1
|
Lima CP, Barreiros GM, Oliveira ASA, de Souza MM, Manieri TM, Moro AM. A Dual Strategy-In Vitro and In Silico-To Evaluate Human Antitetanus mAbs Addressing Their Potential Protective Action on TeNT Endocytosis in Primary Rat Neuronal Cells. Int J Mol Sci 2024; 25:5788. [PMID: 38891974 PMCID: PMC11171557 DOI: 10.3390/ijms25115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Tetanus disease, caused by C. tetani, starts with wounds or mucous layer contact. Prevented by vaccination, the lack of booster shots throughout life requires prophylactic treatment in case of accidents. The incidence of tetanus is high in underdeveloped countries, requiring the administration of antitetanus antibodies, usually derived from immunized horses or humans. Heterologous sera represent risks such as serum sickness. Human sera can carry unknown viruses. In the search for human monoclonal antibodies (mAbs) against TeNT (Tetanus Neurotoxin), we previously identified a panel of mAbs derived from B-cell sorting, selecting two nonrelated ones that binded to the C-terminal domain of TeNT (HCR/T), inhibiting its interaction with the cellular receptor ganglioside GT1b. Here, we present the results of cellular assays and molecular docking tools. TeNT internalization in neurons is prevented by more than 50% in neonatal rat spinal cord cells, determined by quantitative analysis of immunofluorescence punctate staining of Alexa Fluor 647 conjugated to TeNT. We also confirmed the mediator role of the Synaptic Vesicle Glycoprotein II (SV2) in TeNT endocytosis. The molecular docking assays to predict potential TeNT epitopes showed the binding of both antibodies to the HCR/T domain. A higher incidence was found between N1153 and W1297 when evaluating candidate residues for conformational epitope.
Collapse
Affiliation(s)
- Cauã Pacheco Lima
- Laboratory of Biopharmaceuticals, Butantan Institute, Sao Paulo 05503-900, Brazil; (C.P.L.); (G.M.B.); (A.S.A.O.)
- Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | - Gabriela Massaro Barreiros
- Laboratory of Biopharmaceuticals, Butantan Institute, Sao Paulo 05503-900, Brazil; (C.P.L.); (G.M.B.); (A.S.A.O.)
- Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | - Adriele Silva Alves Oliveira
- Laboratory of Biopharmaceuticals, Butantan Institute, Sao Paulo 05503-900, Brazil; (C.P.L.); (G.M.B.); (A.S.A.O.)
| | - Marcelo Medina de Souza
- CENTD—Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo 05503-900, Brazil;
| | - Tania Maria Manieri
- Laboratory of Biopharmaceuticals, Butantan Institute, Sao Paulo 05503-900, Brazil; (C.P.L.); (G.M.B.); (A.S.A.O.)
- CeRDI—Center for Research and Development in Immunobiologicals, Butantan Institute, São Paulo 05503-900, Brazil
| | - Ana Maria Moro
- Laboratory of Biopharmaceuticals, Butantan Institute, Sao Paulo 05503-900, Brazil; (C.P.L.); (G.M.B.); (A.S.A.O.)
- CeRDI—Center for Research and Development in Immunobiologicals, Butantan Institute, São Paulo 05503-900, Brazil
| |
Collapse
|
2
|
Liu XY, Wei DK, Li ZY, Lu JS, Xie XM, Yu YZ, Pang XB. Immunogenicity and immunoprotection of the functional TL-HN fragment derived from tetanus toxin. Vaccine 2023; 41:6834-6841. [PMID: 37816654 DOI: 10.1016/j.vaccine.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Tetanus toxin (TeNT) is a protein toxin produced by Clostridium tetani bacteria, which causes hyperreflexia and rhabdomyolysis by spastic paralysis. Like botulinum neurotoxin, TeNT comprises a heavy chain (HC) and a light chain (LC) linked via an interchain disulfide bond, which include the following three functional domains: a receptor-binding domain (Hc), a translocation domain (HN), and a catalytic domain (LC). Herein, we produced and characterized three functional domains of TeNT and three types of TeNT-derived L-HN fragments (TL-HN, TL-GS-HN and TL-2A-HN), which contained L and HN domains but lacked the Hc domain. The immunological effects of these different functional domains or fragments of TeNT were explored in an animal model. Our investigations showed the TL-HN functional fragment provided the best immunoprotection among all the TeNT functional domains. The TL-HN fragment, as a protective antigen, induced the highest levels of neutralizing antibodies, indicating that it might contain some crucial epitopes. Further experiments revealed that the protective effect of TL-HN was superior to that of the THc, TL, or THN fragments, either individually or in combination. Therefore, the TL-HN fragment exerts an important function in immune protection against tetanus toxin, providing a good basis for the development of TeNT vaccines or antibodies, and could serve as a promising subunit vaccine to replace THc or tetanus toxoid (TT).
Collapse
Affiliation(s)
- Xu-Yang Liu
- Pharmaceutical College, Henan University, Kaifeng 475001, China; Beijing Institute of Biotechnology, Beijing 100071, China
| | - Dong-Kui Wei
- Pharmaceutical College, Henan University, Kaifeng 475001, China; Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zhi-Ying Li
- Pharmaceutical College, Henan University, Kaifeng 475001, China; Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jian-Sheng Lu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xin-Mei Xie
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Xiao-Bin Pang
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| |
Collapse
|
3
|
Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol 2022; 96:1521-1539. [PMID: 35333944 PMCID: PMC9095541 DOI: 10.1007/s00204-022-03271-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
Abstract
Tetanus and botulinum neurotoxins cause the neuroparalytic syndromes of tetanus and botulism, respectively, by delivering inside different types of neurons, metalloproteases specifically cleaving the SNARE proteins that are essential for the release of neurotransmitters. Research on their mechanism of action is intensively carried out in order to devise improved therapies based on antibodies and chemical drugs. Recently, major results have been obtained with human monoclonal antibodies and with single chain antibodies that have allowed one to neutralize the metalloprotease activity of botulinum neurotoxin type A1 inside neurons. In addition, a method has been devised to induce a rapid molecular evolution of the metalloprotease domain of botulinum neurotoxin followed by selection driven to re-target the metalloprotease activity versus novel targets with respect to the SNARE proteins. At the same time, an intense and wide spectrum clinical research on novel therapeutics based on botulinum neurotoxins is carried out, which are also reviewed here.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
4
|
Pirazzini M, Grinzato A, Corti D, Barbieri S, Leka O, Vallese F, Tonellato M, Silacci-Fregni C, Piccoli L, Kandiah E, Schiavo G, Zanotti G, Lanzavecchia A, Montecucco C. Exceptionally potent human monoclonal antibodies are effective for prophylaxis and treatment of tetanus in mice. J Clin Invest 2021; 131:151676. [PMID: 34618682 DOI: 10.1172/jci151676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023] Open
Abstract
We used human monoclonal antibodies (humAbs) to study the mechanism of neuron intoxication by tetanus neurotoxin and to evaluate these antibodies as a safe preventive and therapeutic substitute for hyperimmune sera to treat tetanus in mice. By screening memory B cells from immune donors, we selected 2 tetanus neurotoxin-specific mAbs with exceptionally high neutralizing activities and extensively characterized them both structurally and functionally. We found that these antibodies interfered with the binding and translocation of the neurotoxin into neurons by interacting with 2 epitopes, whose identification pinpoints crucial events in the cellular pathogenesis of tetanus. Our observations explain the neutralization ability of these antibodies, which we found to be exceptionally potent in preventing experimental tetanus when injected into mice long before the toxin. Moreover, their Fab derivatives neutralized tetanus neurotoxin in post-exposure experiments, suggesting their potential for therapeutic use via intrathecal injection. As such, we believe these humAbs, as well as their Fab derivatives, meet the requirements to be considered for prophylactic and therapeutic use in human tetanus and are ready for clinical trials.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | - Oneda Leka
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marika Tonellato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Chiara Silacci-Fregni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Giampietro Schiavo
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology and.,UK Dementia Research Institute, University College London, London, United Kingdom
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Fondazione Istituto Nazionale Genetica Molecolare, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Institute of Neuroscience, National Research Council, Padova, Italy
| |
Collapse
|
5
|
Zanetti G, Mattarei A, Lista F, Rossetto O, Montecucco C, Pirazzini M. Novel Small Molecule Inhibitors That Prevent the Neuroparalysis of Tetanus Neurotoxin. Pharmaceuticals (Basel) 2021; 14:ph14111134. [PMID: 34832916 PMCID: PMC8618345 DOI: 10.3390/ph14111134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Tetanus neurotoxin (TeNT) is a protein exotoxin produced by Clostridium tetani that causes the deadly spastic neuroparalysis of tetanus. It consists of a metalloprotease light chain and of a heavy chain linked via a disulphide bond. TeNT binds to the neuromuscular junction (NMJ) and it is retro-axonally transported into vesicular compartments to the spinal cord, where it is released and taken up by inhibitory interneuron. Therein, the catalytic subunit is translocated into the cytoplasm where it cleaves its target protein VAMP-1/2 with consequent blockage of the release of inhibitory neurotransmitters. Vaccination with formaldehyde inactivated TeNT prevents the disease, but tetanus is still present in countries where vaccination coverage is partial. Here, we show that small molecule inhibitors interfering with TeNT trafficking or with the reduction of the interchain disulphide bond block the activity of the toxin in neuronal cultures and attenuate tetanus symptoms in vivo. These findings are relevant for the development of therapeutics against tetanus based on the inhibition of toxin molecules that are being retro-transported to or are already within the spinal cord and are, thus, not accessible to anti-TeNT immunoglobulins.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Florigio Lista
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy;
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- Italian Research Council, Institute of Neuroscience, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- Italian Research Council, Institute of Neuroscience, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy
- Correspondence: (C.M.); (M.P.)
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: (C.M.); (M.P.)
| |
Collapse
|
6
|
Riches-Duit R, Hassall L, Kogelman A, Westdijk J, Rajagopal S, Davletov B, Doran C, Dobly A, Francotte A, Stickings P. Characterisation of tetanus monoclonal antibodies as a first step towards the development of an in vitro vaccine potency immunoassay. Biologicals 2021; 71:31-41. [PMID: 33910767 DOI: 10.1016/j.biologicals.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
Batch release testing for human and veterinary tetanus vaccines still relies heavily on methods that involve animals, particularly for potency testing. The quantity and quality of tetanus antigen present in these products is of utmost importance for product safety and clinical effect. Immunochemical methods that measure consistency of antigen content and quality, potentially as an indicator of potency, could be a better choice and negate the need for an in vivo potency test. These immunochemical methods require at least one well characterised monoclonal antibody (mAb) that is specific for the target antigen. In this paper we report the results of the comprehensive characterisation of a panel of mAbs against tetanus with a view to select antibodies that can be used for development of an in vitro potency immunoassay. We have assessed binding of the antibodies to native antigen (toxin), detoxified antigen (toxoid), adsorbed antigen and heat-altered antigen. Antibody function was determined using an in-house cell-based neutralisation assay to support prior in vivo potency data that was available for some, but not all, of the antibodies. In addition, antibody affinity was measured, and epitope competition analysis was performed to identify pairs of antibodies that could be deployed in a sandwich immunoassay format. Not all characterisation tests provided evidence of "superiority" of one mAb over another, but together the results from all characterisation studies allowed for selection of an antibody pair to be taken forward to assay development.
Collapse
Affiliation(s)
- Rebecca Riches-Duit
- National Institute for Biological Standards and Control, Division of Bacteriology, South Mimms, Potters Bar, EN6 3QG, UK
| | - Laura Hassall
- National Institute for Biological Standards and Control, Division of Bacteriology, South Mimms, Potters Bar, EN6 3QG, UK
| | - Amy Kogelman
- Institute for Translational Vaccinology, P.O. Box 450, 3720, AL Bilthoven, the Netherlands
| | - Janny Westdijk
- Institute for Translational Vaccinology, P.O. Box 450, 3720, AL Bilthoven, the Netherlands
| | - Shalini Rajagopal
- National Institute for Biological Standards and Control, Division of Bacteriology, South Mimms, Potters Bar, EN6 3QG, UK
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Ciara Doran
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Alexandre Dobly
- Sciensano, Quality of Vaccines and Blood Products Department, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Antoine Francotte
- Sciensano, Quality of Vaccines and Blood Products Department, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Paul Stickings
- National Institute for Biological Standards and Control, Division of Bacteriology, South Mimms, Potters Bar, EN6 3QG, UK.
| |
Collapse
|