1
|
Bagherzadeh M, Haghighat S, Mahdavi M. Killed whole-cell Staphylococcus aureus formulation in Montanide ISA266 and Alum adjuvants: different vaccine formulations varied in the vaccine's potency and efficacy. Immunol Res 2025; 73:47. [PMID: 39918699 DOI: 10.1007/s12026-025-09602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Immunotherapy can be a sensible alternative because invasive Staphylococcus aureus infection mortality, morbidity, and cost are still alarmingly high despite the development of multiple new medications to treat methicillin-resistant S. aureus infections. Herein, killed whole-cell Staphylococcus aureus was formulated in Montanide ISA266 and Alum adjuvants, and the potency and efficacy of the vaccine were studied. After the preparation of two kinds of whole-cell vaccine (bacterin and lysate), 20 µg of each vaccine candidate was formulated in Montanide ISA266 and Alum adjuvants, then subcutaneously injected in distinct groups. Blood samples were taken two weeks after each booster injection, and two booster shots were given at 2-week intervals. Sera were examined by ELISA for total IgG, isotypes (IgG1 and IgG2a), and cytokine production (IFN-γ and IL-4), respectively, to ascertain the kind of induced immune response. Experimental mice were challenged intraperitoneally with 5 × 108 CFU of bacteria 2 weeks after their last immunization, and the mortality rate and bacterial load were measured. Both immunogens elicited strong humoral immune responses, producing antibodies that improved opsonic capability, IFN-γ, and IL-4 production and protectivity in response to the experimental challenge. Compared to other immunized groups, the lysate formulation with Montanide ISA266 produced a greater antibody titer and IgG1 isotype and showed the highest vaccine potency. Additionally, combining the whole-cell vaccine (bacterin and lysate) with the adjuvant Montanide ISA266 increased IFN-γ and IL-4 cytokines response and protection in the experimental challenge. These findings show that avoiding S. aureus infection using active vaccination with inactivated whole-cell vaccines (bacterin and lysate) may be a successful strategy. The type of adjuvant in the vaccine formulation is important and influences vaccine potency and efficacy.
Collapse
Affiliation(s)
- Mandana Bagherzadeh
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Xu L, Hao F, Jeong DG, Chen R, Gan Y, Zhang L, Yeom M, Lim JW, Yu Y, Bai Y, Zeng Z, Liu Y, Xiong Q, Shao G, Wu Y, Feng Z, Song D, Xie X. Mucosal and cellular immune responses elicited by nasal and intramuscular inoculation with ASFV candidate immunogens. Front Immunol 2023; 14:1200297. [PMID: 37720232 PMCID: PMC10502713 DOI: 10.3389/fimmu.2023.1200297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
African swine fever (ASF) is an infectious disease caused by African swine fever virus (ASFV) that is highly contagious and has an extremely high mortality rate (infected by virulent strains) among domestic and wild pigs, causing huge economic losses to the pig industry globally. In this study, SDS-PAGE gel bands hybridized with ASFV whole virus protein combined with ASFV-convalescent and ASFV-positive pig serum were identified by mass spectrometry. Six antigens were detected by positive serum reaction bands, and eight antigens were detected in ASFV-convalescent serum. In combination with previous literature reports and proteins corresponding to MHC-II presenting peptides screened from ASFV-positive pig urine conducted in our lab, seven candidate antigens, including KP177R (p22), K78R (p10), CP204L (p30), E183L (p54), B602L (B602L), EP402R-N (CD2V-N) and F317L (F317L), were selected. Subunit-Group 1 was prepared by mixing above-mentioned seven ASFV recombinant proteins with MONTANIDETM1313 VG N mucosal adjuvant and immunizing pigs intranasally and intramuscularly. Subunit-Group 2 was prepared by mixing four ASFV recombinant proteins (p22, p54, CD2V-N1, B602L) with Montanide ISA 51 VG adjuvant and immunizing pigs by intramuscular injection. Anticoagulated whole blood, serum, and oral fluid were collected during immunization for flow cytometry, serum IgG as well as secretory sIgA antibody secretion, and cytokine expression testing to conduct a comprehensive immunogenicity assessment. Both immunogen groups can effectively stimulate the host to produce ideal humoral, mucosal, and cellular immune responses, providing a theoretical basis for subsequent functional studies, such as immunogens challenge protection and elucidation of the pathogenic mechanism of ASFV.
Collapse
Affiliation(s)
- Lulu Xu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rong Chen
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Lei Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Minjoo Yeom
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jong-Woo Lim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Yanfei Yu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yun Bai
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Guoqing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yuzi Wu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhixin Feng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Daesub Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Xing Xie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
3
|
Haghighi M, Khorasani A, Karimi P, Keshavarz R, Mahdavi M. Different Formulations of Inactivated SARS-CoV-2 Vaccine Candidates in Human Compatible Adjuvants: Potency Studies in Mice Showed Different Platforms of Immune Responses. Viral Immunol 2022; 35:663-672. [PMID: 36534465 DOI: 10.1089/vim.2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several inactivated SARS-CoV-2 vaccines have been approved for human use, but are not highly potent. In this study, different formulations of the inactivated SARS-CoV-2 virus were developed in Alum, Montanide 51VG, and Montanide ISA720VG adjuvants, followed by assessment of immune responses. The SARS-CoV-2 virus was inactivated with formalin and formulated in the adjuvants. BALB/c mice were immunized subcutaneously with 4 μg of vaccines on days 0 and 14; (IL-4) and (IFN-g), cytotoxic T lymphocyte (CTL) activity, and specific immunoglobulin G (IgG) titer and IgG1, IgG2a, and IgG2a/IgG1 ratio, and anti-receptor-binding domain (RBD) IgG response were assessed 2 weeks after the final immunization. Immunization with SARS-CoV-2-Montanide ISA51VG showed a significant increase in the IFN-γ cytokine versus SARS-CoV-2-Alum, SARS-CoV-2-Montanide ISA720VG, and control groups (p < 0.0033). Cytokine IL-4 response in SARS-CoV-2-Alum group showed a significant increase compared with SARS-CoV-2-Montanide ISA51VG, SARS-CoV-2-Montanide ISA720VG, and control groups (p < 0.0206). In addition, SARS-CoV-2-Montanide ISA51VG vaccine induced the highest IFN-γ/IL-4 cytokine ratio versus other groups (p < 0.0004). CTL activity in SARS-CoV-2-Montanide ISA51VG and SARS-CoV-2-Montanide ISA720VG groups showed a significant increase compared with SARS-CoV-2-Alum and control groups (p < 0.0075). Specific IgG titer in SARS-CoV-2-Montanide ISA51 VG and SARS-CoV-2-Montanide ISA720VG showed a significant increase compared with SARS-CoV-2-Alum and control groups (p < 0.0143). Results from specific IgG1and IgG2a in SARS-CoV-2-Alum, SARS-CoV-2-Montanide ISA51VG, and SARS-CoV-2-Montanide ISA720VG vaccine showed a significant increase compared with phosphate buffer saline (PBS) group (p < 0.0001), but SARS-CoV-2-Montanide ISA51VG and SARS-CoV-2-Montanide ISA 720VG groups showed the highest IgG2a/IgG1 ratio and a significant increase compared with SARS-CoV-2-Alum group (p < 0.0379). Moreover, inactivated SARS-CoV-2+Alum and SARS-CoV-2-Montanide ISA 720VG groups demonstrated a significant increase in anti-RBD IgG response versus the SARS-CoV-2-Montanide ISA51VG group. It seems that the type of vaccine formulation is a critical parameter, influencing the immunologic pattern and vaccine potency and human-compatible oil-based adjuvants were more potent than Alum adjuvant in the vaccine formulation.
Collapse
Affiliation(s)
- Melika Haghighi
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akbar Khorasani
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Pegah Karimi
- Department of Biochemistry, Faculty of Basic Sciences, Islamic Azad University, Tehran, Iran
| | - Rouhollah Keshavarz
- PPD Tuberculin Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits. Pharmaceutics 2022; 14:pharmaceutics14071434. [PMID: 35890330 PMCID: PMC9317422 DOI: 10.3390/pharmaceutics14071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious respiratory diseases caused by Bordetella bronchiseptica (Bb) are seriously endangering the development of the rabbit industry in China. Unfortunately, no licensed vaccines are available for this pathogen. The present study was designed to determine whether the inactivated Bb antigen formulated with vegetable oil adjuvant (named E515) which contains soybean oil, vitamin E, and ginseng saponins, functions as a safe and effective vaccine (E515-Bb) against Bb infection in rabbits. Based on local and systemic reactions, both the E515 adjuvant alone and the E515-Bb vaccine exhibited good safety in rabbits. Immune response analysis implies that rabbits immunized with the E515-Bb vaccine produced significantly higher, earlier, and longer-lasting specific antibody responses and activated Th1/Th2/Th17 cell responses than those immunized with the aluminum hydroxide (Alum)-adjuvanted Bb vaccine (Alum-Bb) or Bb antigen alone. Moreover, the E515-Bb vaccine effectively protected rabbits from Bb infection. Additionally, integrated multi-omics analysis revealed that the immunoprotective effect of the E515-Bb vaccine was achieved through upregulation of the complement and coagulation cascades and cell adhesion molecule (CAM) pathways, and the downregulation of the P53 pathway. Overall, these results indicate that the E515-Bb vaccine is safe, elicits an efficient immune response and provides good protection against Bb infection in rabbits. Thus, the E515-adjuvanted Bb vaccine can be considered a promising candidate vaccine for preventing Bb infection.
Collapse
|
5
|
Rezaei A, Shahabi G, Faezi S, Shafiee Ardestani M, Shirzad H, Azadmanesh K, Mirzajani E, Shajiei A, Mahdavi M. Adjuvant Effects of Pseudomonas aeruginosa Flagellin on the Immunological Patterns of the HIV-1 Vaccine Candidate: Vaccine Formulations Versus Different Routes of Immunization. Viral Immunol 2022; 35:150-158. [PMID: 35319970 DOI: 10.1089/vim.2021.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
New strategies to increase the immune response to HIV-1 vaccine using immunological adjuvants such as Toll-like receptor agonists are needed. In this study, HIV-1 p24-Nef and conjugated form of the vaccine candidate to type-A flagellin (FLA) were injected in the BALB/c mice in different routes. Two weeks after the last immunization, lymphocyte proliferation was measured by the BrdU method. The IL-4 and IFN-γ levels, as well as the total IgG antibody and its isotypes titer, were evaluated by the enzyme-linked immunosorbent assay method. The IFN-γ ELISPOT was also performed. Our data showed that the HIV-1 p24-Nef alone and conjugated to type-A flagellin (FLA) significantly increased lymphocyte proliferation responses as well as higher levels of cytokines and IFN-γ producing lymphocytes and the level of humoral immune responses compared with the control groups. The cell-mediated immune responses through the subcutaneous route and humoral immune responses through the intramuscular route were significantly higher in the conjugated form than in the mere vaccine candidate. In conclusion, when the FLA as an adjuvant is constructed in the HIV-1 vaccine candidate, it could effectively improve both humoral and cellular immune responses. Furthermore, modification in the vaccine formulation could change the optimal route of vaccine inoculation.
Collapse
Affiliation(s)
- Arezou Rezaei
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghorbanali Shahabi
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sobhan Faezi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedicine; Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy; Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine; Guilan University of Medical Sciences, Rasht, Iran
| | - Arezoo Shajiei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS); Tehran University of Medical Sciences, Tehran, Iran.,Recombinant Vaccine Research Center, Faculty of Pharmacy; Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|