functions of fraxin. CONCLUSION Fraxin could considerably ameliorate cerebral I/R damage by repressing oxidative stress, inflammatory response, and cell apoptosis through abrogating the PPARγ/ NF-κB pathway.
Collapse
|
13
|
Zhang W, Zheng Q, Song M, Xiao J, Cao Y, Huang Q, Ho CT, Lu M. A review on the bioavailability, bio-efficacies and novel delivery systems for piperine. Food Funct 2021; 12:8867-8881. [PMID: 34528635 DOI: 10.1039/d1fo01971f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As the major naturally occurring alkaloid in pepper with a pungent taste, piperine is known for its beneficial biological functions and therapeutic effects. In this work, the bioavailability and biological activities of piperine were presented and discussed. Novel delivery systems for enhancing the bioavailability of piperine were also reviewed. This study could provide a better understanding of the physiological and biochemical aspects of piperine to be further developed in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Weiyun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qianwang Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Park JR, Kang HH, Cho JK, Moon KD, Kim YJ. Application of Non-Destructive Rapid Determination of Piperine in Piper nigrum L. (Black Pepper) Using NIR and Multivariate Statistical Analysis: A Promising Quality Control Tool. Foods 2020; 9:E1437. [PMID: 33050560 PMCID: PMC7600935 DOI: 10.3390/foods9101437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
Piperine is a bioactive alkaloid compound which provides a unique spicy flavor derived from plants of the Piper nigrum L. Black pepper (n = 160) collected from Vietnam was studied using non-destructive near infrared spectroscopy (NIRS). The spectral acquisition ranged from 1100 to 2500 nm, and a chemometrics analysis program was performed to quantify the piperine contents. High performance liquid chromatography (HPLC) analysis was carried out to develop a chemometric model based on reference values. The black pepper samples were divided into two groups used for calibration (n = 120) and prediction (n = 40) sets. The optimum calibration model was developed by pretreatment of the spectra. The analyses results based on the prediction samples included a coefficient of determination (R2) of 0.914, a root mean square error of prediction (RMSEP) and a standard error of prediction (SEP) of about 0.220 g/100 g, and a ratio performance to deviation (RPD) value of 3.378 regarding the partial least square (PLS) regression model, and an R2 of 0.921, an RMSEP and SEP of 0.210 g/100 g, and an RPD of 3.571, with respect to the principal components (PC) regression model. These results indicate that NIRS can be applicable as a control, or as an alternative rapid and effective method to quantify piperine in P. nigrum L.
Collapse
Affiliation(s)
- Jong-Rak Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (J.-R.P.); (K.-D.M.)
| | - Hyun-Hee Kang
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Jong-Ku Cho
- Nanomarkers Co. Ltd., Seongnam 13595, Korea;
| | - Kwang-Deog Moon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (J.-R.P.); (K.-D.M.)
| | - Young-Jun Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea;
| |
Collapse
|