1
|
Tang S, Wei K, Xu Y, Xu R, Wan W, Sun Y, Huang H, Li X. Network pharmacology combines cellular experiments to investigate the anti-inflammatory phytochemicals of vine of Pueraria montana var. lobata and their mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119592. [PMID: 40074102 DOI: 10.1016/j.jep.2025.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria montana var. lobata (PM) has the effects of relieving muscle stiffness and fever, generating body fluids and quenching thirst, resolving rashes, raising yang and stopping diarrhea, unblocking meridians, and detoxifying alcohol. It is commonly used for the management of conditions including stiff neck and back pain, thirst, diabetes, unresolved measles, external fever with headache, dysentery, diarrhea, dizziness and headache, stroke with hemiplegia, chest and heart pain, and alcohol poisoning. However, research on the material basis and mechanism of action of its anti-inflammatory efficacy is still quite lacking. AIM OF THE STUDY The objective is to look into the inflammation-dampening characteristics of PM through in vitro studies and to accurately identify the phytochemicals within the therapeutic herb that correlate with its customary applications. MATERIALS AND METHODS A comprehensive phytochemical investigation was carried out using chromatographic and spectral techniques to explore the constituents of PM. Potential targets of the active chemical that might reduce inflammation were predicted using network pharmacology. The inhibition of inflammatory mediators in RAW264.7 cells stimulated by lipopolysaccharide (LPS) was used to measure the anti-inflammatory effects in vitro. RESULTS The research revealed that the PM chloroform extract exhibited significant anti-inflammatory action by efficiently preventing NO release in LPS-activated RAW264.7 cells. Further phytochemical analysis led to the identification and characterization of 29 natural products, including 4 new compounds (1-4). Among these, compounds 1, 4, 7, 9-18, and 20-25 exhibited significant anti-inflammatory activity, with compound 1 showing the most potent effect. Subsequent network pharmacology, along with molecular docking and molecular dynamics simulations, suggested that 1 targets several key anti-inflammatory pathways, including HSP90AA1, MAPK, mTOR, and NF-κB. In vitro validation confirmed that the mechanism of anti-inflammation of 1 involves modulation of the HSP90AA1/MAPK/mTOR/NF-κB signaling pathways. CONCLUSIONS This study not only more or less supports the traditional use of PM for its anti-inflammatory properties but also introduces novel pterocarpan-type isoflavone as promising agent for inflammation management.
Collapse
Affiliation(s)
- Siqi Tang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Kaixin Wei
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yi Xu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Rongying Xu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Wenwen Wan
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - You Sun
- Research Center, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Hao Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xiaojun Li
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
2
|
Mu Y, Yang X, Xie Y, Luo J, Wu S, Yang J, Zhao W, Chen J, Weng Y. Carbon monoxide-releasing Vehicle CO@TPyP-FeMOFs modulating macrophages phenotype in inflammatory wound healing. Nitric Oxide 2024; 149:49-59. [PMID: 38889652 DOI: 10.1016/j.niox.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
Healing of chronic wounds has been critically limited by prolonged inflammation. Carbon monoxide (CO) is a biologically active molecule with high potential based on its efficacy in modulating inflammation, promoting wound healing and tissue remodeling. Strategies to use CO as a gaseous drug to chronic wounds have emerged, but controlling the sustained release of CO at the wound site remains a major challenge. In this work, a porphyrin-Fe based metal organic frameworks, TPyP-FeMOFs was prepared. The synthesized TPyP-FeMOFs was high-temperature vacuum activated (AcTPyP-FeMOFs) and AcTPyP-FeMOFs had a relatively high Fe (II) content. CO sorption isotherms showed that AcTPyP-FeMOFs chemisorbed CO and thus CO release was sustained and prolonged. In vitro evaluation results showed that CO@TPyP-FeMOFs reduced the inflammatory level of lipopolysaccharide (LPS) activated macrophages, polarized macrophages to M2 anti-inflammatory phenotype, and promoted the proliferation of fibroblasts by altering the pathological microenvironment. In vivo study confirmed CO@TPyP-FeMOFs promoted healing in a LPS model of delayed cutaneous wound repair and reduced macrophages and neutrophils recruitment. Both in vitro and in vivo studies verified that CO@TPyP-FeMOFs acted on macrophages by modulating phenotype and inflammatory factor expression. Thus, CO release targeting macrophages and pathological microenvironment modulation presented a promising strategy for wound healing.
Collapse
Affiliation(s)
- Yixian Mu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xinlei Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yinhong Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sui Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - JinMing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Cho Y, Jeong YJ, Song KH, Chung IK, Magae J, Kwon TK, Choi YH, Kwak JY, Chang YC. 4-O-Methylascochlorin-Mediated BNIP-3 Expression Controls the Balance of Apoptosis and Autophagy in Cervical Carcinoma Cells. Int J Mol Sci 2022; 23:ijms232315138. [PMID: 36499465 PMCID: PMC9736141 DOI: 10.3390/ijms232315138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
4-O-methylascochlorin (MAC) is a 4-fourth carbon-substituted derivative of ascochlorin, a compound extracted from a phytopathogenic fungus Ascochyta viciae. MAC induces apoptosis and autophagy in various cancer cells, but the effects of MAC on apoptosis and autophagy in cervical cancer cells, as well as how the interaction between apoptosis and autophagy mediates the cellular anticancer effects are not known. Here, we investigated that MAC induced apoptotic cell death of cervical cancer cells without regulating the cell cycle and promoted autophagy by inhibiting the phosphorylation of serine-threonine kinase B (Akt), mammalian target of rapamycin (mTOR), and 70-kDa ribosomal protein S6 kinase (p70S6K). Additional investigations suggested that Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP-3), but not Hypoxia-inducible factor 1 alpha (HIF-1α), is a key regulator of MAC-induced apoptosis and autophagy. BNIP-3 siRNA suppressed MAC-induced increases in cleaved- poly (ADP-ribose) polymerase (PARP) and LC3II expression. The pan-caspase inhibitor Z-VAD-FMK suppressed MAC-induced cell death and enhanced MAC-induced autophagy. The autophagy inhibitor chloroquine (CQ) enhanced MAC-mediated cell death by increasing BNIP-3 expression. These results indicate that MAC induces apoptosis to promote cell death and stimulates autophagy to promote cell survival by increasing BNIP-3 expression. This study also showed that co-treatment of cells with MAC and CQ further enhanced the death of cervical cancer cells.
Collapse
Affiliation(s)
- Yuna Cho
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Kwon-Ho Song
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Il-Kyung Chung
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan-Si 38430, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263, Japan
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
Selvam P, Cheng CM, Dahms HU, Ponnusamy VK, Sun YY. AhR Mediated Activation of Pro-Inflammatory Response of RAW 264.7 Cells Modulate the Epithelial-Mesenchymal Transition. TOXICS 2022; 10:toxics10110642. [PMID: 36355934 PMCID: PMC9696907 DOI: 10.3390/toxics10110642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 05/31/2023]
Abstract
Pulmonary fibrosis, a chronic lung disease caused by progressive deterioration of lung tissue, is generated by several factors including genetic and environmental ones. In response to long-term exposure to environmental stimuli, aberrant tissue repair and epithelial cell-to- mesenchymal cell transition (EMT) trigger the subsequent progression of pulmonary fibrotic diseases. The Aryl hydrocarbon receptor (AhR) is a transcription factor that is activated by ligands providing lung dysfunction when activated by environmental toxins, such as polycyclic aromatic hydrocarbons. Our previous study demonstrated that AhR mediates α-SMA expression by directly binding to the α-SMA (fibroblast differentiation marker) promoter, suggesting the role of AhR in mediating fibrogenic progression. Here we follow the hypothesis that macrophage infiltrated microenvironments may trigger inflammation and subsequent fibrosis. We studied the expression of cytokines in RAW 264.7 cells by AhR activation through an ELISA assay. To investigate molecular events, migration, western blotting and zymography assays were carried out. We found that AhR agonists such as TCDD, IP and FICZ, promote the migration and induce inflammatory mediators such as TNF-α and G-CSF, MIP-1α, MIP-1β and MIP-2. These cytokines arbitrate EMT marker expression such as E-cadherin, fibronectin, and vimentin in pulmonary epithelial cells. Expression of proteins of MMPs in mouse macrophages was determined by zymography, showing the caseinolytic activity of MMP-1 and the gelatinolytic action of MMP-2 and MMP-9. Taken together, the present study showed that AhR activated macrophages create an inflammatory microenvironment which favours the fibrotic progression of pulmonary epithelial cells. Such production of inflammatory factors was accomplished by affecting the Wnt/β-catenin signalling pathway, thereby creating a microenvironment which enhances the epithelial-mesenchymal transition, leading to fibrosis of the lung.
Collapse
Affiliation(s)
- Padhmavathi Selvam
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Chih-Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University, Kaohsiung 804, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Yu-Yo Sun
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| |
Collapse
|
5
|
Mu Y, Li W, Yang X, Chen J, Weng Y. Partially Reduced MIL-100(Fe) as a CO Carrier for Sustained CO Release and Regulation of Macrophage Phenotypic Polarization. ACS Biomater Sci Eng 2022; 8:4777-4788. [PMID: 36256970 DOI: 10.1021/acsbiomaterials.2c00959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon monoxide (CO) is a bioactive molecule with high potential as it shows promising efficacy for regulating inflammation. Materials capable of storing and delivering CO are of great potential therapeutic value. Although CO-releasing molecules (CORMs) have been developed to deliver CO, the short CO duration of minutes to 2 h confines their practical use. In this study, partially reduced MIL-100(Fe) as a new CO-releasing nanoMOF was developed and used for sustained CO release and macrophage (MA) phenotypic polarization regulation. MIL-100(Fe) was synthesized and mildly annealed in vacuum for partial reduction. When the annealing temperature was lower than 250 °C, less Fe(II) present in MIL-100(Fe) and the subsequent CO adsorption and desorption profiles displayed typical features of physisorption. While it was annealed at 250 °C, it showed about 20% of Fe(III) was reduced, which resulted in chemisorption of CO due to the high coordination affinity of Fe(II) to CO. The loading amount of CO was increased, and the CO release was prolonged for about 24 h. Furthermore, the CO release from this nanoMOF could alter the lipopolysaccharide (LPS)-induced macrophage from M1 to the alternative M2 phenotype and promoted the growth of endothelial cells (ECs) by paracrine regulation of MA. It can be envisioned as a promising CO-releasing solid for biomedical application.
Collapse
Affiliation(s)
- Yixian Mu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Weijie Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xinlei Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yajun Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
6
|
Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 2022; 45:367-389. [PMID: 35713852 DOI: 10.1007/s12272-022-01393-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The Astragalus polysaccharide is an important bioactive component derived from the dry root of Astragalus membranaceus. This review aims to provide a comprehensive overview of the research progress on the immunomodulatory effect of Astragalus polysaccharide and provide valuable reference information. We review the immunomodulatory effect of Astragalus polysaccharide on central and peripheral immune organs, including bone marrow, thymus, lymph nodes, spleen, and mucosal tissues. Furthermore, the immunomodulatory effect of Astragalus polysaccharide on a variety of immune cells is summarized. Studies have shown that Astragalus polysaccharide can promote the activities of macrophages, natural killer cells, dendritic cells, T lymphocytes, B lymphocytes and microglia and induce the expression of a variety of cytokines and chemokines. The immunomodulatory effect of Astragalus polysaccharide makes it promising for the treatment of many diseases, including cancer, infection, type 1 diabetes, asthma, and autoimmune disease. Among them, the anticancer effect is the most prominent. In short, Astragalus polysaccharide is a valuable immunomodulatory medicine, but further high-quality studies are warranted to corroborate its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Chun Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiang Lai
- Department of Anorectal Surgery, Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
7
|
Abekura F, Park J, Lim H, Kim HD, Choi H, Lee MJ, Kim CH. Mycobacterium tuberculosis glycolipoprotein LprG inhibits inflammation through NF-κB signaling of ERK1/2 and JNK in LPS-induced murine macrophage cells. J Cell Biochem 2022; 123:772-781. [PMID: 35060178 DOI: 10.1002/jcb.30220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 05/14/2025]
Abstract
Mycobacterium tuberoculosis (Mtb) is a contagious pathogen that causes human tuberculosis (TB). TB is a major global health threat that causes 9.6 million illnesses and 1.5 million deaths per year. Recent studies have suggested Mtb-secreted proteins as new candidates for therapeutic drugs and vaccines. LprG is a Mtb-secreted surface glycolipoprotein encoded by lprG (Rv1411c), which forms an operon with Rv1410c, where Rv1410c encodes P55, an efflux pump membrane protein. Various in vitro and in vivo studies have reported on the target-binding activity, cell envelope biosynthesis, and mycobacterial virulence of LprG. However, the anti-inflammatory effect of LprG in macrophages has not yet been investigated. In this study, we demonstrated that LprG can suppress lipopolysaccharide (LPS)-induced inflammation in a macrophage model. LprG inhibited LPS-stimulated nitric oxide (NO) production. LprG also suppressed expression of inducible cyclooxygenase-2 (COX-2) and nitric oxide synthase (iNOS) at the transcriptional and protein levels. In addition, LprG decreased mRNA expression of the pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, LprG attenuated nuclear factor kappa-B (NF-κB) translocation and IκB phosphorylation. Moreover, LprG specifically inhibited phosphorylated kinases such as c-Jun N-terminal kinase (p-JNK) and extracellular signal-regulated kinase 1/2 (p-ERK1/2), but not p-p38. Taken together, these results suggest that LprG inhibits LPS-stimulated inflammation via downregulation of NO, COX-2, iNOS, and pro-inflammatory cytokines through the NF-κB, AP-1, and MAPK signaling pathways. The present study will aid in the development of anti-inflammatory medications using Mtb. The organism, which has long been regarded as a human pathogenic or human health-threating agent, can be utilized as a future medical resource.
Collapse
Affiliation(s)
- Fukushi Abekura
- Department of Biological Sciences, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Junyoung Park
- Department of Biological Sciences, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Hakseong Lim
- Department of Biological Sciences, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Hee-Do Kim
- Department of Biological Sciences, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Hyunju Choi
- Department of Biological Sciences, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Moon-Jo Lee
- Department of Herb Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Sciences, SungKyunKwan University, Suwon, Kyunggi-Do, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
8
|
Immunomodulatory activity of egg yolk protein hydrolysates prepared by novel two-step hydrolysis: A study of mechanism and stability after in vitro digestion model. Poult Sci 2022; 101:101802. [PMID: 35325833 PMCID: PMC8938909 DOI: 10.1016/j.psj.2022.101802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/20/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to determine the immunomodulatory activity of 2-step egg yolk protein hydrolysates. A two-step hydrolysate of egg yolk protein was prepared using 2 enzymes sequentially, pancreatin and neutrase (EYPH-PN). Our results illustrated that EYPH-PN increased the expression of inducible nitric oxide synthase (iNOS) mRNA in macrophages, resulting in increased nitric oxide (NO) production. EYPH-PN could also enhance the production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 at both the mRNA and protein levels in macrophages. In addition, treatment with EYPH-PN increased the phagocytic activity of macrophages. According to the evaluation with specific inhibitors, both p38 and JNK cell signaling pathways were involved in the activation of macrophages induced by EYPH-PN. As the TLR-2 receptor of macrophages was blocked, the NO production induced by EYPH-PN was decreased. These results suggest that EYPH-PN activates RAW 264.7 macrophages via the TLR-2/p38/JNK pathway to increase the production of NO, TNF-α, and IL-6, and increases phagocytic activity. Furthermore, the immunomodulatory activity of EYPH-PN was maintained even after applying the in vitro digestion model. Taken together, EYPH-PN could be used as a functional food ingredient with excellent immunomodulatory activity in the food industry. Therefore, this study suggests a new alternative method to effectively utilize egg yolk protein, a by-product of the poultry industry.
Collapse
|
9
|
Zhong R, Miao L, Zhang H, Tan L, Zhao Y, Tu Y, Angel Prieto M, Simal-Gandara J, Chen L, He C, Cao H. Anti-inflammatory activity of flavonols via inhibiting MAPK and NF-κB signaling pathways in RAW264.7 macrophages. Curr Res Food Sci 2022; 5:1176-1184. [PMID: 35941847 PMCID: PMC9356238 DOI: 10.1016/j.crfs.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Fisetin (Fis), quercetin (Que), and myricetin (Myr) are flavonols with similar structure but different number of hydroxyl groups. The present research focused on the anti-inflammatory effect of these three flavonols in lipopolysaccharide-stimulated RAW264.7 cells. The number and site of hydroxyl group in flavonols obviously affected their anti-inflammation activity. These flavonols suppressed the overproduction of nitric oxide. Fis showed the best activity with an inhibition rate of 52% at 20 μM. Moreover, the flavonols reduced the levels of ROS, TNF-α, and IL-6. The mechanistic study showed that they inhibited the activation of NF-κB and MAPK pathways by suppressing the phosphorylation of IκBα, p65, JNK, ERK, p38, MEK, and reducing the nuclear translocation of NF-κB p65. In addition, the metabolism of the flavonols was examined. The results indicated that Fis was both methylated and glucuronidated. Que and Myr were mainly transformed into methylated products. This study highlights the anti-inflammatory activity of flavonols, particularly Fis, which has the potential for the prevention or treatment of inflammation as an adjuvant medicine or food additive. Flavonols suppressed the production of NO and ROS. Flavonols partially blocked the activation of NF-κB and MAPK pathways. Fisetin is an excellent anti-inflammatory reagent. The number of hydroxyl group in flavonols obviously affects their anti-inflammation activity.
Collapse
Affiliation(s)
- Ruting Zhong
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Lihua Tan
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Yuxin Zhao
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Yanbei Tu
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Miguel Angel Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, China
| | - Chengwei He
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
- Corresponding author. Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China.
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
- Corresponding author. College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, China.
| |
Collapse
|
10
|
Cao F, Chen Y, Wang X, Wu LM, Tian M, Li HY, Si HB, Shen B. Therapeutic effect and potential mechanisms of intra-articular injections of miR-140-5p on early-stage osteoarthritis in rats. Int Immunopharmacol 2021; 96:107786. [PMID: 34162150 DOI: 10.1016/j.intimp.2021.107786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRs) receive extensive attention in osteoarthritis (OA) pathogenesis in recent years, and our previous study confirmed that an intra-articular injection (IAJ) of miR-140-5p alleviates early-stage OA (EOA) progression in rats. This study aims to investigate the therapeutic effect and potential mechanisms of single IAJ (SIAJ) of miR-140-5p on different stage OA and multiple IAJs (MIAJ) of miR-140-5p on EOA. Firstly, the OA model was surgically induced in rats, nine were treated with IAJ of Cy5-miR-140-5p at one week after surgery, and fluorescence distribution was analyzed at different times. Then, 72 rats were treated with SIAJ of miR-140-5p at different stages or MIAJ of miR-140-5p at one week after surgery, and OA progression was evaluated macroscopically and histologically at different times. Finally, the downstream targets and underlying molecular mechanisms of miR-140-5p were predicted by bioinformatics and partially validated. As a result, the intra-articularly injected miR-140-5p entered cartilage and could be taken up by chondrocytes rapidly. IAJ(s) of miR-140-5p improved the behavioral scores, chondrocyte number, cartilage thickness, and pathological scores to varying degrees. Specifically, the earlier a SIAJ of miR-140-5p was administrated, the better the therapeutic effect; meanwhile, MIAJ of miR-140-5p exhibited a better therapeutic effect than SIAJ on EOA. Eighty-four potential target genes and mechanisms of rno-miR-140-5p were predicted, and the effect of miR-140-5p on the potential target genes VEGFA and JAG1 was experimentally validated. Collectively, IAJs of miR-140-5p effectively alleviate EOA progression by modulating multiple biological processes and pathways in rats, representing a promising therapeutic for EOA.
Collapse
Affiliation(s)
- Fei Cao
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, China
| | - Yang Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing Wang
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li-Min Wu
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei Tian
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Han-Yu Li
- Clinical Medicine of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hai-Bo Si
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bin Shen
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|