1
|
He MZ, Zhang HT, Yang Y, Fang Y, Zhang M, Deng SQ, Sun X. Coinfection of COVID-19 and malaria: clinical profiles, interactions, and strategies for effective control. Malar J 2025; 24:99. [PMID: 40133914 PMCID: PMC11938571 DOI: 10.1186/s12936-025-05315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Since SARS-CoV-2 has caused unprecedented changes in the epidemiology of other infectious diseases, investigations on coinfection between SARS-CoV-2 and one of the famous vector-borne diseases, malaria, are crucial for disease control, especially in malaria-endemic areas. The clinical profiles, possible mechanisms for interactions, and representative control measures of COVID-19 and malaria coinfections have recently garnered public attention. The overlap in epidemiology, infection incubation, and clinical symptoms between COVID-19 and malaria coinfections has been thoroughly discussed to provide a detailed diagnostic procedure for coinfections, thereby guiding appropriate clinical interventions. Immunological and genetic evidence has shown that previous malaria exposure may protect the body from the poor prognosis of COVID-19. ACE2 downregulation and TLR-induced pathways play a role in this protective effect, as do CD8 + and CD4 + T-cell activation and coinhibitory receptor upregulation, which help maintain a balance of immune reactions. Finally, multiple control measures for coinfections were discussed, and malaria control efforts were enriched in the context of COVID-19. These efforts included (1) developing vaccinations; (2) evaluating the efficacy of anti-malarial drugs in the SARS-CoV-2 treatment; (3) exploring recent advances in natural products that are potentially useful for coinfection treatment; (4) researching and implementing bioinsecticides for malaria control, such as gene-driven mosquitoes, fungi, and bacterial symbionts; and (5) improving national electronic disease surveillance platforms in malaria-endemic regions. At last, the above findings summarized valuable lessons about malaria and COVID-19 control and expedite further investigations on coinfections with complex clinical presentations.
Collapse
Affiliation(s)
- Mu-Zi He
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hai-Ting Zhang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yi Yang
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
| | - Yi Fang
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
| | - Mao Zhang
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Xun Sun
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
2
|
Khazir J, Ahmed S, Thakur RK, Hussain M, Gandhi SG, Babbar S, Mir SA, Shafi N, Tonfack LB, Rajpal VR, Maqbool T, Mir BA, Peer LA. Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19. Curr Top Med Chem 2024; 24:614-633. [PMID: 38477206 DOI: 10.2174/0115680266276749240206101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.
Collapse
Affiliation(s)
- Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, 201313, India
| | - Manzoor Hussain
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Sadhana Babbar
- Department of Botany, Swami Shradhanand College, University of Delhi, Delhi, 110036, India
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Nusrat Shafi
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Libert Brice Tonfack
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, University of Kashmir, Srinagar, 190006, India
| | - Bilal Ahmad Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
3
|
da Silva NS, de Araújo NK, Dos Santos KA, de Souza KSC, de Araújo JNG, Cruz MS, Parra EJ, Silbiger VN, Luchessi AD. Post-Covid condition and clinic characteristics associated with SARS-CoV-2 infection: a 2-year follow-up to Brazilian cases. Sci Rep 2023; 13:13973. [PMID: 37633999 PMCID: PMC10460396 DOI: 10.1038/s41598-023-40586-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023] Open
Abstract
Until January 2023, Brazil recorded 37 million COVID-19 cases despite the decrease in mortality due to mass vaccination efforts against COVID-19. The infection continues to challenge researchers and health professionals with the persistent symptoms and onset manifestations after the acute phase of the disease, namely Post-Covid Condition (PCC). Being one of the countries with the highest infection rate, Brazil must prepare for a growing number of patients with chronic health consequences of COVID-19. Longitudinal studies that follow patients over extended periods are crucial in understanding the long-term impacts of COVID-19, including potential health consequences and the effects on quality of life. We describe the clinical profile of a cohort of COVID-19 patients infected during the first year of the pandemic in Brazil and a follow-up after two years to investigate the health impacts of SARS-CoV-2 infection. The first wave of SARS-CoV-2 infection in Brazil featured extensive drug misuse, notably the ineffective COVID kit comprised of ivermectin, antimalarials and azithromycin, and elevated in-hospital mortality. In the second phase of the study, Post-Covid Condition was reported by symptomatic COVID-19 subjects across different severity levels two years after infection. Long haulers are more likely to be women, previously hospitalized, and reported a range of symptoms from muscle pain to cognitive deficit. Our longitudinal study is essential to inform public health authorities to develop strategies and policies to control the spread of the virus and mitigate its impacts on society.
Collapse
Affiliation(s)
- Nayara Sousa da Silva
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Nathália Kelly de Araújo
- Graduate Program of Health and Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biological Sciences, Federal Institute of Rondônia, Guajará-Mirim, Brazil
| | - Katiusse Alves Dos Santos
- Graduate Program of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Jéssica Nayara Góes de Araújo
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marina Sampaio Cruz
- Graduate Program of Health and Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Vivian Nogueira Silbiger
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil.
- Graduate Program of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil.
- Department of Clinical and Toxicology Analysis, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, 384, Natal, RN, 59012-570, Brazil.
| | - André Ducati Luchessi
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
- Graduate Program of Health and Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Graduate Program of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Clinical and Toxicology Analysis, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, 384, Natal, RN, 59012-570, Brazil
| |
Collapse
|
4
|
Cetinkaya A, Kaya SI, Ozkan SA. A Comprehensive Overview of Sensors Applications for the Diagnosis of SARS-CoV-2 and of Drugs Used in its Treatment. Crit Rev Anal Chem 2023; 54:2517-2537. [PMID: 36877165 DOI: 10.1080/10408347.2023.2186693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During the COVID-19 process, determination-based analytical chemistry studies have had a major place at every stage. Many analytical techniques have been used in both diagnostic studies and drug analysis. Among these, electrochemical sensors are frequently preferred due to their high sensitivity, selectivity, short analysis time, reliability, ease of sample preparation, and low use of organic solvents. For the determination of drugs used in the SARS-CoV-2, such as favipiravir, molnupiravir, ribavirin, etc., electrochemical (nano)sensors are widely used in both pharmaceutical and biological samples. Diagnosis is the most critical step in the management of the disease, and electrochemical sensor tools are widely preferred for this purpose. Diagnostic electrochemical sensor tools can be biosensor-, nano biosensor-, or MIP-based sensors and utilize a wide variety of analytes such as viral proteins, viral RNA, antibodies, etc. This review overviews the sensor applications in SARS-CoV-2 in terms of diagnosis and determination of drugs by evaluating the most recent studies in the literature. In this way, it is aimed to compile the developments so far by shedding light on the most recent studies and giving ideas to researchers for future studies.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
- Graduate School of Health Sciences, Ankara University, Ankara, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
| |
Collapse
|
5
|
Mahdavi R, Talebpour Z. Analytical approaches for determination of COVID-19 candidate drugs in human biological matrices. Trends Analyt Chem 2023; 160:116964. [PMID: 36816451 PMCID: PMC9922681 DOI: 10.1016/j.trac.2023.116964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, the use of antiviral and other available drugs has been considered to combat or reduce the clinical symptoms of patients. In this regard, it would be necessary to choose sensitive and selective analytical techniques for pharmacokinetic and pharmacodynamic studies, monitoring of drug concentration in biological fluids, and determination of the most appropriate dose to achieve the desired effect on the disease. In the present study, the analytical techniques based on spectroscopy and chromatography with different detectors for diagnosis and determination of candidate drugs in the treatment of COVID-19 in human biological fluids are reviewed during the period 2015-2022. Moreover, various sample preparation and extraction techniques, are being used for this purpose, such as protein precipitation (PP), solid-phase extraction (SPE), liquid-liquid extraction (LLE), and QuEChERS (quick, easy, cheap, effective, rugged, and safe) are investigated.
Collapse
Affiliation(s)
- Rabee Mahdavi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran,Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran,Corresponding author. Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
6
|
A Clinical Insight on New Discovered Molecules and Repurposed Drugs for the Treatment of COVID-19. Vaccines (Basel) 2023; 11:vaccines11020332. [PMID: 36851211 PMCID: PMC9967525 DOI: 10.3390/vaccines11020332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began churning out incredulous terror in December 2019. Within several months from its first detection in Wuhan, SARS-CoV-2 spread to the rest of the world through droplet infection, making it a pandemic situation and a healthcare emergency across the globe. The available treatment of COVID-19 was only symptomatic as the disease was new and no approved drug or vaccine was available. Another challenge with COVID-19 was the continuous mutation of the SARS-CoV-2 virus. Some repurposed drugs, such as hydroxychloroquine, chloroquine, and remdesivir, received emergency use authorization in various countries, but their clinical use is compromised with either severe and fatal adverse effects or nonavailability of sufficient clinical data. Molnupiravir was the first molecule approved for the treatment of COVID-19, followed by Paxlovid™, monoclonal antibodies (MAbs), and others. New molecules have variable therapeutic efficacy against different variants or strains of SARS-CoV-2, which require further investigations. The aim of this review is to provide in-depth information on new molecules and repurposed drugs with emphasis on their general description, mechanism of action (MOA), correlates of protection, dose and dosage form, route of administration, clinical trials, regulatory approval, and marketing authorizations.
Collapse
|
7
|
Binneboessel S, Bruno RR, Wernly B, Masyuk M, Flaatten H, Fjølner J, Wolff G, Kelm M, Beil M, Sviri S, Szczeklik W, Leaver S, De Lange DW, Guidet B, Jung C. Cytokine absorption in critically ill old COVID-19 patients with renal failure: A retrospective analysis of 503 intensive care unit patients. Clin Hemorheol Microcirc 2023; 85:105-113. [PMID: 36278342 DOI: 10.3233/ch-221579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 is associated with cytokine release in critical disease states. Thus, cytokine absorption has been proposed as a therapeutic option. This study investigated the influence of cytokine absorption on mortality in old critical patients with COVID-19 and renal failure admitted to intensive care units (ICU). METHODS This retrospective analysis of a prospective international observation study (the COVIP study) analysed ICU patients≥70 years with COVID-19. Data on Sequential Organ Failure Assessment (SOFA) score, clinical frailty scale (CFS), ICU therapy details including renal replacement therapy (RRT) with/without cytokine absorption were collected. The cytokine absorption group was compared to patients receiving RRT without cytokine absorptionRESULTS:Among 3927 patients, 503 received RRT; among them 47 patients were treated with cytokine absorption. Mortality rates were high in both groups with increased rates in the cytokine group for ICU mortality and 30-day mortality, but not for 3-month mortality. Logistic regression analysis indicated that SOFA-score, but not cytokine absorption was associated with mortality. CONCLUSIONS Critical COVID-19 patients with renal failure treated with cytokine absorption showed higher short term mortality rates when compared to patients with renal replacement therapy alone. Mortality is associated with disease severity, but not cytokine absorption in a multivariate analysis.
Collapse
Affiliation(s)
- Stephan Binneboessel
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Raphael Romano Bruno
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine, and Intensive Care Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Maryna Masyuk
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Hans Flaatten
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Anaestesia and Intensive Care, Haukeland University Hospital, Bergen, Norway
| | - Jesper Fjølner
- Department of Anaesthesia and Intensive Care, Viborg Regional Hospital, Viborg, Denmark
| | - Georg Wolff
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Michael Beil
- Department of Medical Intensive Care, Hadassah Medical Center and Faculty of Medicine, Hebrew University ofJerusalem, Jerusalem, Israel
| | - Sigal Sviri
- Department of Medical Intensive Care, Hadassah Medical Center and Faculty of Medicine, Hebrew University ofJerusalem, Jerusalem, Israel
| | - Wojciech Szczeklik
- Center for Intensive Care and Perioperative Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Susannah Leaver
- General Intensive Care, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Dylan W De Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Bertrand Guidet
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Equipe: Epidémiologie Hospitalière Qualité et Organisation des Soins, Paris, France
- Hôpitaux de Paris, Hôpital Saint-Antoine, Service de Réanimation Médicale, Paris, France
| | - Christian Jung
- Department of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
8
|
Alavi M, Mozafari MR, Ghaemi S, Ashengroph M, Hasanzadeh Davarani F, Mohammadabadi M. Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study. Biomedicines 2022; 10:biomedicines10123074. [PMID: 36551830 PMCID: PMC9775955 DOI: 10.3390/biomedicines10123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 from the family Coronaviridae is the cause of the outbreak of severe pneumonia, known as coronavirus disease 2019 (COVID-19), which was first recognized in 2019. Various potential antiviral drugs have been presented to hinder SARS-CoV-2 or treat COVID-19 disease. Side effects of these drugs are among the main complicated issues for patients. Natural compounds, specifically primary and secondary herbal metabolites, may be considered as alternative options to provide therapeutic activity and reduce cytotoxicity. Phenolic materials such as epigallocatechin gallate (EGCG, polyphenol) and quercetin have shown antibacterial, antifungal, antiviral, anticancer, and anti-inflammatory effects in vitro and in vivo. Therefore, in this study, molecular docking was applied to measure the docking property of epigallocatechin gallate and quercetin towards the transmembrane spike (S) glycoprotein of SARS-CoV-2. Results of the present study showed Vina scores of -9.9 and -8.3 obtained for EGCG and quercetin by CB-Dock. In the case of EGCG, four hydrogen bonds of OG1, OD2, O3, and O13 atoms interacted with the Threonine (THR778) and Aspartic acid (ASP867) amino acids of the spike glycoprotein (6VSB). According to these results, epigallocatechin gallate and quercetin can be considered potent therapeutic compounds for addressing viral diseases.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Kurdistan 6617715175, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
- Correspondence: (M.A.); (M.R.M.)
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
- Correspondence: (M.A.); (M.R.M.)
| | - Saba Ghaemi
- Research Committee of Medical School, Alborz University of Medical Science, Karaj 3149779453, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Kurdistan 6617715175, Iran
| | | | - Mohammadreza Mohammadabadi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| |
Collapse
|
9
|
Safety and Efficacy of Interferon β-1b in the Treatment of Severe COVID-19 Patients: An Open-Label Randomized Controlled Trial. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2022. [DOI: 10.5812/archcid-120066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: About a year after the start of the coronavirus disease 2019 (COVID-19) pandemic, the results of the studies conducted to investigate the effectiveness of interferon (INF) compounds in this disease were contradictory. Objectives: This study was carried out to examine the safety and efficacy of a treatment protocol containing INF-β-1b, hydroxychloroquine, and Kaletra (lopinavir/ritonavir) in patients with severe COVID-19. Methods: In this open-label, randomized controlled trial, severe cases of COVID-19 were included. Patients were eligible if they had epidemiological and radiological evidence compatible with COVID-19 or a positive polymerase chain reaction result and their disease was severe. They were randomly allocated into a control group that received the standard regimen (hydroxychloroquine and Kaletra) and an intervention group that received INF-β-1b treatment and the standard treatment regimen. Then, the two groups were compared in terms of in-hospital mortality, intubation, length of hospital stay, oxygen saturation, and lactate dehydrogenase before and after the intervention. Results: A total of 91 cases of severe COVID-19 were enrolled for analysis [intervention (n = 47) and control (n = 44)]. The length of hospital stay in the intervention group was significantly longer than in the control group (13.21 ± 6.88 vs. 10.52 ± 5.77 days; P = 0.047). The mortality rate did not significantly differ between the intervention and control groups (19.15% and 13.64%, respectively; P = 0.509). The intubation rate did not significantly differ between the intervention and control groups (12.76% and 11.36%, respectively; P = 0.838). Conclusions: The use of INF-β-1b-containing treatment regimens does not reduce mortality and intubation rates among patients with severe COVID-19. Furthermore, it might even increase the severity of the disease and the length of hospital stay for some patients; therefore, it is not recommended to use INF-β-1b in severe cases of COVID-19.
Collapse
|
10
|
Kolben Y, Finkelshtein E, Naftali E, Kenig A, Kessler A, Cardoso F, Lisovoder N, Schwartz A, Elbirt D, Maayan S, Ilan Y. Codivir suppresses SARS-Cov-2 viral replication and stabilizes clinical outcome: In vitro and Phase I clinical trial results. Discoveries (Craiova) 2022; 10:e158. [PMID: 37457644 PMCID: PMC10348448 DOI: 10.15190/d.2022.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Treatment of severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) remains a significant challenge in the face of increased worldwide morbidity and mortality. The acute illness caused by SARS-CoV-2 is initiated by a viral phase, followed by an inflammatory phase. Numerous anti-inflammatory and anti-viral therapies, with a relatively minor clinical effect, have been applied. Developing a safe and efficient direct anti-viral treatment is essential as it can block disease progression before significant complications ensue and potentially prevent transmission. AIM The present phase 1 study aimed to determine the safety of Codivir, a newly developed anti-viral agent, and to preliminarily assess its anti-viral activity in patients infected by COVID-19. METHODS In vitro studies were conducted to determine the direct anti-viral effect of Codivir using an immunofluorescence-based assay and to assess its cytotoxic effect by tetrazolium assay (MTT). In a phase I clinical trial, Codivir was administered for ten days in 12 patients who were followed for its safety. Patients were followed for clinical manifestations during administration. Sequential nasal viral PCR titers (Cycle Threshold, CT) were determined preceding and during treatment. RESULTS In vitro, Codivir showed activity against SARS-CoV-2 with 90% viral replication suppression and minimal cytotoxicity. The anti-viral activity was demonstrated at the early stages of infection, post-entry of the virus in the cell. Codivir was safe in all 12 patients in phase I clinical trial and significantly suppressed viral replication in 5/7 fully assessed patients, with an anti-viral effect noted as early as three days. SUMMARY The present study's data support the safety of Codivir administration in humans and suggest its significant anti-COVID-19 effect. These results support the testing of the drug in more extensive controlled trials in patients with SARS-CoV-2.
Collapse
Affiliation(s)
- Yotam Kolben
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| | | | | | - Ariel Kenig
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| | - Asa Kessler
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| | | | | | - Asaf Schwartz
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| | - Daniel Elbirt
- Clinical Immunology, Allergy and AIDS Center Kaplan Medical Center, Affiliated with Hadassah-Hebrew University Medical School Jerusalem, Rehovot, Israel
| | - Shlomo Maayan
- Division of infectious diseases, Barzilai University Medical Center, Ashkelon, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| |
Collapse
|
11
|
Yamada S, Noda T, Okabe K, Yanagida S, Nishida M, Kanda Y. SARS-CoV-2 induces barrier damage and inflammatory responses in the human iPSC-derived intestinal epithelium. J Pharmacol Sci 2022; 149:139-146. [PMID: 35641026 PMCID: PMC9060709 DOI: 10.1016/j.jphs.2022.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/25/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread and led to global health crises. COVID-19 causes well-known respiratory failure and gastrointestinal symptoms, such as diarrhea, nausea, and vomiting. Thus, human gastrointestinal cell models are urgently needed for COVID-19 research; however, it is difficult to obtain primary human intestinal cells. In this study, we examined whether human induced pluripotent stem cell (iPSC)-derived small intestinal epithelial cells (iPSC-SIECs) could be used as a SARS-CoV-2 infection model. We observed that iPSC-SIECs, such as absorptive and Paneth cells, were infected with SARS-CoV-2, and remdesivir treatment decreased intracellular SARS-CoV-2 replication in iPSC-SIECs. SARS-CoV-2 infection decreased expression levels of tight junction markers, ZO-3 and CLDN1, and transepithelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics. In addition, SARS-CoV-2 infection increased expression levels of proinflammatory genes, which are elevated in patients with COVID-19. These findings suggest iPSC-SIECs as a useful in vitro model for elucidating COVID-19 pathology and drug development.
Collapse
Affiliation(s)
- Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Takamasa Noda
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Brain Bioregulatory Science, The Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Okabe
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan,National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan,Corresponding author. Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan. Fax: +81 44 270 1065
| |
Collapse
|
12
|
Zendehdel A, Bidkhori M, Ansari M, Jamalimoghaddamsiyahkali S, Asoodeh A. Efficacy of oseltamivir in the treatment of patients infected with Covid-19. Ann Med Surg (Lond) 2022; 77:103679. [PMID: 35531426 PMCID: PMC9054703 DOI: 10.1016/j.amsu.2022.103679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Objective The recent unprecedented pandemic caused by Sars-Cov-2 (the new coronavirus 2019), is threatening public health around the world. Although several studies have been performed, there is no identified treatment for Covid-19 patients. Here we assessed the efficacy of oseltamivir in combination therapy, by comparing two different therapeutic regimens in hospitalized patients, in improving outcomes and find better treatment for Covid-19 patients. Methods This is a single-center retrospective cohort study of 285 confirmed Covid-19 in patients at (XXX). Depending on the date of admission, the patients were divided into two groups; group 1 (oseltamivir group) from February 20, 2020 to March 15, 2020 received Oseltamivir with routine regimen and group 2 (control group) from March 20, 2020 to April 20, 2020 received routine regimen alone that included Azithromycin 500 mg/day and Hydroxychloroquine 200 mg/12 h. Endpoints including duration of hospitalization, requirement to admission to intensive care unit (ICU) and mechanical ventilation, outcome and mortality rate. Results A total of 285 patients were enrolled in the two months, 120 patients for group 1 and 165 for group 2. The median time from admission to discharge was significantly shorter in the oseltamivir group compared to the control group (4.9 vs 6.6 days, p < 0.001). Additionally, the mortality rate was found to be lower in the oseltamivir group than in the control group (1.7% vs 6,7%, p = 0.06) which was statistically significant by multivariate analysis (p = 0.03). The incidence of admission to the ICU (6.7% vs 11.5%, p = 0.1) and mechanical ventilation (2.5% vs 4.8%, p = 0.3) were also decreased in the oseltamivir group, but was not statistically significant. Conclusions This study showed that administration of oseltamivir was associated with shorter length of hospital stay and earlier recovery and discharge of hospital, and a lower mortality rate. The recent unprecedented pandemic caused by Sars-Cov-2, is threatening public health over the world. Although several studies have been performed there is no identified treatment for Covid-19 patients. This study showed that administration of oseltamivir was associated with shorter length of hospital stay.
Collapse
Affiliation(s)
- Abolfazl Zendehdel
- Geriatrics Department, Associate Professor of Internal Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Family Medicine Department, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bidkhori
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ansari
- Radiology Department, Amir al-Momenin Hospital, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Asoodeh
- Family Medicine Department, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding author. Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Deng W, Yang C, Yang S, Chen H, Qiu Z, Chen J. Evaluation of favipiravir in the treatment of COVID-19 based on the real-world. Expert Rev Anti Infect Ther 2022; 20:555-565. [PMID: 34846960 PMCID: PMC8787837 DOI: 10.1080/14787210.2022.2012155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The role of favipiravir (FVP) as a COVID-19 treatment is recognized but not fully elucidated. We aimed to evaluate whether FVP has definite clinical efficacy and safety in the treatment of COVID-19. METHODS International and Chinese databases were searched for randomized controlled clinical trials evaluating FVP for the treatment of COVID-19. A meta-analysis was performed and published literature was synthesized to evaluate the corresponding therapeutic effects. RESULTS We included 13 studies (1430 patients in total). Meta-analysis showed that patients with mild-to-moderate disease treated with FVP had a significantly higher viral clearance rate than those in the control group 10 and 14 days after initiation of treatment [RR: 1.13 (95% CI: 1.00, 1.28), P = 0.04; I2 = 39% for day 10 and RR: 1.16 (95% CI: 1.04, 1.30), P = 0.008; I2 = 38% for day 14] and a significantly shorter hospital stay [MD: -1.52 (95% CI: -2.82, -0.23), P = 0.02; I2 = 0%]. CONCLUSIONS FVP significantly promotes viral clearance and reduces the hospitalization duration in mild-to-moderate COVID-19 patients, which can reduce the risk of severe disease outcomes in patients. However, more importantly, the results showed no benefit of FVP in severe patients, and caution should be taken regarding the treatment options of FVP in severe patients.
Collapse
Affiliation(s)
- Weishang Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Changyuan Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Sensen Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Haitao Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Zhikun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jisheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- CONTACT Jisheng Chen The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou City, Guangdong Province510080, China
| |
Collapse
|
14
|
Negru PA, Radu AF, Vesa CM, Behl T, Abdel-Daim MM, Nechifor AC, Endres L, Stoicescu M, Pasca B, Tit DM, Bungau SG. Therapeutic dilemmas in addressing SARS-CoV-2 infection: Favipiravir versus Remdesivir. Biomed Pharmacother 2022; 147:112700. [PMID: 35131656 PMCID: PMC8813547 DOI: 10.1016/j.biopha.2022.112700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents an unmet clinical need, due to a high mortality rate, rapid mutation rate in the virus, increased chances of reinfection, lack of effectiveness of repurposed drugs and economic damage. COVID-19 pandemic has created an urgent need for effective molecules. Clinically proven efficacy and safety profiles have made favipiravir (FVP) and remdesivir (RDV) promising therapeutic options for use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Even though both are prodrug molecules with an antiviral role based on a similar mechanism of action, differences in pharmacological, pharmacokinetic and pharmacotoxicological mechanisms have been identified. The present study aims to provide a comprehensive comparative assessment of FVP and RDV against SARS-CoV-2 infections, by centralizing medical data provided by significant literature and authorized clinical trials, focusing on the importance of a better understanding of the interactions between drug molecules and infectious agents in order to improve the global management of COVID-19 patients and to reduce the risk of antiviral resistance.
Collapse
Affiliation(s)
- Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jedah 21442, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania.
| | - Laura Endres
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Bianca Pasca
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
15
|
Kanbeş Dindar Ç, Bozal‐Palabiyik B, Uslu B. Development of a Diamond Nanoparticles‐based Nanosensor for Detection and Determination of Antiviral Drug Favipiravir. ELECTROANAL 2022. [DOI: 10.1002/elan.202100571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Çiğdem Kanbeş Dindar
- Ankara University Faculty of Pharmacy Department of Analytical Chemistry 06560 Ankara Turkey
| | - Burcin Bozal‐Palabiyik
- Ankara University Faculty of Pharmacy Department of Analytical Chemistry 06560 Ankara Turkey
| | - Bengi Uslu
- Ankara University Faculty of Pharmacy Department of Analytical Chemistry 06560 Ankara Turkey
| |
Collapse
|
16
|
Er OF, Kivrak H, Ozok O, Çelik S, Kivrak A. A novel electrochemical sensor for monitoring ovarian cancer tumor protein CA 125 on benzothiophene derivative based electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Ferren M, Favède V, Decimo D, Iampietro M, Lieberman NAP, Weickert JL, Pelissier R, Mazelier M, Terrier O, Moscona A, Porotto M, Greninger AL, Messaddeq N, Horvat B, Mathieu C. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nat Commun 2021; 12:5809. [PMID: 34608167 PMCID: PMC8490365 DOI: 10.1038/s41467-021-26096-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 has caused a global pandemic of COVID-19 since its emergence in December 2019. The infection causes a severe acute respiratory syndrome and may also spread to central nervous system leading to neurological sequelae. We have developed and characterized two new organotypic cultures from hamster brainstem and lung tissues that offer a unique opportunity to study the early steps of viral infection and screening antivirals. These models are not dedicated to investigate how the virus reaches the brain. However, they allow validating the early tropism of the virus in the lungs and demonstrating that SARS-CoV-2 could infect the brainstem and the cerebellum, mainly by targeting granular neurons. Viral infection induces specific interferon and innate immune responses with patterns specific to each organ, along with cell death by apoptosis, necroptosis, and pyroptosis. Overall, our data illustrate the potential of rapid modeling of complex tissue-level interactions during infection by a newly emerged virus.
Collapse
Affiliation(s)
- Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, LYON, France.
| | - Valérie Favède
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, LYON, France
- Département du Rhône, Lyon, France
| | - Didier Decimo
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, LYON, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, LYON, France
| | - Nicole A P Lieberman
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Jean-Luc Weickert
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Rodolphe Pelissier
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, LYON, France
| | - Magalie Mazelier
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, LYON, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, LYON, France
| | - Anne Moscona
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, USA
- Department of Pediatrics, Columbia University Medical Center, New York, USA
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, USA
| | - Matteo Porotto
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, USA
- Department of Pediatrics, Columbia University Medical Center, New York, USA
- Department of Experimental Medicine, University of Study of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Nadia Messaddeq
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, LYON, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, LYON, France.
| |
Collapse
|
18
|
Liu F, Liu H, Yu WY, Liu Z, Zhang X, Wang Y, Miao LB, Li ZY, Huang JS, Bao JF. The Associations of Lymphocyte Ratio and Neutrophil Ratio on Liver Dysfunction in COVID-19 Patients. Front Immunol 2021; 12:717461. [PMID: 34552588 PMCID: PMC8450365 DOI: 10.3389/fimmu.2021.717461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
Data on the impact of lymphocytes and neutrophils on the incidence of liver dysfunction in COVID-19 patients are limited. This study aimed to investigate the lateral and longitudinal associations of lymphocyte ratio (LR) and neutrophil ratio (NR) on liver dysfunction in COVID-19 patients. We tested 1,409 blood samples from 245 COVID-19 patients in China between January 2020 and June 2021. The lateral U-shaped relationships, determined by smooth curve fitting and the piecewise-linear mixed-effect model, were observed between LR, NR, and AST and the incidence of AST-linked liver dysfunction, with the threshold cutoffs of 26.1 and 62.0, respectively. Over the 1,409 tests, the LR ≤ 26.1 and NR ≥ 62.0 related to the occurrence of mild liver dysfunction (HR: 1.36; 95% CI: 1.01, 1.82), moderate liver dysfunction (HR: 1.37; 95% CI: 1.01, 1.85), and severe liver dysfunction (HR: 1.72; 95% CI: 1.02, 2.90). For the patients with preexisting AST ≥ 35 U/L, the baseline LR ≤ 26.1 and NR ≥ 62.0 (b.LLCHN) groups had a fully adjusted 8.85-, 7.88-, and 5.97-fold increased risk of mild and moderate liver dysfunction after being hospitalized of 3, 6, and 9 days compared to the baseline LR > 26.1 and NR < 62.0 (b.normal) groups. Severe liver dysfunction only presents significant differences after being adjusted for age, sex, and BMI. Consistently, Kaplan-Meier analyses showed that b.LLCHN reflects a better predictive value for different subsequent magnitude liver dysfunctions after admission of 3 and 6 days. To improve liver function in patients with preexisting AST ≥35 U/L, future management strategies should pay more attention to baseline LR ≤ 26.1 and NR ≥ 62.0 patients.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Liu
- Department of Pathology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen-Yan Yu
- Medical Laboratory, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhan Liu
- Department of Anesthesiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Zhang
- Medical Laboratory, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang-Bin Miao
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhao-Yi Li
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin-Song Huang
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Feng Bao
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Hashemian SM, Khoundabi B, Velayati AA. Comment on: Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia. Int Immunopharmacol 2021; 102:107693. [PMID: 34217670 PMCID: PMC8162908 DOI: 10.1016/j.intimp.2021.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/17/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Seyed MohammadReza Hashemian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Batoul Khoundabi
- Iran Helal Institute of Applied Science and Technology, Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
| | - Ali Akbar Velayati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Allahverdiyeva S, Yunusoğlu O, Yardım Y, Şentürk Z. First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode. Anal Chim Acta 2021; 1159:338418. [PMID: 33867032 PMCID: PMC7971419 DOI: 10.1016/j.aca.2021.338418] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Favipiravir, a promising antiviral agent, is undergoing clinical trials for the potential treatment of the novel coronavirus disease 2019 (COVID-19). This is the first report for the electrochemical activity of favipiravir and its electroanalytical sensing. For this purpose, the effect of cationic surfactant, CTAB was demonstrated on the enhanced accumulation of favipiravir at the surface of cathodically pretreated boron-doped diamond (CPT-BDD) electrode. At first, the electrochemical properties of favipiravir were investigated in the surfactant-free solutions by the means of cyclic voltammetry. The compound presented a single oxidation step which is irreversible and adsorption controlled. A systematic study of various operational conditions, such as electrode pretreatment, pH of the supporting electrolyte, concentration of CTAB, accumulation variables, and instrumental parameters on the adsorptive stripping response, was examined using square-wave voltammetry. An oxidation signal at around +1.21 V in Britton-Robinson buffer at pH 8.0 containing 6 × 10-4 M CTAB allowed to the adsorptive stripping voltammetric determination of favipiravir (after 60 s accumulation step at open-circuit condition). The process could be used in the concentration range with two linear segments of 0.01-0.1 μg mL-1 (6.4 × 10-8-6.4 × 10-7 M) and 0.1-20.0 μg mL-1 (6.4 × 10-7-1.3 × 10-4 M). The limit of detection values were found to be 0.0028 μg mL-1 (1.8 × 10-8 M), and 0.023 μg mL-1 (1.5 × 10-7 M) for the first and second segments of calibration graph, respectively. The feasibility of developed methodology was tested to the analysis of the commercial tablet formulations and model human urine samples.
Collapse
Affiliation(s)
- Shabnam Allahverdiyeva
- Van Yuzuncu Yil University, Faculty of Science, Department of Biochemistry, 65080, Van, Turkey
| | - Oruc Yunusoğlu
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Pharmacology, 65080, Van, Turkey
| | - Yavuz Yardım
- Van Yuzuncu Yil University, Faculty of Pharmacy, Department of Analytical Chemistry, 65080, Van, Turkey,Corresponding author
| | - Zühre Şentürk
- Van Yuzuncu Yil University, Faculty of Science, Department of Analytical Chemistry, 65080, Van, Turkey,Corresponding author
| |
Collapse
|
21
|
Harrell CR, Popovska Jovicic B, Djonov V, Volarevic V. Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Treatment of Viral Diseases. Pathogens 2021; 10:pathogens10040409. [PMID: 33915728 PMCID: PMC8066286 DOI: 10.3390/pathogens10040409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult, immunomodulatory stem cells which reside in almost all postnatal tissues. Viral antigens and damage-associated molecular patterns released from injured and infected cells activate MSCs, which elicit strong antiviral immune response. MSC-sourced interferons and inflammatory cytokines modulate the cytotoxicity of NK cells and CTLs, enhance the antigen-presentation properties of DCs and macrophages, regulate cytokine synthesis in CD4+ T helper cells and promote antibody production in B cells. After the elimination of viral pathogens, MSCs produce immunoregulatory cytokines and trophic factors, prevent the over-activation of immune cells and promote tissue repair and regeneration. In this review article, we summarize the current knowledge on the molecular mechanisms that are responsible for the MSC-dependent elimination of virus-infected cells, and we emphasize the therapeutic potential of MSCs and their secretomes in the treatment of viral diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL 34684, USA;
| | - Biljana Popovska Jovicic
- Department of Infectious Diseases, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Correspondence: (B.P.J.); (V.V.); Tel./Fax: +381-34306800 (V.V.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Correspondence: (B.P.J.); (V.V.); Tel./Fax: +381-34306800 (V.V.)
| |
Collapse
|
22
|
Dolar-Szczasny J, Toro MD, Dworzańska A, Wójtowicz T, Korona-Glowniak I, Sawicki R, Boguszewska A, Polz-Dacewicz M, Tomasiewicz K, Załuska W, Rejdak R, Bagnoli P, Rusciano D. Ocular Involvement of SARS-CoV-2 in a Polish Cohort of COVID-19-Positive Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2916. [PMID: 33809199 PMCID: PMC8001647 DOI: 10.3390/ijerph18062916] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022]
Abstract
The coronavirus SARS-CoV-2 responsible for the current human COVID-19 pandemic has shown tropism toward different organs with variable efficiency, eyes included. The purpose of this study has been to investigate the presence of detectable SARS-CoV-2 infection in ocular swabs in patients affected by COVID-19. A consecutive series of 74 COVID-19-positive patients (age 21-89) were enrolled at two Polish COVID-19 hospitals for 4 months and were characterized by PCR for the presence of the SARS-CoV-2 genetic material in nasopharyngeal (NP) and ocular swabs, while their respiratory and ocular symptoms were noted. Almost 50% of them presented with severe/critical respiratory involvement, and some degree of eye disease. No tight correlation was observed between the presence of ocular and respiratory symptoms. Three male patients presenting with severe/critical lung disease tested positive in ocular swab, however with mild/moderate ocular symptoms. In conclusion, our study lends further support to the view that overt ocular infection by the SARS-CoV-2 virus is not such a frequent occurrence.
Collapse
Affiliation(s)
- Joanna Dolar-Szczasny
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (J.D.-S.); (M.D.T.); (R.R.)
| | - Mario D. Toro
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (J.D.-S.); (M.D.T.); (R.R.)
- Faculty of Medical Sciences, Collegium Medicum, Cardinal Stefan Wyszyński University, 01-815 Warsaw, Poland
| | - Anna Dworzańska
- Department of Infectious Diseases, Medical University of Lublin, 20-059 Lublin, Poland; (A.D.); (K.T.)
| | - Tomasz Wójtowicz
- Department of Ophthalmology, Specialist Hospital of Radom, 26-610 Radom, Poland;
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Rafał Sawicki
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Anastazja Boguszewska
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-059 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-059 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Krzysztof Tomasiewicz
- Department of Infectious Diseases, Medical University of Lublin, 20-059 Lublin, Poland; (A.D.); (K.T.)
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (J.D.-S.); (M.D.T.); (R.R.)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | | |
Collapse
|
23
|
Solaymani-Dodaran M, Ghanei M, Bagheri M, Qazvini A, Vahedi E, Hassan Saadat S, Amin Setarehdan S, Ansarifar A, Biganeh H, Mohazzab A, Khalili D, Hosein Ghazale A, Reza Heidari M, Taheri A, Khoramdad M, Mahdi Asadi M, Nazemieh M, Varshochi M, Abbasian S, Bakhtiari A, Mosaed R, Hosseini-Shokouh SJ, Shahrokhi M, Yassin Z, Ali Zohal M, Qaraati M, Rastgoo N, Sami R, Javad Eslami M, Asghari A, Namazi M, Ziaie S, Jafari-Moghaddam R, Kalantari S, Memarian M, Khodadadi J, Hossein Afshari M, Momen-Heravi M, Behzadseresht N, Reza Mobayen A, Mozafari A, Movasaghi F, Haddadzadeh Shoushtari M, Moazen J. Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia. Int Immunopharmacol 2021; 95:107522. [PMID: 33735712 PMCID: PMC7951885 DOI: 10.1016/j.intimp.2021.107522] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND We examined the safety and efficacy of a treatment protocol containing Favipiravir for the treatment of SARS-CoV-2. METHODS We did a multicenter randomized open-labeled clinical trial on moderate to severe cases infections of SARS-CoV-2. Patients with typical ground glass appearance on chest computerized tomography scan (CT scan) and oxygen saturation (SpO2) of less than 93% were enrolled. They were randomly allocated into Favipiravir (1.6 gr loading, 1.8 gr daily) and Lopinavir/Ritonavir (800/200 mg daily) treatment regimens in addition to standard care. In-hospital mortality, ICU admission, intubation, time to clinical recovery, changes in daily SpO2 after 5 min discontinuation of supplemental oxygen, and length of hospital stay were quantified and compared in the two groups. RESULTS 380 patients were randomly allocated into Favipiravir (193) and Lopinavir/Ritonavir (187) groups in 13 centers. The number of deaths, intubations, and ICU admissions were not significantly different (26, 27, 31 and 21, 17, 25 respectively). Mean hospital stay was also not different (7.9 days [SD = 6] in the Favipiravir and 8.1 [SD = 6.5] days in Lopinavir/Ritonavir groups) (p = 0.61). Time to clinical recovery in the Favipiravir group was similar to Lopinavir/Ritonavir group (HR = 0.94, 95% CI 0.75 - 1.17) and likewise the changes in the daily SpO2 after discontinuation of supplemental oxygen (p = 0.46) CONCLUSION: Adding Favipiravir to the treatment protocol did not reduce the number of ICU admissions or intubations or In-hospital mortality compared to Lopinavir/Ritonavir regimen. It also did not shorten time to clinical recovery and length of hospital stay.
Collapse
Affiliation(s)
- Masoud Solaymani-Dodaran
- Minimally Invasive Surgery Research Center, Hazrat-e-Rasool Hospital, Iran University of Medical Science, Tehran, Iran; Division of Epidemiology and Public Health, University of Nottingham, Nottingham, NG7 2UH, UK; School of Public Health, Iran University of Medical Science, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mehdi Bagheri
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Saadat
- Behavioral sciences research center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Amin Setarehdan
- Minimally Invasive Surgery Research Center, Hazrat-e-Rasool Hospital, Iran University of Medical Science, Tehran, Iran; School of Public Health, Iran University of Medical Science, Tehran, Iran
| | - Akram Ansarifar
- School of Public Health, Iran University of Medical Science, Tehran, Iran
| | - Hossein Biganeh
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arash Mohazzab
- School of Public Health, Iran University of Medical Science, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute Tehran, ACECR, Tehran, Iran
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Ghazale
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Heidari
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Taheri
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maliheh Khoramdad
- School of Public Health, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Mahdi Asadi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Nazemieh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mojtaba Varshochi
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Samaneh Abbasian
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Bakhtiari
- School of Medicine, Dezful University of Medical Science, Dezful, Iran
| | - Reza Mosaed
- Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | | | | | - Zeynab Yassin
- Antimicrobial Resistance Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Ali Zohal
- Metabolic Diseases Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Maryam Qaraati
- Metabolic Diseases Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Nafiseh Rastgoo
- Metabolic Diseases Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Ramin Sami
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Akram Asghari
- Department of Internal Medicine, School of Medicine, Qom University of Medical sciences, Qom, Iran
| | - Mansoor Namazi
- Department of Cardiology, School of Medicine, Qom University of Medical sciences, Qom, Iran
| | - Shadi Ziaie
- Department of Clinical pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Raana Jafari-Moghaddam
- Department of Clinical pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Saeid Kalantari
- Antimicrobial Resistance Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Memarian
- Department of Internal Medicine, School of Medicine, Semnan University of Medical sciences, Semnan, Iran
| | - Javad Khodadadi
- Department of Infectious disease, School of Medicine, Qom University of Medical sciences, Qom, Iran
| | | | - Mansooreh Momen-Heravi
- Infectious Diseases Research Center, School of Medicine, Kashan University of Medical Science, Kashan, Iran
| | | | - Ahmad Reza Mobayen
- Department of Infectious disease, School of Medicine, Zanjan University of Medical sciences, Zanjan, Iran
| | - Abolfazl Mozafari
- Department of Medical sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Fatemeh Movasaghi
- Department of Medical sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Javad Moazen
- School of Medicine, Dezful University of Medical Science, Dezful, Iran
| |
Collapse
|
24
|
Varmani S, Chowhan R, Sharma I, Narang R. COVID-19 and cardiovascular disease: Clinical implications of biochemical pathways. JOURNAL OF THE PRACTICE OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.4103/jpcs.jpcs_21_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|