1
|
Carr D, Gunari S, Gorostiza G, Mercado M, Pavana L, Duong L, Gomez K, Salinas S, Garcia C, Tsang A, Morisseau C, Hammock BD, Pecic S, Kandasamy R. Synthesis and evaluation of isoquinolinyl and pyridinyl-based dual inhibitors of fatty acid amide hydrolase and soluble epoxide hydrolase to alleviate orofacial hyperalgesia in the rat. Biochem Biophys Rep 2025; 42:102009. [PMID: 40275962 PMCID: PMC12018053 DOI: 10.1016/j.bbrep.2025.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The treatment of orofacial pain disorders is poor. Both opioids and serotonin agonists are commonly used; however, they produce dangerous and unpleasant side effects. Therefore, there is an urgent need to identify new pharmacological treatments that can resolve orofacial pain. Moreover, a treatment that engages multiple mechanisms using one compound may be advantageous. Fatty acid amide hydrolase (FAAH) and soluble epoxide hydrolase (sEH) are two enzymes that can regulate both pain and inflammation via independent pathways. Small molecules that inhibit both enzymes simultaneously were previously synthesized and produced antinociception in vivo. Quinolinyl-based dual inhibitors of FAAH and sEH can inhibit acute inflammatory pain in rats. Here, following on these findings, we generated 7 new isoquinolinyl- and 7 pyridinyl-based analogs and tested their inhibition at both enzymes. Structure-activity relationship study coupled with docking experiments, revealed that the isoquinoline moiety is well-tolerated in the binding pockets of both enzymes, yielding several analogs with nanomolar activity in enzymatic assays. All newly synthesized analogs were assessed in the solubility assay at pH 7.4, and we determined that isoquinolinyl- and substituted pyridinyl-analogs exhibit limited solubility under the experimental conditions. The most potent inhibitor, 4f, with IC50 values in the low nanomolar range for both enzymes, was evaluated in a plasma stability assay in human and rat plasma where it showed a moderate stability. Primary binding assays revealed that 4f does not engage any opioid or serotonin receptors. A high dose (3 mg/kg) of 4f reversed orofacial hyperalgesia following pretreatment with nitroglycerin and orofacial injection of formalin; however, this same dose did not inhibit acute orofacial inflammatory pain or restore pain-depressed wheel running. These findings indicate that simultaneous inhibition of FAAH and sEH using isoquinolinyl-based dual inhibitors may only reverse certain components of orofacial hyperalgesia.
Collapse
Affiliation(s)
- Daniel Carr
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Siena Gunari
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Gabrielle Gorostiza
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Madison Mercado
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Lucy Pavana
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Leah Duong
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Karen Gomez
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Steve Salinas
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Coral Garcia
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Amanda Tsang
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| |
Collapse
|
2
|
Vargas BDS, Vargas BSF, Clemente-Napimoga JT, Hammock BD, Abdalla HB, Van Dyke TE, Napimoga MH. Soluble epoxide hydrolase inhibition impairs triggering receptor expressed on myeloid cells-1 in periodontal tissue. J Periodontal Res 2025; 60:278-286. [PMID: 39343738 PMCID: PMC11953063 DOI: 10.1111/jre.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
AIMS Periodontitis is a prevalent inflammatory disorder affecting the oral cavity, driven by dysbiotic oral biofilm and host immune response interactions. While the major clinical focus of periodontitis treatment is currently controlling oral biofilm, understanding the immune response is crucial to prevent disease progression. Soluble epoxide hydrolase (sEH) inhibition has shown promise in preventing alveolar bone resorption. Triggering receptors expressed on myeloid cells (TREMs) play pivotal roles in regulating inflammation and bone homeostasis, and dysregulation of TREM signaling is implicated in periodontitis. Here, we investigated the impact of sEH inhibition on TREM 1 and 2 expression, associated with inflammatory cytokines, and histologically assessed the inflammatory infiltrate in periodontal tissue. METHODS The experimental periodontitis model was induced by placing a ligature around the upper second molar. For 14 days, animals were treated daily with a sEH inhibitor (TPPU) or vehicle. The alveolar bone loss was examined using a methylene blue stain. Gingival tissues were used to measure the mRNA expression of TREM-1, TREM-2, IKKβ, NF-κB, IL-1β, IL-6, IL-8, and TNF-α by RT-qPCR. Another set of experiments was performed to determine the histological inflammatory scores. RESULTS In a ligature-induced periodontitis model, sEH inhibition prevented alveolar bone loss and reduced TREM1 expression, albeit with a slight elevation compared to the disease-free group. In contrast, TREM2 expression remained elevated, suggesting sustained immunomodulation favoring resolution. The inhibition of sEH reduced the expression of NF-κB, IL-1β, and TNF-α, while no differences were found in the expression of IL-6, IL-8, and IKKβ. In histological analysis, sEH inhibition reduced the inflammatory leukocyte infiltrate in periodontal tissues close to the ligature. CONCLUSION These findings underscore the potential of sEH inhibition to modulate periodontal inflammation by regulating TREM-1 alongside decreased IL-1β and TNF-α expression, highlighting a promising therapeutic approach for periodontitis management.
Collapse
Affiliation(s)
- Breno da Silva Vargas
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Bruno Sérgio Ferreira Vargas
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Bruce D. Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Henrique B. Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Thomas E. Van Dyke
- Department of Immunology and Inflammation, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, MA, USA
| | - Marcelo H. Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| |
Collapse
|
3
|
Almutairi A, White TD, Stephenson DJ, Stephenson BD, Gai-Tusing Y, Goel P, Phillips DW, Welner RS, Lei X, Hammock BD, Chalfant CE, Ramanadham S. Selective Reduction of Ca2+-Independent Phospholipase A2β (iPLA2β)-Derived Lipid Signaling From Macrophages Mitigates Type 1 Diabetes Development. Diabetes 2024; 73:2022-2033. [PMID: 39283670 PMCID: PMC11579405 DOI: 10.2337/db23-0770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/07/2024] [Indexed: 11/22/2024]
Abstract
Type 1 diabetes (T1D) is a consequence of autoimmune destruction of β-cells, and macrophages (MΦs) have a central role in initiating processes that lead to β-cell demise. We reported that Ca2+-independent phospholipase A2β (iPLA2β)-derived lipid (iDL) signaling contributes to β-cell death. Because MΦs express iPLA2β, we assessed its role in T1D development. We find that selective reduction of myeloid-iPLA2β in spontaneously diabetes-prone NOD mice 1) decreases proinflammatory eicosanoid production by MΦs, 2) favors the anti-inflammatory (M2-like) MΦ phenotype, and 3) diminishes activated CD4+ and CD8+ T-cells phenotype in the pancreatic infiltrate, prior to T1D onset. These outcomes are associated with a significant reduction in T1D. Further, inhibition of select proinflammatory lipid signaling pathways reduces M1-like MΦ polarization and adoptive transfer of M2-like MΦs reduces NOD T1D incidence, suggesting a mechanism by which iDLs impact T1D development. These findings identify MΦ-iPLA2β as a critical contributor to T1D development and potential target to counter T1D onset. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Abdulaziz Almutairi
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Tayleur D. White
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel J. Stephenson
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Benjamin D. Stephenson
- Program in Cancer Biology, UVA Comprehensive Cancer Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Ying Gai-Tusing
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Paran Goel
- Department of Medicine, Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel W. Phillips
- Department of Medicine, Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Robert S. Welner
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA
| | - Charles E. Chalfant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
- Program in Cancer Biology, UVA Comprehensive Cancer Center, University of Virginia School of Medicine, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Trindade-da-Silva CA, Yang J, Fonseca F, Pham H, Napimoga MH, Abdalla HB, Aver G, De Oliveira MJA, Hammock BD, Clemente-Napimoga JT. Eicosanoid profiles in an arthritis model: Effects of a soluble epoxide hydrolase inhibitor. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159432. [PMID: 37984607 PMCID: PMC10842726 DOI: 10.1016/j.bbalip.2023.159432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Rheumatoid arthritis is a common systemic inflammatory autoimmune disease characterized by damage to joints, inflammation and pain. It is driven by an increase of inflammatory cytokines and lipids mediators such as prostaglandins. Epoxides of polyunsaturated fatty acids (PUFAs) are lipid chemical mediators in a group of regulatory compounds termed eicosanoids. These epoxy fatty acids (EpFA) have resolutive functions but are rapidly metabolized by the soluble epoxide hydrolase enzyme (sEH) into the corresponding diols. The pharmacological inhibition of sEH stabilizes EpFA from hydrolysis, improving their half-lives and biological effects. These anti-inflammatory EpFA, are analgesic in neuropathic and inflammatory pain conditions. Nonetheless, inhibition of sEH on arthritis and the resulting effects on eicosanoids profiles are little explored despite the physiological importance. In this study, we investigated the effect of sEH inhibition on collagen-induced arthritis (CIA) and its impact on the plasma eicosanoid profile. We measured the eicosanoid metabolites by LC-MS/MS-based lipidomic analysis. The treatment with a sEH inhibitor significantly modulated 11 out of 69 eicosanoids, including increased epoxides 12(13)-EpODE, 12(13)-EpOME, 13-oxo-ODE, 15-HEPE, 20-COOH-LTB4 and decreases several diols 15,6-DiHODE, 12,13-DiHOME, 14,15-DiHETrE, 5,6-DiHETrE and 16,17-DiHDPE. Overall the inhibition of sEH in the rheumatoid arthritis model enhanced epoxides generally considered anti-inflammatory or resolutive mediators and decreased several diols with inflammatory features. These findings support the hypothesis that inhibiting the sEH increases systemic EpFA levels, advancing the understanding of the impact of these lipid mediators as therapeutical targets.
Collapse
Affiliation(s)
- Carlos Antonio Trindade-da-Silva
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil; Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA; EicOsis LLC, Davis, CA, USA
| | - Flavia Fonseca
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Hoang Pham
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Marcelo Henrique Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil
| | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil
| | - Geanpaolo Aver
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil
| | - Márcio José Alves De Oliveira
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA; EicOsis LLC, Davis, CA, USA
| | | |
Collapse
|
5
|
Turnbull J, Jha RR, Barrett DA, Valdes AM, Alderson J, Williams A, Vincent TL, Watt FE, Chapman V. The Effect of Acute Knee Injuries and Related Knee Surgery on Serum Levels of Pro- and Anti-inflammatory Lipid Mediators and Their Associations With Knee Symptoms. Am J Sports Med 2024; 52:987-997. [PMID: 38406872 PMCID: PMC10943603 DOI: 10.1177/03635465241228209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/29/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND Despite an acute knee injury being a major risk factor for osteoarthritis, the factors that initiate and maintain this risk of longer-term knee symptoms are poorly understood. Bioactive lipids derived from omega-3 and -6 polyunsaturated fatty acids have key roles in the regulation of the inflammatory response and have been linked to joint damage and osteoarthritis pain in translational models. HYPOTHESIS There would be associations between systemic levels of bioactive lipids and knee symptoms longitudinally after an acute knee injury and related knee surgery. STUDY DESIGN Controlled laboratory study. METHODS This study analyzed a subset of young, active adults who had sustained an acute knee injury (recruited via a surgical care pathway) and healthy age- and sex-matched controls. Surgery, if performed, was conducted after the baseline serum sample was taken and before the 3-month and 2-year visits. Liquid chromatography-tandem mass spectrometry of 41 bioactive lipids was carried out in sera of (1) 47 injured participants (median age, 28 years) collected at baseline (median, 24 days after injury), 3 months, and 2 years, along with the Knee injury and Osteoarthritis Outcome Score, and (2) age- and sex-matched controls. RESULTS Levels of the omega-3 polyunsaturated fatty acids eicosapentaenoic acid (P≤ .0001) and docosahexaenoic acid (P≤ .0001) and the pro-resolving lipid mediators 17- and 14-hydroxydocosahexaenoic acid, and 18-hydroxyeicosapentaenoic acid were all significantly greater at baseline in injured participants compared with the later time points and also higher than in healthy controls (P = .0019 and P≤ .0001, respectively). Levels of pro-inflammatory prostaglandins E2 and D2, leukotriene B4, and thromboxane B2 were significantly lower at baseline compared with the later time points. Higher levels of 8,9-, 11,12-, and 14,15-dihydroxyeicosatrienoic acid (DHET) were cross-sectionally associated with more severe knee pain/symptoms according to the Knee injury and Osteoarthritis Outcome Score at 2 years (P = .0004, R2 = 0.251; P = .0002, R2 = 0.278; and P = .0012, R2 = 0.214, respectively). CONCLUSION The profile of pro-resolving versus pro-inflammatory lipids at baseline suggests an initial activation of pro-resolution pathways, followed by the later activation of pro-inflammatory pathways. CLINICAL RELEVANCE In this largely surgically managed cohort, the association of soluble epoxide hydrolase metabolites, the DHETs, with more severe knee symptoms at 2 years provides a rationale for further investigation into the role of this pathway in persisting knee symptoms in this population, including potential therapeutic strategies.
Collapse
Affiliation(s)
- James Turnbull
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rakesh R. Jha
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David A. Barrett
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ana M. Valdes
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Injury, Recovery, and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jennifer Alderson
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew Williams
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Fortius Clinic, London, UK
| | - Tonia L. Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fiona E. Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Victoria Chapman
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Tarkany Basting R, Henrique Napimoga M, Antônio Trindade Silva C, Ballassini Abdalla H, Campos Durso B, Henrique Barboza Martins L, de Abreu Cavalcanti H, Hammock BD, Trindade Clemente-Napimoga J. Soluble epoxide hydrolase inhibitor blockage microglial cell activation in subnucleus caudalis in a persistent model of arthritis. Int Immunopharmacol 2023; 120:110320. [PMID: 37230034 PMCID: PMC10631565 DOI: 10.1016/j.intimp.2023.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic condition characterized by pain and infiltration of immune cells into the joint. Immune cells can be activated, producing inflammatory cytokines, leading to continuously degenerative and inflammatory reactions and the temporomandibular joint (TMJ) can be affected by RA. In this scenario, novel targets are needed to increase treatment efficacy with minimized side effects. The epoxy-eicosatrienoic acids (EETs), are endogenous signaling molecules, playing important roles in diminishing inflammation and pain but are promptly metabolized by soluble epoxide hydrolase (sEH), generating less-bioactive acids.Therefore, sEH inhibitors is an interest therapeutic target to enhance the beneficial effect of natural EETs. TPPU is a potent sEH inhibitor that is capable of dampening EETs hydrolysis. Thus, we aimed to assess the impact of pharmacological sEH inhibition on a persistent model of albumin-induced arthritis in the TMJ, in two scenarios: first, as post-treatment, in an installed arthritic condition, and second, the protective role, in preventing the development of an arthritic condition. In addition, we investigate the influence of sEH inhibition on microglia cell activation in the trigeminal subnucleus caudalis (TSC) and in vitro experiments. Finally, we examined the astrocyte phenotype. Oral administration of TPPU, acts in multiple pathways, in a protective and reparative post-treatment, ameliorating the preservation of the TMJ morphology, reducing the hypernociception, with an immunosuppressive action reducing neutrophil and lymphocytes and pro-inflammatory cytokines in the TMJ of rats. In TSC, TPPU reduces the cytokine storm and attenuates the microglia activated P2X7/Cathepsin S/Fractalkine pathway and reduces the astrocyte activation and glutamate levels. Collectively, our findings revealed that sEH inhibition mitigates hypersensitive nociception through the regulation of microglia activation and astrocyte modulation, demonstrating the potential use of sEH inhibitors as immunoresolvents in the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Rosanna Tarkany Basting
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Marcelo Henrique Napimoga
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Carlos Antônio Trindade Silva
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Henrique Ballassini Abdalla
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Braz Campos Durso
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | | | - Herbert de Abreu Cavalcanti
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, United States of America; EicOsis LLC, Davis, CA, United States of America
| | | |
Collapse
|
7
|
Abdalla HB, Alvarez C, Wu YC, Rojas P, Hammock BD, Maddipati KR, Trindade-da-Silva CA, Soares MQS, Clemente-Napimoga JT, Kantarci A, Napimoga MH, Van Dyke TE. Soluble epoxide hydrolase inhibition enhances production of specialized pro-resolving lipid mediator and promotes macrophage plasticity. Br J Pharmacol 2023; 180:1597-1615. [PMID: 36508312 PMCID: PMC10175184 DOI: 10.1111/bph.16009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids (EpFA) are lipid mediators that are rapidly inactivated by soluble epoxide hydrolase (sEH). Uncontrolled and chronic inflammatory disorders fail to sufficiently activate endogenous regulatory pathways, including the production of specialized pro-resolving mediators (SPMs). Here, we addressed the relationship between SPMs and the EET/sEH axis and explored the effects of sEH inhibition on resolving macrophage phenotype. EXPERIMENTAL APPROACH Mice were treated with a sEH inhibitor, EETs, or sEH inhibitor + EETs (combination) before ligature placement to induce experimental periodontitis. Using RT-qPCR, gingival samples were used to examine SPM receptors and osteolytic and inflammatory biomarkers. Maxillary alveolar bone loss was quantified by micro-CT and methylene blue staining. SPM levels were analysed by salivary metabolo-lipidomics. Gingival macrophage phenotype plasticity was determined by RT-qPCR and flow cytometry. Effects of sEH inhibition on macrophage polarization and SPM production were assessed with bone marrow-derived macrophages (BMDMs). KEY RESULTS Pharmacological inhibition of sEH suppressed bone resorption and the inflammatory cytokine storm in experimental periodontitis. Lipidomic analysis revealed that sEH inhibition augmented levels of LXA4, RvE1, RvE2, and 4-HDoHE, concomitant with up-regulation of LTB4R1, CMKLR1/ChemR23, and ALX/FPR2 SPM receptors. Notably, there is an impact on gingival macrophage plasticity was affected suggesting an inflammation resolving phenotype with sEH inhibition. In BMDMs, sEH inhibition reduced inflammatory macrophage activation, and resolving macrophages were triggered to produce SPMs. CONCLUSION AND IMPLICATIONS Pharmacological sEH inhibition increased SPM synthesis associated with resolving macrophages, suggesting a potential target to control osteolytic inflammatory disorders.
Collapse
Affiliation(s)
- Henrique B Abdalla
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Carla Alvarez
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Yu-Chiao Wu
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Paola Rojas
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California, USA
| | | | - Carlos Antonio Trindade-da-Silva
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Mariana Q S Soares
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Marcelo H Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Huang JB, Chen ZR, Yang SL, Hong FF. Nitric Oxide Synthases in Rheumatoid Arthritis. Molecules 2023; 28:molecules28114414. [PMID: 37298893 DOI: 10.3390/molecules28114414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe joint damage and disability. However, the specific mechanism of RA has not been thoroughly clarified over the past decade. Nitric oxide (NO), a kind of gas messenger molecule with many molecular targets, is demonstrated to have significant roles in histopathology and homeostasis. Three nitric oxide synthases (NOS) are related to producing NO and regulating the generation of NO. Based on the latest studies, NOS/NO signaling pathways play a key role in the pathogenesis of RA. Overproduction of NO can induce the generation and release of inflammatory cytokines and act as free radical gas to accumulate and trigger oxidative stress, which can involve in the pathogenesis of RA. Therefore, targeting NOS and its upstream and downstream signaling pathways may be an effective approach to managing RA. This review clearly summarizes the NOS/NO signaling pathway, the pathological changes of RA, the involvement of NOS/NO in RA pathogenesis and the conventional and novel drugs based on NOS/NO signaling pathways that are still in clinical trials and have good therapeutic potential in recent years, with an aim to provide a theoretical basis for further exploration of the role of NOS/NO in the pathogenesis, prevention and treatment of RA.
Collapse
Affiliation(s)
- Jia-Bao Huang
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Zhi-Ru Chen
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shu-Long Yang
- School of Basic Medical Sciences, Fuzhou Medical College of Nanchang University, Fuzhou 344000, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Abdalla HB, Van Dyke TE. The impact of the soluble epoxide hydrolase cascade on periodontal tissues. FRONTIERS IN DENTAL MEDICINE 2023; 4:1129371. [PMID: 39916899 PMCID: PMC11797759 DOI: 10.3389/fdmed.2023.1129371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 02/09/2025] Open
Abstract
Periodontitis is a chronic inflammatory disease with complex pathogenesis. Uncontrolled inflammation is driven by the immune system in response to accumulation of oral biofilm that leads to alveolar bone loss, bleeding, increased periodontal probing depth with loss of attachment of the connective tissues to the tooth, and ultimately, tooth loss. Soluble epoxide hydrolase (sEH) is an enzyme that converts epoxy fatty acids (EpFAs) produced by cytochrome P450 (CYP450) to an inactive diol. It has been shown that EpFAs display important features to counteract an exaggerated inflammatory process. Based upon this observation, inhibitors of sEH have been developed and are being proposed as a strategy to regulate proinflammatory lipid mediator production and the chronicity of inflammation. This mini review focuses on the impact of sEH inhibition on periodontal tissues focusing on the mechanisms involved. The interaction between Specialized Pro-Resolving Mediators and sEH inhibition emerges as a significant mechanism of action of sEH inhibitors that was not formerly appreciated and provides new insights into the role SPMs may play in prevention and treatment of periodontitis.
Collapse
Affiliation(s)
| | - Thomas E. Van Dyke
- Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, United States
- Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
10
|
Dang H, Chen W, Chen L, Huo X, Wang F. TPPU inhibits inflammation-induced excessive autophagy to restore the osteogenic differentiation potential of stem cells and improves alveolar ridge preservation. Sci Rep 2023; 13:1574. [PMID: 36709403 PMCID: PMC9884285 DOI: 10.1038/s41598-023-28710-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
Inflammation-induced autophagy is a double-edged sword. Dysfunction of autophagy impairs the differentiation capacity of mesenchymal stem cells and enhances inflammation-induced bone loss. Tooth extraction with periodontal and/or endodontic lesions exacerbates horizontal and vertical resorption of alveolar bone during the healing period. Alveolar socket preservation (ASP) procedure following tooth extraction has important clinical implications for future prosthodontic treatments. Studies have shown that epoxyeicosatrienoic acids (EETs) have significant anti-inflammatory effects and participate in autophagy. However, whether EETs can minimize alveolar bone resorption and contribute to ASP by regulating autophagy levels under inflammatory conditions remain elusive. Here, we figured out that LPS-induced inflammatory conditions increased the inflammatory cytokine and inhibited osteogenic differentiation of human dental pulp stem cells (hDPSCs), and led to excessive autophagy of hDPSCs. Moreover, we identified that increased EETs levels using TPPU, a soluble epoxide hydrolase inhibitor, reversed these negative outcomes. We further demonstrated the potential of TPPU to promote early healing of extraction sockets and ASP, and speculated that it was related to autophagy. Taken together, these results suggest that targeting inhibition of soluble epoxide hydrolase using TPPU plays a protective role in the differentiation and autophagy of mesenchymal stem cells and provides potential feasibility for applying TPPU for ASP, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Haixia Dang
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.,School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China
| | - Lan Chen
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xinru Huo
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China. .,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China. .,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116086, China.
| |
Collapse
|
11
|
Ferrillo M, Giudice A, Marotta N, Fortunato F, Di Venere D, Ammendolia A, Fiore P, de Sire A. Pain Management and Rehabilitation for Central Sensitization in Temporomandibular Disorders: A Comprehensive Review. Int J Mol Sci 2022; 23:12164. [PMID: 36293017 PMCID: PMC9602546 DOI: 10.3390/ijms232012164] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
Temporomandibular disorders (TMD) are a group of musculoskeletal diseases affecting masticatory muscles and temporomandibular joints (TMJ). In this context, the chronic TMD could be considered as a condition with chronic primary orofacial pain, presenting as myofascial TMD pain or TMJ arthralgia. In this context, myogenous TMD may present overlapping features with other disorders, such as fibromyalgia and primary headaches, characterized by chronic primary pain related to dysfunction of the central nervous system (CNS), probably through the central sensitization. This phenomenon could be defined as an amplified response of the CNS to sensory stimuli and peripheral nociceptive, characterized by hyperexcitability in the dorsal horn neurons in the spinal cord, which ascend through the spinothalamic tract. The main objectives of the management of TMD patients are: decreasing pain, increasing TMJ function, and reducing the reflex masticatory muscle spasm/pain. The first-line treatments are physical therapy, pharmacological drugs, occlusal splints, laser therapy, extracorporeal shockwave therapy, transcutaneous electrical nerve stimulation, and oxygen-ozone therapy. Although all these therapeutic approaches were shown to have a positive impact on the central sensitization of TMD pain, there is still no agreement on this topic in the scientific literature. Thus, in this comprehensive review, we aimed at evaluating the evidence on pain management and rehabilitation for the central sensitization in TMD patients.
Collapse
Affiliation(s)
- Martina Ferrillo
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Pietro Fiore
- Neurological Rehabilitation Unit, Istituti Clinici Scientifici Maugeri, IRCCS Institute of Bari, 70124 Bari, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Liang N, Emami S, Patten KT, Valenzuela AE, Wallis CD, Wexler AS, Bein KJ, Lein PJ, Taha AY. Chronic exposure to traffic-related air pollution reduces lipid mediators of linoleic acid and soluble epoxide hydrolase in serum of female rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103875. [PMID: 35550873 PMCID: PMC9353974 DOI: 10.1016/j.etap.2022.103875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chronic exposure to traffic-related air pollution (TRAP) is known to promote systemic inflammation, which is thought to underlie respiratory, cardiovascular, metabolic and neurological disorders. It is not known whether chronic TRAP exposure dampens inflammation resolution, the homeostatic process for stopping inflammation and repairing damaged cells. In vivo, inflammation resolution is facilitated by bioactive lipid mediators known as oxylipins, which are derived from the oxidation of polyunsaturated fatty acids. To understand the effects of chronic TRAP exposure on lipid-mediated inflammation resolution pathways, we measured total (i.e. free+bound) pro-inflammatory and pro-resolving lipid mediators in serum of female rats exposed to TRAP or filtered air (FA) for 14 months. Compared to rats exposed to FA, TRAP-exposed rats showed a significant 36-48% reduction in fatty acid alcohols, specifically, 9-hydroxyoctadecadienoic acid (9-HODE), 11,12-dihydroxyeicosatetraenoic acid (11,12-DiHETE) and 16,17-dihydroxydocosapentaenoic acid (16, 17-DiHDPA). The decrease in fatty acid diols (11,12-DiHETE and 16, 17-DiHDPA) corresponded to a significant 34-39% reduction in the diol to epoxide ratio, a marker of soluble epoxide hydrolase activity; this enzyme is typically upregulated during inflammation. The findings demonstrate that 14 months exposure to TRAP reduced pro-inflammatory 9-HODE concentration and dampened soluble epoxide hydrolase activation, suggesting adaptive immune changes in lipid mediator pathways involved in inflammation resolution.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Kelley T Patten
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Anthony S Wexler
- Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA; Air Quality Research Center, University of California, Davis, Davis, CA, USA
| | - Keith J Bein
- Air Quality Research Center, University of California, Davis, Davis, CA, USA; Center for Health and the Environment, University of California, Davis, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
13
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
14
|
Trindade da Silva CA, Clemente-Napimoga JT, Abdalla HB, Basting RT, Napimoga MH. Peroxisome proliferator-activated receptor-gamma (PPARγ) and its immunomodulation function: current understanding and future therapeutic implications. Expert Rev Clin Pharmacol 2022; 15:295-303. [PMID: 35481412 DOI: 10.1080/17512433.2022.2071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Pain is a multidimensional experience involving the biological, psychological, and social dimensions of each individual. Particularly, the biological aspects of pain conditions are a response of the neuroimmunology system and the control of painful conditions is a worldwide challenge for researchers. Although years of investigation on pain experience and treatment exist, the high prevalence of chronic pain is still a fact. AREAS COVERED : Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. It regulates several metabolic pathways, including lipid biosynthesis and glucose metabolism, when activated. However, PPARγ activation also has a critical immunomodulatory and neuroprotective effect. EXPERT OPINION : This review summarizes the evidence of synthetic or natural PPARγ ligands such as 15d-PGJ2, epoxyeicosatrienoic acids, thiazolidinediones, and specialized pro-resolving mediators, representing an interesting therapeutic tool for pain control.
Collapse
Affiliation(s)
- Carlos Antonio Trindade da Silva
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Henrique Ballassini Abdalla
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Rosanna Tarkany Basting
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| |
Collapse
|
15
|
Abdalla HB, Napimoga MH, Teixeira JM, Trindade-da-Silva CA, Pieroni VL, Dos Santos Araújo FSM, Hammock BD, Clemente-Napimoga JT. Soluble epoxide hydrolase inhibition avoid formalin-induced inflammatory hyperalgesia in the temporomandibular joint. Inflammopharmacology 2022; 30:981-990. [PMID: 35303234 DOI: 10.1007/s10787-022-00965-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are endogenous molecules that exerts effective antinociceptive and resolutive actions. However, because of their rapid metabolism by the soluble epoxide hydrolase (sEH), EETs are unable to remain bioavailable. Therefore, the aim of this study was to investigate whether local sEH inhibition could prevent inflammatory hyperalgesia in the temporomandibular joint (TMJ) of rats. For that, rats were pre-treated with an intra-TMJ injection of TPPU, followed by the noxious stimulus (1.5% of formalin intra-articular) to evaluate nociceptive behavior. Histological analysis was conducted to explore the inflammatory exudate and mast cell degranulation. Periarticular tissue over the TMJ was used to measure inflammatory lipids and cytokines/chemokine by Enzyme-Linked Immunosorbent Assay (ELISA). We demonstrated that peripheral pretreatment with TPPU prevents formalin-induced inflammatory hyperalgesia in the TMJ, and this effect is strictly local. Moreover, TPPU mitigates the leukocyte exudate in the TMJ, as well as inflammatory lipids mediators. Mast cell number and degranulation were abrogated by TPPU, and the inflammatory cytokine levels were decreased by TPPU. On the other hand, TPPU up-regulated the release of interleukin 10 (IL-10), an anti-inflammatory cytokine. We provide evidence that locally sEH by intra-TMJ injection of TPPU produces an antinociceptive and anti-inflammatory effect on rats' TMJ.
Collapse
Affiliation(s)
- Henrique Ballassini Abdalla
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Marcelo Henrique Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Juliana Maia Teixeira
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Carlos Antônio Trindade-da-Silva
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Victor Luís Pieroni
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Fernanda Souto Maior Dos Santos Araújo
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Juliana Trindade Clemente-Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Rua José Rocha Junqueira, 13-Swift, Campinas, SP, CEP: 13405-755, Brazil.
| |
Collapse
|
16
|
Manickam M, Meenakshisundaram S, Pillaiyar T. Activating endogenous resolution pathways by soluble epoxide hydrolase inhibitors for the management of COVID-19. Arch Pharm (Weinheim) 2022; 355:e2100367. [PMID: 34802171 PMCID: PMC9011438 DOI: 10.1002/ardp.202100367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Anti-inflammatory, specialized proresolving mediators such as resolvins, protectins, maresins, and lipoxins derived from polyunsaturated acids may play a potential role in lung diseases as they protect different organs in animal disease models. Polyunsaturated fatty acids are an important resource for epoxy fatty acids (EET, EEQ, and EDP) that mediate a broad array of anti-inflammatory and proresolving mechanisms, such as mitigation of the cytokine storm. However, epoxy fatty acids are rapidly metabolized by soluble epoxide hydrolase (sEH). In animal studies, administration of sEH inhibitors (sEHIs) increases epoxy fatty acid levels, reduces lung inflammation, and improves lung function, making it a viable COVID-19 treatment approach. Thus, using sEHIs to activate endogenous resolution pathways might be a novel method to minimize organ damage in severe cases and improve outcomes in COVID-19 patients. This review focuses on the use of sEH inhibitors to activate endogenous resolution mechanisms for the treatment of COVID-19.
Collapse
Affiliation(s)
- Manoj Manickam
- Department of ChemistryPSG Institute of Technology and Applied ResearchCoimbatoreTamil NaduIndia
| | | | | |
Collapse
|
17
|
Marana RR, Benedicto Dos Santos VA, Groppo FC, Ferreira LEN, Sánchez JB, Barbin T, Figueroba SR. Omega 3 polyunsaturated fatty acids: Potential anti-inflammatory effect in a model of ovariectomy and temporomandibular joint arthritis induction in rats. Arch Oral Biol 2021; 134:105340. [PMID: 34915341 DOI: 10.1016/j.archoralbio.2021.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To evaluate the effect of polyunsaturated fatty acid-type omega 3 (ω3) on the temporomandibular joint (TMJ) of ovariectomized rats (OVX) with rheumatoid arthritis (RA). DESIGN Rheumatoid arthritis was induced using complete Freund's adjuvant and type II bovine collagen injected at the base of the tail. Twenty-four adult female rats were treated by gavage and divided into four groups: G1: Sham, treated with 0.9% NaCl; G2: OVX, treated with 0.9% NaCl; G3: OVX+RA treated with 0.9% NaCl; G4: OVX+RA+ω3 treated with omega 3 (300 mg/kg/day). The induction of rheumatoid arthritis in groups G3 and G4 was performed 21 days after OVX, treatments were started 15 days after the induction of rheumatoid arthritis, maintained for 7 days, and killed. Bilateral TMJs were removed and assigned to morphometric analysis by micro-computed tomography and immunoassay to assess levels of cytokines IL-1β, IL-6, TNF-α, and IL-10. RESULTS Higher levels of inflammatory cytokines were found in the G2 and G3 (P < 0.05) and anti-inflammatory cytokines in the G1 and G4. TMJ analysis by micro-computed tomography showed a higher percentage of bone volume (median - interquartile deviation) in G1 (96.2-1.1) than in the G2 (91.5-2.0, P = 0.0374) and G3 (85.1-5.2, P = 0.0001) but showed no statistically significant differences with the G4 (93.1-1.7, P = 0.79). CONCLUSIONS Omega 3 successfully reduced TMJ damage in rats caused by ovariectomy and induced rheumatoid arthritis, and is a promising alternative for bone repair and attenuation of inflammatory processes.
Collapse
Affiliation(s)
- Rosana Rodrigues Marana
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | | | - Francisco C Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | - Luiz Eduardo N Ferreira
- Laboratory of Inflammation and Immunology, Guarulhos University, Guarulhos, São Paulo, Brazil.
| | - Jonny B Sánchez
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | - Thomas Barbin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | - Sidney R Figueroba
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| |
Collapse
|
18
|
Kim JH, Park JS, Lee YJ, Choi S, Kim YH, Yang SY. Inhibition of soluble epoxide hydrolase by phytochemical constituents of the root bark of Ulmus davidiana var. japonica. J Enzyme Inhib Med Chem 2021; 36:1049-1055. [PMID: 34000951 PMCID: PMC8153708 DOI: 10.1080/14756366.2021.1927005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel compound 1 and nine known compounds (2–10) were isolated by open column chromatography analysis of the root bark of Ulmus davidiana. Pure compounds (1–10) were tested in vitro to determine the inhibitory activity of the catalytic reaction of soluble epoxide hydrolase (sEH). Compounds 1, 2, 4, 6–8, and 10 had IC50 values ranging from 11.4 ± 2.3 to 36.9 ± 2.6 μM. We used molecular docking to simulate inhibitor binding of each compound and estimated the binding pose of the catalytic site of sEH. From this analysis, the compound 2 was revealed to be a potential inhibitor of sEH in vitro and in silico. Additionally, molecular dynamics (MD) study was performed to find detailed interaction signals of inhibitor 2 with enzyme. Finally, compound 2 is promising candidates for the development of a new sEH inhibitor from natural plants.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Jeonju, Korea
| | - Ji Su Park
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Yun Ji Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Jeonju, Korea
| | - Sena Choi
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Jeonju, Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.,Department of Pharmaceutical Engineering, Sangji University, Wonju-si, Republic of Korea
| |
Collapse
|
19
|
Fast and accurate protocol for histology and immunohistochemistry reactions in temporomandibular joint of rats. Arch Oral Biol 2021; 126:105115. [PMID: 33819835 DOI: 10.1016/j.archoralbio.2021.105115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Propose a standard, fast and accurate protocol for the processing of the temporomandibular joint (TMJ) of adults' rats for histology and immunohistochemistry reactions. DESIGN Wistar male rats were perfused with paraformaldehyde (4 %). The heads were fixed in formaldehyde 10 % solution for 48 h. After that, the heads were sectioned in a sagittal plane and fixed for plus 48 h. Decalcification was performed using 20 % formic acid for 96 h and delimitation of TMJ area was done. Detailed methodology to a standard extraction and processing of TMJ to histological sections is described. Different buffers, equipment, temperature and time were tested to optimize immunostaining. Morphological preservation and antigenicity were evaluated by hematoxylin and eosin staining and immunohistochemistry reaction. RESULTS The current findings demonstrated that TMJ fixed in 10 % formaldehyde and decalcified in 20 % formic acid optimized decalcification processing time with preservation of cell morphology. Antigen retrieval with citrate buffer in pressure cooker (2 min at 100 °C and 5 min at room temperature) demonstrated the best protocol to preservation of the structures of TMJ. CONCLUSIONS This work demonstrates in detail a methodology of a fast and accurate TMJ processing for histology and immunohistochemistry reactions that guarantee tissue integrity and quality of staining.
Collapse
|