1
|
Goto A, Komura S, Kato K, Maki R, Hirakawa A, Tomita H, Hirata A, Yamada Y, Akiyama H. C-X-C domain ligand 14-mediated stromal cell-macrophage interaction as a therapeutic target for hand dermal fibrosis. Commun Biol 2023; 6:1173. [PMID: 37980373 PMCID: PMC10657354 DOI: 10.1038/s42003-023-05558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Dupuytren's contracture, a superficial dermal fibrosis, causes flexion contracture of the affected finger, impairing hand function. Specific single-nucleotide polymorphisms within genes in the Wnt signalling pathway are associated with the disease. However, the precise role of Wnt signalling dysregulation in the onset and progression of Dupuytren's contracture remains unclear. Here, using a fibrosis mouse model and clinical samples of human Dupuytren's contractures, we demonstrate that the activation of Wnt/β-catenin signalling in Tppp3-positive cells in the dermis of the paw is associated with the development of fibrosis. Fibrosis development and progression via Wnt/β-catenin signalling are closely related to stromal cell-macrophage interactions, and Wnt/β-catenin signalling activation in Tppp3-positive stromal cells causes M2 macrophage infiltration via chemokine Cxcl14, resulting in the formation of a TGF-β-expressing fibrotic niche. Inhibition of Cxcl14 mitigates fibrosis by decreasing macrophage infiltration. These findings suggest that Cxcl14-mediated stromal cell-macrophage interaction is a promising therapeutic target for Wnt/β-catenin-induced fibrosis.
Collapse
Affiliation(s)
- Atsushi Goto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| | - Koki Kato
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Rie Maki
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Akihiro Hirakawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1194, Japan
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
2
|
Zhang JB, Jin HL, Feng XY, Feng SL, Zhu WT, Nan HM, Yuan ZW. The combination of Lonicerae Japonicae Flos and Forsythiae Fructus herb-pair alleviated inflammation in liver fibrosis. Front Pharmacol 2022; 13:984611. [PMID: 36059967 PMCID: PMC9437263 DOI: 10.3389/fphar.2022.984611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the active components and epigenetic regulation mechanism underlying the anti-inflammatory effects of Lonicerae Japonicae Flos and Forsythiae Fructus herb-pair (LFP) in carbon tetrachloride (CCl4)-induced rat liver fibrosis. Methods: The main active ingredients and disease-related gene targets of LFP were determined using TCMSP and UniProt, and liver fibrosis disease targets were screened in the GeneCards database. A network was constructed with Cytoscape 3.8.0 and the STRING database, and potential protein functions were analyzed using bioinformatics analysis. Based on these analyses, we determined the main active ingredients of LFP and evaluated their effects in a CCl4-induced rat liver fibrosis model. Serum biochemical indices were measured using commercial kits, hepatocyte tissue damage and collagen deposition were evaluated by histopathological studies, and myofibroblast activation and inflammation were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. High-performance liquid chromatography-mass spectrometry was performed to determine the levels of homocysteine, reduced glutathione, and oxidized glutathione, which are involved in inflammation and oxidative stress. Results: The main active components of LFP were quercetin, kaempferol, and luteolin, and its main targets were α-smooth muscle actin, cyclooxygenase-2, formyl-peptide receptor-2, prostaglandin-endoperoxide synthase 1, nuclear receptor coactivator-2, interleukinβ, tumor necrosis factor α, CXC motif chemokine ligand 14, and transforming growth factor β1. A combination of quercetin, kaempferol, and luteolin alleviated the symptoms of liver fibrosis. Conclusion: The results of this study support the role of LFP in the treatment of liver fibrosis, and reveal that LFP reduces collagen formation, inflammation, and oxidative stress. This study suggests a potential mechanism of action of LFP in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jing-Bei Zhang
- Collage of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Hong-Liu Jin
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Ying Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
| | - Sen-ling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
| | - Wen-Ting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
| | - Hong-Mei Nan
- Collage of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Department of Encephalopathy, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
- *Correspondence: Hong-Mei Nan, ; Zhong-Wen Yuan,
| | - Zhong-Wen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hong-Mei Nan, ; Zhong-Wen Yuan,
| |
Collapse
|
3
|
Sun X, Xu L, Ma S, Chen L, Tang R, Li D, Hu F, Wang T, Gong Y, Zhou H, Wang J. Reduced Incidence of Necrotizing Enterocolitis due to the Anti-Inflammatory Effects of CXCL14 in Intestinal Tissue. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1322172. [PMID: 35463668 PMCID: PMC9023168 DOI: 10.1155/2022/1322172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022]
Abstract
Bioinformatic analysis indicated that downregulated CXCL14 will occur in the intestinal tissue of patients with necrotizing enterocolitis (NEC). To reveal the relationship between CXCL14 and mucosal immune regulation, we designed and implemented the experiments to explore the potential function of CXCL14 in the pathogenesis of NEC. Firstly, this study confirmed that the expression of CXCL14 decreased in the intestinal tract of NEC children. Secondly, the experiments results showed that CXCL14 could ameliorate the inflammatory injury of intestinal tissue through the suppressive effect on the expression of TNF-α and INF-γ in vivo. Finally, we explained that activation of the TLR4 can reduce the expression level of CXCL14 in the intestinal tissue of mouse pups. Collectively, our study suggested that CXCL14 may negatively regulate the inflammatory response in intestinal tissue and play an essential role in NEC development and progression.
Collapse
Affiliation(s)
- Xu Sun
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Lingqi Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Shurong Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Lulu Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Ruze Tang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Dashuang Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Fangjie Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Ting Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Yuan Gong
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| |
Collapse
|
4
|
Aga H, Soultoukis G, Stadion M, Garcia-Carrizo F, Jähnert M, Gottmann P, Vogel H, Schulz TJ, Schürmann A. Distinct Adipogenic and Fibrogenic Differentiation Capacities of Mesenchymal Stromal Cells from Pancreas and White Adipose Tissue. Int J Mol Sci 2022; 23:ijms23042108. [PMID: 35216219 PMCID: PMC8876166 DOI: 10.3390/ijms23042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic steatosis associates with β-cell failure and may participate in the development of type-2-diabetes. Our previous studies have shown that diabetes-susceptible mice accumulate more adipocytes in the pancreas than diabetes-resistant mice. In addition, we have demonstrated that the co-culture of pancreatic islets and adipocytes affect insulin secretion. The aim of this current study was to elucidate if and to what extent pancreas-resident mesenchymal stromal cells (MSCs) with adipogenic progenitor potential differ from the corresponding stromal-type cells of the inguinal white adipose tissue (iWAT). miRNA (miRNome) and mRNA expression (transcriptome) analyses of MSCs isolated by flow cytometry of both tissues revealed 121 differentially expressed miRNAs and 1227 differentially expressed genes (DEGs). Target prediction analysis estimated 510 DEGs to be regulated by 58 differentially expressed miRNAs. Pathway analyses of DEGs and miRNA target genes showed unique transcriptional and miRNA signatures in pancreas (pMSCs) and iWAT MSCs (iwatMSCs), for instance fibrogenic and adipogenic differentiation, respectively. Accordingly, iwatMSCs revealed a higher adipogenic lineage commitment, whereas pMSCs showed an elevated fibrogenesis. As a low degree of adipogenesis was also observed in pMSCs of diabetes-susceptible mice, we conclude that the development of pancreatic steatosis has to be induced by other factors not related to cell-autonomous transcriptomic changes and miRNA-based signals.
Collapse
Affiliation(s)
- Heja Aga
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - George Soultoukis
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - Francisco Garcia-Carrizo
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, 14469 Potsdam, Germany
| | - Tim J. Schulz
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
- Correspondence: ; Tel.: +49-33-200-88-2368
| |
Collapse
|
5
|
Ryyti R, Pemmari A, Peltola R, Hämäläinen M, Moilanen E. Effects of Lingonberry ( Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021; 13:3693. [PMID: 34835949 PMCID: PMC8623941 DOI: 10.3390/nu13113693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Rainer Peltola
- Natural Resources Institute Finland, Bioeconomy and Environment, 96200 Rovaniemi, Finland;
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| |
Collapse
|
6
|
Chen L, Lei Y, Zhang L. Role of C-X-C motif chemokine ligand 14 promoter region DNA methylation and single nucleotide polymorphism in influenza A severity. Respir Med 2021; 185:106462. [PMID: 34082276 DOI: 10.1016/j.rmed.2021.106462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The purpose of our experiment is to discuss the function of DNA methylation and single nucleotide polymorphism (SNP) in C-X-C motif chemokine ligand 14 (CXCL14) promoter region in influenza A (H1N1) severity. METHODS Clinic data and blood samples from H1N1 patients were collected. Blood routine indexes were measured. Levels of T lymphocytes were assessed. Importantly, CXCL14 expression and methylation in H1N1 patients and A549 cells were detected through functional assays. Additionally, rs2237061, rs2237062 and rs2547 of CXCL14 were genotyped to analyze the relation of CXCL14 SNP and H1N1 severity. RESULTS The number of leukocytes, neutrophils and lymphocytes as well as T lymphocytes in H1N1 patients was lower than that in healthy subjects, and that was decreased in severe H1N1 patients compared with the mild H1N1 patients. In HIN1 patients, CXCL14 expression was decreased, while CXCL14 methylation was increased, and CXCL14 expression was further decreased and CXCL14 methylation was further increased in severe H1N1 patients. CXCL14 methylation was negatively correlated with T lymphocytes in H1N1 patients. CXCL14 methylation was elevated in H1N1-infected A549 cells. GA and AA genotypes of rs2547 in CXCL14 were risky genotypes for H1N1, and AA genotype was risky genotype for severe H1N1. Number of T lymphocytes was lower in H1N1 patients carrying AA genotype of rs2547 than that in GA + GG genotype. CONCLUSION CXCL14 promoter region DNA methylation and SNP were correlated with H1N1 severity.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Disease, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing 100096, China
| | - Yan Lei
- North District Department of Respiration, Air Force 986th Hospital, Xi'an, Shaanxi Province 710054, China
| | - Lingling Zhang
- Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, China.
| |
Collapse
|