1
|
Yan C, Wang G. Advances in research on flavonoids in tumor immunotherapy (Review). Mol Med Rep 2025; 31:150. [PMID: 40211703 PMCID: PMC11995692 DOI: 10.3892/mmr.2025.13515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Cancer immunotherapy is an approach used in anti‑tumor treatment; however, its efficacy is limited to specific tumor types that are inherently sensitive to immune system modulation. Expanding the scope of indications and enhancing the efficacy of cancer immunotherapy are key goals for continued advancement. Flavonoids modulate the tumor‑immunosuppressive microenvironment. Integrating flavonoids with immunotherapeutic modalities, including cancer vaccines, immune checkpoint inhibitors and adoptive immune‑cell therapy, has potential in terms of augmenting the therapeutic efficacy of immunotherapy. The present review aimed to summarize flavonoids that enhance cancer immunotherapy, focusing on their underlying mechanisms and the application of nanotechnology to overcome inherent limitations such as poor solubility, low bioavailability, rapid metabolism, and instability under physiological conditions, thereby highlighting the potential of flavonoids in advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoguang Yan
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, Shandong 261000 P.R. China
| | - Guangchun Wang
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, Shandong 261000 P.R. China
| |
Collapse
|
2
|
Zheng H, Chen Y, Luo W, Han S, Sun M, Lin M, Wu C, Gao L, Xie T, Kong N. Integration of active ingredients from traditional Chinese medicine with nano-delivery systems for tumor immunotherapy. J Nanobiotechnology 2025; 23:357. [PMID: 40382641 PMCID: PMC12085060 DOI: 10.1186/s12951-025-03378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 05/20/2025] Open
Abstract
Tumor immune escape presents a significant challenge in cancer treatment, characterized by the upregulation of immune inhibitory molecules and dysfunction of immune cells. Tumor immunotherapy seeks to restore normal anti-tumor immune responses to control and eliminate tumors effectively. The active ingredients of traditional Chinese medicine (TCM) demonstrate a variety of anti-tumor activities and mechanisms, including the modulation of immune cell functions and inhibiting tumor-related suppressive factors, thereby potentially enhancing anti-tumor immune responses. Furthermore, nano-delivery systems function as efficient carriers to enhance the bioavailability and targeted delivery of TCM active ingredients, augmenting therapeutic efficacy. This review comprehensively analyzes the impact of TCM active ingredients on the immune system and explores the synergistic application of nano-delivery systems in combination with TCM active ingredients for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yiquan Chen
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Mengjuan Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Min Lin
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Chenghan Wu
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Lili Gao
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China.
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
3
|
Jia Y, Zhu H, Cai X, Sun C, Ye Y, Cai D, Yang S, Cheng J, Gao J, Yang Y, Zeng H, Zou Q, Li J, Sun H, Wang W. Plant-Derived Immunomodulatory Nanoadjuvants for Cancer Vaccines: Current Status and Future Opportunities. Vaccines (Basel) 2025; 13:378. [PMID: 40333256 PMCID: PMC12031155 DOI: 10.3390/vaccines13040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer is a major cause of death worldwide, and vaccine administration is an effective way to stimulate immune responses in patients and to achieve preventive and therapeutic effects. Few vaccines have been used in clinical settings because they have poor immunogenicity, and it is difficult to induce a robust immune response in patients. An adjuvant is an important component of a vaccine that can enhance the intensity, speed, and duration of immune responses. The achievements of adjuvants in the production of stable, safe, and immunogenic tumor vaccines have aroused the enthusiasm of researchers. Recent results have suggested that plant-derived adjuvants have unique advantages, such as greatly improving immune responses to cancer vaccines and promoting humoral and cellular immunity with good biocompatibility and biodegradability. When these adjuvants are used in combination with vaccines, they can not only activate the immune response in vivo but can also promote cytokine secretion and accelerate dendritic cell maturation. This review focused on the application progress of plant adjuvants, including saponins, polysaccharides, flavonoids, and plant virus-like particles, and their combination with nano-delivery systems in cancer vaccines. At the same time, we have also discussed the immunomodulatory mechanisms of these adjuvants and their prospects for improving vaccine efficacy in the treatment of cancer in the future. These promising plant adjuvants may provide prospects and a research basis for the development of tumor vaccines.
Collapse
Affiliation(s)
- Yimin Jia
- Chongqing University Cancer Hospital, Chongqing 400030, China;
| | - Hui Zhu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Xinyu Cai
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Cun Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Yan Ye
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Dingyi Cai
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
- Department of Stomatology, The 79th Group Army Hospital of PLA, Liaoyang 111000, China
| | - Shuaifei Yang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Jingjing Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Jining Gao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Yun Yang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Hao Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Jieping Li
- Affiliated Nanhua Hospital of University of South China, Hengyang 421002, China;
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Wenxiu Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
- Shandong Academician Workstation, Binzhou 256600, China
| |
Collapse
|
4
|
Lai Z, Pang Y, Zhou Y, Chen L, Zheng K, Yuan S, Wang W. Luteolin as an adjuvant effectively enhanced the efficacy of adoptive tumor-specific CTLs therapy. BMC Cancer 2025; 25:411. [PMID: 40050776 PMCID: PMC11887225 DOI: 10.1186/s12885-025-13831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Luteolin, a natural flavonoid compound, has demonstrated anti-inflammatory, antioxidant, and broad anti-tumor properties. Recent studies suggest that its anti-tumor effects are linked to enhanced CTL function-including proliferation, survival, and cytotoxicity-via inhibition of the YAP/Wnt signaling pathway in tumor cells. Consequently, luteolin has potential as an adjuvant in combination therapies with adoptive immunotherapy. METHODS This study first assessed luteolin's tumor-inhibitory effects in vitro and in vivo using cytotoxicity assays, Transwell invasion tests, wound healing assays, and analyses of post-treatment tumor growth and survival time. Additionally, we explored whether luteolin combined with a DC/tumor fusion vaccine could synergistically enhance overall antitumor efficacy by boosting activation, proliferation, cytokines secretion, and cytotoxicity of effector T cells. RESULTS Our findings indicate that luteolin, as a standalone agent, can inhibit the proliferation and invasion of colon and lung cancer cells both in vitro and in vivo to a certain extent. When combined with activated CTLs, it upregulated the expression of CD25 and CD69 in effector cells and resulted in higher levels of IL-2, TNF-α, and IFN-γ secretion in vitro. In vivo, this combination significantly curtailed subcutaneous tumor growth and extended the mean survival time of tumor-bearing mice (HCT116, A549), outperforming luteolin monotherapy. Furthermore, the efficacy of this combination therapy may be attributable to enhanced apoptosis in tumor cells, reduced proliferation, and decreased YAP expression. CONCLUSION The combination of luteolin and DC/tumor fusion vaccine-activated CTLs presents a novel approach for cancer treatment. As an adjuvant, luteolin downregulates YAP expression in tumor cells, enhancing CTL proliferation, cytotoxicity, and survival, thus improving tumor recognition and selective targeting. This strategy is promising for safe and effective tumor treatment.
Collapse
Affiliation(s)
- Zhiheng Lai
- Department of Anorectal Surgery, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China
- Department of Anorectal Surgery, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanyang Pang
- Department of Anorectal Surgery, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China
| | - Yujing Zhou
- School of Public Health, Hainan Medical University, Haikou, China
| | - Leiyuan Chen
- Department of Anorectal Surgery, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China
| | - Kai Zheng
- Department of Orthopedics, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China
- Department of Orthopedics, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiguo Yuan
- Department of Orthopedics, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China.
- Department of Orthopedics, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Wu Wang
- Department of Anorectal Surgery, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
5
|
Cai S, Gou Y, Chen Y, Hou X, Zhang J, Bi C, Gu P, Yang M, Zhang H, Zhong W, Yuan H. Luteolin exerts anti-tumour immunity in hepatocellular carcinoma by accelerating CD8 + T lymphocyte infiltration. J Cell Mol Med 2024; 28:e18535. [PMID: 39267250 PMCID: PMC11392827 DOI: 10.1111/jcmm.18535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
Luteolin, a commonly used traditional Chinese medicine, has been utilized for several decades in the treatment of hepatocellular carcinoma (HCC). Previous research has demonstrated its anti-tumour efficacy, but its underlying mechanism remains unclear. This study aimed to assess the therapeutic effects of luteolin in H22 tumour-bearing mice. luteolin effectively inhibited the growth of solid tumours in a well-established mouse model of HCC. High-throughput sequencing revealed that luteolin treatment could enhance T-cell activation, cell chemotaxis and cytokine production. In addition, luteolin helped sustain a high ratio of CD8+ T lymphocytes in the spleen, peripheral blood and tumour tissues. The effects of luteolin on the phenotypic and functional changes in tumour-infiltrating CD8+ T lymphocytes were also investigated. Luteolin restored the cytotoxicity of tumour-infiltrating CD8+ T lymphocytes in H22 tumour-bearing mice. The CD8+ T lymphocytes exhibited intensified phenotype activation and increased production of granzyme B, IFN-γ and TNF-α in serum. The combined administration of luteolin and the PD-1 inhibitor enhanced the anti-tumour effects in H22 tumour-bearing mice. Luteolin could exert an anti-tumour immune response by inducing CD8+ T lymphocyte infiltration and enhance the anti-tumour effects of the PD-1 inhibitor on H22 tumour-bearing mice.
Collapse
Affiliation(s)
- Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yidan Gou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanyan Chen
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoran Hou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Chongwen Bi
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Gu
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Miao Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanxu Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Wang R, Li X, Xu Y, Li Y, Zhang W, Guo R, Song J. Progress, pharmacokinetics and future perspectives of luteolin modulating signaling pathways to exert anticancer effects: A review. Medicine (Baltimore) 2024; 103:e39398. [PMID: 39183411 PMCID: PMC11346905 DOI: 10.1097/md.0000000000039398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Luteolin (3, 4, 5, 7-tetrahydroxyflavone) are natural flavonoids widely found in vegetables, fruits and herbs, with anti-tumor, anti-inflammatory and antioxidant effects, and also play an anti-cancer effect in various cancers such as lung, breast, prostate, and liver cancer, etc. Specifically, the anti-cancer mechanism includes regulation of various signaling pathways to induce apoptosis of tumor cells, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, regulation of immune function, synergistic anti-cancer drugs and regulation of reactive oxygen species levels of tumor cells. Specific anti-cancer mechanisms include regulation of various signaling pathways to induce apoptosis, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, reversal of epithelial-mesenchymal transition, regulation of immune function, synergism with anti-cancer drugs and regulation of reactive oxygen species levels in tumor cells. This paper integrates the latest cutting-edge research on luteolin and combines it with the prospect of future clinical applications, aiming to explore the mechanism of luteolin exerting different anticancer effects through the regulation of different signaling pathways, so as to provide a practical theoretical basis for the use of luteolin in clinical treatment and hopefully provide some reference for the future research direction of luteolin.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
- Medical School of Nantong University, Nantong, PR China
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yanhan Xu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Rongqi Guo
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| |
Collapse
|
7
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Zhu M, Sun Y, Su Y, Guan W, Wang Y, Han J, Wang S, Yang B, Wang Q, Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024; 38:3417-3443. [PMID: 38666435 DOI: 10.1002/ptr.8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/β-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
9
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Shang Q, Liu W, Leslie F, Yang J, Guo M, Sun M, Zhang G, Zhang Q, Wang F. Nano-formulated delivery of active ingredients from traditional Chinese herbal medicines for cancer immunotherapy. Acta Pharm Sin B 2024; 14:1525-1541. [PMID: 38572106 PMCID: PMC10985040 DOI: 10.1016/j.apsb.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 04/05/2024] Open
Abstract
Cancer immunotherapy has garnered promise in tumor progression, invasion, and metastasis through establishing durable and memorable immunological activity. However, low response rates, adverse side effects, and high costs compromise the additional benefits for patients treated with current chemical and biological agents. Chinese herbal medicines (CHMs) are a potential treasure trove of natural medicines and are gaining momentum in cancer immunomodulation with multi-component, multi-target, and multi-pathway characteristics. The active ingredient extracted from CHMs benefit generalized patients through modulating immune response mechanisms. Additionally, the introduction of nanotechnology has greatly improved the pharmacological qualities of active ingredients through increasing the hydrophilicity, stability, permeability, and targeting characteristics, further enhancing anti-cancer immunity. In this review, we summarize the mechanism of active ingredients for cancer immunomodulation, highlight nano-formulated deliveries of active ingredients for cancer immunotherapy, and provide insights into the future applications in the emerging field of nano-formulated active ingredients of CHMs.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wandong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingmei Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
- Traditional Chinese Medicine “Preventing Disease” Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Shi M, Chen Z, Gong H, Peng Z, Sun Q, Luo K, Wu B, Wen C, Lin W. Luteolin, a flavone ingredient: Anticancer mechanisms, combined medication strategy, pharmacokinetics, clinical trials, and pharmaceutical researches. Phytother Res 2024; 38:880-911. [PMID: 38088265 DOI: 10.1002/ptr.8066] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.
Collapse
Affiliation(s)
- Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- Sichuan Provincial Key Laboratory of Individualized Drug Therapy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baoyu Wu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Luteolin inhibits the TGF-β signaling pathway to overcome bortezomib resistance in multiple myeloma. Cancer Lett 2023; 554:216019. [PMID: 36442773 DOI: 10.1016/j.canlet.2022.216019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Multiple myeloma (MM) is an incurable condition and the second most common hematological malignancy. Over the past few years, there has been progress in the treatment of MM, but most patients still relapse. Multiple myeloma stem-like cells (MMSCs) are believed to be the main reason for drug resistance and eventual relapse. Currently, there are not enough therapeutic agents that have been identified for eradication of MMSCs, and thus, identification of the same may alleviate the issue of relapse in patients. In the present study, we showed that luteolin (LUT), a natural compound obtained from different plants, such as vegetables, medicinal herbs, and fruits, effectively inhibits the proliferation of MM cells and overcomes bortezomib (BTZ) resistance in them in vitro and in vivo, mainly by decreasing the proportion of ALDH1+ cells. Furthermore, RNA sequencing after LUT treatment of MM cell lines and an MM xenograft mouse model revealed that the effects of the compound are mediated through inhibition of transforming growth factor-β signaling. Similarly, we found that LUT also significantly reduced the proportion of ALDH1+ cells in primary CD138+ plasma cells. In addition, LUT could overcome the BTZ treatment-induced increase in the proportion of ALDH1+ cells, and the combination of LUT and BTZ had a synergistic effect against myeloma cells. Collectively, our findings suggested that LUT is a promising agent that manifests MMSCs to overcome BTZ resistance, alone or in combination with BTZ, and thus, is a potential therapeutic drug for the treatment of MM.
Collapse
|
13
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
14
|
Fu QT, Zhong XQ, Chen MY, Gu JY, Zhao J, Yu DH, Tan F. Luteolin-Loaded Nanoparticles for the Treatment of Melanoma. Int J Nanomedicine 2023; 18:2053-2068. [PMID: 37101838 PMCID: PMC10124627 DOI: 10.2147/ijn.s400329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Background and Purpose Luteolin (LUT), a flavonoid found in various plants, has been reported to have potential therapeutic effects in melanoma. However, poor water solubility and low bioactivity have severely restricted the clinical application of LUT. Based on the high reactive oxygen species (ROS) levels in melanoma cells, we developed nanoparticles encapsulating LUT with the ROS-responsive material poly(propylene sulfide)-poly(ethylene glycol) (PPS-PEG) to enhance the water solubility of LUT, accelerate the release of LUT in melanoma cells, and further enhance its anti-melanoma effect, providing a viable solution for the application of LUT nano-delivery systems in melanoma therapy. Methods In this study, LUT-loaded nanoparticles were prepared with PPS-PEG and named as LUT-PPS-NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were applied to determine the size and morphology of LUT-PPS-NPs. In vitro studies were carried out to determine the uptake and mechanism of LUT-PPS-NPs by SK-MEL-28 melanoma cells. According to the CCK-8 assay, the cytotoxic effects of LUT-PPS-NPs on human skin fibroblasts (HSF) and SK-MEL-28 cells were assessed. Apoptosis assays, cell migration and invasion assays, and proliferation inhibition assays with low and normal density plating were also applied to test the in vitro anti-melanoma effect. Additionally, melanoma models were established utilizing BALB/c nude mice and initially evaluated the growth inhibitory impact following intratumoral injection of LUT-PPS-NPs. Results The size of LUT-PPS-NPs was 169.77 ± 7.33 nm with high drug loading (15.05 ± 0.07%). In vitro, cellular assays confirmed that LUT-PPS-NPs were efficiently internalized by SK-MEL-28 cells and showed low cytotoxicity against HSF. Moreover, LUT released from LUT-PPS-NPs significantly inhibited tumor cell proliferation, migration and invasion. Animal experiments showed that LUT-PPS-NPs inhibited tumor growth more than 2-fold compared with the LUT group. Conclusion In conclusion, the LUT-PPS-NPs developed in our study enhanced the anti-melanoma effect of LUT.
Collapse
Affiliation(s)
- Qiao-Ting Fu
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, People’s Republic of China
| | - Xiao-Qin Zhong
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, People’s Republic of China
| | - Mei-Yu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, People’s Republic of China
| | - Jia-Yi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Karolinska University Hospital Solna, Solna, Sweden
| | - De-Hong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Fei Tan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, People’s Republic of China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Correspondence: Fei Tan; Dehong Yu, Email ;
| |
Collapse
|
15
|
Piezoelectric MoS2 Nanoflowers (NF's) for Targeted Cancer Therapy by Gelatin-based Shear Thinning Hydrogels. In vitro and In vivo trials. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Long S, Ji S, Xue P, Xie H, Ma Y, Zhu S. Network pharmacology and molecular docking analysis reveal insights into the molecular mechanism of shiliao decoction in the treatment of cancer-associated malnutrition. Front Nutr 2022; 9:985991. [PMID: 36091226 PMCID: PMC9452828 DOI: 10.3389/fnut.2022.985991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeShiliao Decoction (SLD) was developed for treatment and prevention of cancer-associated malnutrition (CAM) in China. In this study, we aim to discover SLD’s active compounds and demonstrate the mechanisms of SLD that combat CAM through network pharmacology and molecular docking techniques.MethodsAll components of SLD were retrieved from the pharmacology database of Traditional Chinese Medicine Systems Pharmacology (TCMSP). The GeneCards database and the Online Mendelian Inheritance in Man database (OMIM) were used to identify gene encoding target compounds, and Cytoscape was used to construct the drug compound–target network. The network of target protein-protein interactions (PPI) was constructed using the STRING database, while gene ontology (GO) functional terms and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways associated with potential targets were analyzed using a program in R language (version 4.2.0). Core genes linked with survival and the tumor microenvironment were analyzed using the Kaplan–Meier plotter and TIMER 2.0 databases, respectively. Protein expression and transcriptome expression levels of core gene were viewed using the Human Protein Atlas (HPA) and the Cancer Genome Atlas (TCGA). A component-target-pathway (C-T-P) network was created using Cytoscape, and Autodock Vina software was used to verify the molecular docking of SLD components and key targets.ResultsThe assembled compound–target network primarily contained 134 compounds and 147 targets of the SLD associated with JUN, TP53, MAPK3, MAPK1, MAPK14, STAT3, AKT1, HSP90AA1, FOS, and MYC, which were identified as core targets by the PPI network. KEGG pathway analysis revealed pathways involved in lipid and atherosclerosis, the PI3K/Akt signaling pathway, and immune-related pathways among others. JUN is expressed at different levels in normal and cancerous tissues, it is closely associated with the recruitment of different immune cells and has been shown to have a significant impact on prognosis. The C-T-P network suggests that the active component of SLD is capable of regulating target genes affecting these related pathways. Finally, the reliability of the core targets was evaluated using molecular docking technology.ConclusionThis study revealed insights into SLD’s active components, potential targets, and possible molecular mechanisms, thereby demonstrating a potential method for examining the scientific basis and therapeutic mechanisms of TCM formulae.
Collapse
Affiliation(s)
- Sidan Long
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuangshuang Ji
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Xue
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongting Xie
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yinjie Ma
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yinjie Ma,
| | - Shijie Zhu
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Shijie Zhu,
| |
Collapse
|
17
|
Lu R, Wang S, Jiang S, Li C, Wang Y, Li L, Wang Y, Ma G, Qiao H, Leng Z, Niu J, Tian Z, Wang B. Chrysin Enhances Anti-tumor Immunity Response through IL-12-STAT4 Signal Pathway in B16F10 Melanoma Mouse Model. Scand J Immunol 2022; 96:e13177. [PMID: 35484925 DOI: 10.1111/sji.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
Chrysin (CHR) is a flavonoid with extensive pharmacological activity. The molecular formula of CHR is C15 H10 O4 . CHR is reported to have antioxidative, anti-tumor and anti-viral functions. To evaluate its potential function as a vaccine adjuvant, we prepared a melanoma vaccine using a soluble protein extract of B16F10 melanoma cells as antigen and CHR as an adjuvant. The melanoma model was developed after two immunisations, and it was discovered that combining B16F10 soluble protein antigen-mixed CHR vaccine could inhibit tumor growth in the mouse model, and the overall survival rate was higher than that of the B16F10 antigen vaccine alone. In vivo and in vitro experiments were conducted to determine whether CHR functioned as an adjuvant by activating antigen-presenting cells (APCs). We discovered that CHR activated APCs both in vivo and in vitro and may enhance Th1 cell function by activating the IL12-STAT4 signal pathway, thereby enhancing the anti-tumor response of cytotoxic T lymphocytes (CTL) in vivo. Next, to verify the critical role of CD8+ T cells in suppressing melanoma development, we transplanted CD8+ T cells from immunised mice to B16F10 tumor-bearing mice and discovered that the survival rate of tumor-bearing mice was significantly prolonged. In summary, our experimental results indicate that CHR can be used as a potential adjuvant to enhance antigen immunogenicity, inhibit B16F10 tumor growth in mice and improve tumor immune response.
Collapse
Affiliation(s)
- Ran Lu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shuang Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chenglin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yashuo Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Ling Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guixin Ma
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Hongye Qiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zhe Leng
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junyun Niu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
18
|
Juszczak AM, Wöelfle U, Končić MZ, Tomczyk M. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics. Med Res Rev 2022; 42:1423-1462. [PMID: 35187675 PMCID: PMC9303584 DOI: 10.1002/med.21880] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma is the fastest growing and the most aggressive form of skin cancer that is diagnosed. However, its incidence is relatively scarce compared to the highest mortality rate of all skin cancers. The much more common skin cancers include nonmelanoma malignant skin cancers. Moreover, over the past several decades, the frequency of all skin cancers has increased much more dynamically than that of almost any other type of cancer. Among the available therapeutic options for skin cancers, chemotherapy used immediately after the surgical intervention has been an essential element. Unfortunately, the main problem with conventional chemopreventive regimens involves the lack of response to treatment and the associated side effects. Hence, there is a need for much more effective anticancer drugs. Correspondingly, the targeted alternatives have involved phytochemicals, which are safer chemotherapeutic agents and exhibit competitive anticancer activity with high therapeutic efficacy. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in medicinal plants, have been demonstrated to influence the modulation of signaling pathways at each stage of the carcinogenesis process, which is also important in the context of skin cancers. Hence, this review focuses on an exhaustive overview of the therapeutic effects of luteolin and its derivatives in the treatment and prevention of skin cancers. The bioavailability and structure–activity relationships of luteolin derivatives are also discussed. This review is the first such complete account of all of the scientific reports concerning this particular group of natural compounds that target a specific area of neoplastic diseases.
Collapse
Affiliation(s)
- Aleksandra M. Juszczak
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| | - Ute Wöelfle
- Department of Dermatology and Venereology, Research Center Skinitial, Medical Center, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry University of Zagreb Zagreb Croatia
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| |
Collapse
|
19
|
Lee SY, Lee DY, Kang JH, Jeong JW, Kim JH, Kim HW, Oh DH, Kim JM, Rhim SJ, Kim GD, Kim HS, Jang YD, Park Y, Hur SJ. Alternative experimental approaches to reduce animal use in biomedical studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J. Mechanisms of Action And Clinical Implications of MicroRNAs in the Drug Resistance of Gastric Cancer. Front Oncol 2021; 11:768918. [PMID: 34912714 PMCID: PMC8667691 DOI: 10.3389/fonc.2021.768918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of digestive systems worldwide, with high recurrence and mortality. Chemotherapy is still the standard treatment option for GC and can effectively improve the survival and life quality of GC patients. However, with the emergence of drug resistance, the clinical application of chemotherapeutic agents has been seriously restricted in GC patients. Although the mechanisms of drug resistance have been broadly investigated, they are still largely unknown. MicroRNAs (miRNAs) are a large group of small non-coding RNAs (ncRNAs) widely involved in the occurrence and progression of many cancer types, including GC. An increasing amount of evidence suggests that miRNAs may play crucial roles in the development of drug resistance by regulating some drug resistance-related proteins as well as gene expression. Some also exhibit great potential as novel biomarkers for predicting drug response to chemotherapy and therapeutic targets for GC patients. In this review, we systematically summarize recent advances in miRNAs and focus on their molecular mechanisms in the development of drug resistance in GC progression. We also highlight the potential of drug resistance-related miRNAs as biomarkers and therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Fu X, He Y, Li M, Huang Z, Najafi M. Targeting of the tumor microenvironment by curcumin. Biofactors 2021; 47:914-932. [PMID: 34375483 DOI: 10.1002/biof.1776] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is made up of several cells and molecules that affect the survival of cancer cells. Indeed, certain (immunosuppressive) cells which promote tumors can promote the growth of tumors by stimulating the proliferation of cancer cells and promoting angiogenesis. During tumor growth, antitumoral immunity includes natural killer cells and CD8+ T cells cannot overcome immunosuppressive responses and cancer cell proliferation. In order to achieve the appropriate therapeutic response, we must kill cancer cells and suppress the release of immunosuppressive molecules. The balance between anti-tumor immunity and immunosuppressive cells, such as regulatory T cells (Tregs), cancer-associated fibroblasts, tumor-associated macrophages, and myeloid-derived suppressor cells plays a key role in the suppression or promotion of cancer cells. Curcumin is a plant-derived agent that has shown interesting properties for cancer therapy. It has shown that not only directly inhibit the growth of cancer cells, but can also modulate the growth and activity of immunosuppressant and tumor-promoting cells. In this review, we explain how curcumin modulates interactions within TME in favor of tumor treatment. The potential modulating effects of curcumin on the responses of cancer cells to treatment modalities such as immunotherapy will also be discussed.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Yingni He
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Mu Li
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
Liu G, Yang L, Chen G, Xu F, Yang F, Yu H, Li L, Dong X, Han J, Cao C, Qi J, Su J, Xu X, Li X, Li B. A Review on Drug Delivery System for Tumor Therapy. Front Pharmacol 2021; 12:735446. [PMID: 34675807 PMCID: PMC8524443 DOI: 10.3389/fphar.2021.735446] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, with the development of nanomaterials, the research of drug delivery systems has become a new field of cancer therapy. Compared with conventional antitumor drugs, drug delivery systems such as drug nanoparticles (NPs) are expected to have more advantages in antineoplastic effects, including easy preparation, high efficiency, low toxicity, especially active tumor-targeting ability. Drug delivery systems are usually composed of delivery carriers, antitumor drugs, and even target molecules. At present, there are few comprehensive reports on a summary of drug delivery systems applied for tumor therapy. This review introduces the preparation, characteristics, and applications of several common delivery carriers and expounds the antitumor mechanism of different antitumor drugs in delivery carriers in detail which provides a more theoretical basis for clinical application of personalized cancer nanomedicine in the future.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huaxin Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lingne Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingjing Han
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingyu Qi
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Junzhe Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|