1
|
Choudhary D, Nasiruddin Khan MD, Khan Z, Mehan S, Gupta GD, Narula AS, Samant R. Navigating the complexities of neuronal signaling and targets in neurological disorders: From pathology to therapeutics. Eur J Pharmacol 2025; 995:177417. [PMID: 40010482 DOI: 10.1016/j.ejphar.2025.177417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Neurological disorders arising from structural and functional disruptions in the nervous system present major global health challenges. This review examines the intricacies of various cellular signaling pathways, including Nrf2/Keap1/HO-1, SIRT-1, JAK/STAT3/mTOR, and BACE-1/gamma-secretase/MAPT, which play pivotal roles in neuronal health and pathology. The Nrf2-Keap1 pathway, a key antioxidant response mechanism, mitigates oxidative stress, while SIRT-1 contributes to mitochondrial integrity and inflammation control. Dysregulation of these pathways has been identified in neurodegenerative and neuropsychiatric disorders, including Alzheimer's and Parkinson's diseases, characterized by inflammation, protein aggregation, and mitochondrial dysfunction. Additionally, the JAK/STAT3 signaling pathway emphasizes the connection between cytokine responses and neuroinflammation, further compounding disease progression. This review explores the crosstalk among these signaling networks, elucidating how their disruption leads to neuronal decline. It also addresses the dual roles of these pathways, presenting challenges in targeting them for therapeutic purposes. Despite the potential benefits of activating neuroprotective pathways, excessive stimulation may cause deleterious effects, including tumorigenesis. Future research should focus on designing multi-targeted therapies that enhance the effectiveness and safety of treatments, considering individual variabilities and the obstacles posed by the blood-brain barrier to drug delivery. Understanding these complex signaling interactions is crucial for developing innovative and effective neuroprotective strategies that could significantly improve the management of neurological disorders.
Collapse
Affiliation(s)
- Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - M D Nasiruddin Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | | |
Collapse
|
2
|
Song S, Guo R, Guo J, Li B, Han Y, Zhang H, Guo L. Nicotinamide Adenine Dinucleotide Supplementation Improves Cuprizone-Induced Multiple Sclerosis-Related Behavioral Changes in C57BL/6J Mice. Brain Behav 2025; 15:e70525. [PMID: 40320991 PMCID: PMC12050637 DOI: 10.1002/brb3.70525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
OBJECTIVE To investigate whether nicotinamide adenine dinucleotide (NAD+) supplementation can improve behavioral changes in a cuprizone-intoxicated mouse model. METHODS Six-week-old C57BL/6J mice were divided into three groups: two were fed 0.2% cuprizone chow (cuprizone and cuprizone + NAD+ groups), and the other group was fed normal rodent chow (control group) for 4 weeks. The mice in the cuprizone + NAD+ group received 250 mg/kg/day NAD+ intraperitoneally once a day, while the other mice were administered saline simultaneously. Behavioral tests for spatial memory (Morris water maze and Y maze), locomotor ability (grip test and rotarod test), depression-like behavior (open field test and tail suspension test), and exploratory behavior (open field test) were conducted. RESULTS In the probe test of the Morris water maze, the cuprizone group spent a significantly smaller proportion of time in the target quadrant than the control group did (16.32% vs. 31.66%, p = 0.006). However, supplementation with NAD+ increased the value (28.78% vs. 16.32%, p = 0.023). Similarly, in the Y maze test, the cuprizone group demonstrated a notably lower ratio of effective alterations compared to the control group (0.543 vs. 0.648, p < 0.001), and the cuprizone + NAD+ group presented an improved ratio compared with the cuprizone group (0.613 vs. 0.543, p = 0.021). Compared with the control group, cuprizone toxicity resulted in a decreased time to fall (169.10 vs. 247.60 s, p = 0.015) in the grip test, but NAD+ supplementation mitigated this effect (261.60 vs. 169.10 s, p = 0.003). There were no significant differences in the immobile time among groups in both the tail suspension test and the open field test, and there were also no significant differences in center distance in the open field test. CONCLUSIONS Direct NAD+ supplementation improves the locomotor ability and spatial memory of cuprizone-intoxicated C57BL/6J mice. However, NAD+ supplementation does not show significant effects on depressive and exploratory behavior of experimental mice.
Collapse
Affiliation(s)
- Shuang Song
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Neurological Laboratory of Hebei ProvinceShijiazhuangHebeiChina
- Key Laboratory of Clinical Neurology, Ministry of EducationHebei Medical UniversityShijiazhuangHebeiChina
| | - Ruoyi Guo
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Neurological Laboratory of Hebei ProvinceShijiazhuangHebeiChina
- Key Laboratory of Clinical Neurology, Ministry of EducationHebei Medical UniversityShijiazhuangHebeiChina
| | - Jiangyuan Guo
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Neurological Laboratory of Hebei ProvinceShijiazhuangHebeiChina
- Key Laboratory of Clinical Neurology, Ministry of EducationHebei Medical UniversityShijiazhuangHebeiChina
| | - Bin Li
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Neurological Laboratory of Hebei ProvinceShijiazhuangHebeiChina
- Key Laboratory of Clinical Neurology, Ministry of EducationHebei Medical UniversityShijiazhuangHebeiChina
| | - Yusen Han
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Neurological Laboratory of Hebei ProvinceShijiazhuangHebeiChina
- Key Laboratory of Clinical Neurology, Ministry of EducationHebei Medical UniversityShijiazhuangHebeiChina
| | - Huining Zhang
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Neurological Laboratory of Hebei ProvinceShijiazhuangHebeiChina
- Key Laboratory of Clinical Neurology, Ministry of EducationHebei Medical UniversityShijiazhuangHebeiChina
| | - Li Guo
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Neurological Laboratory of Hebei ProvinceShijiazhuangHebeiChina
- Key Laboratory of Clinical Neurology, Ministry of EducationHebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
3
|
Zeng X, Zhang K, Liang M, Yu B, Zhang P, Mehmood A, Zhang H. NAD + affects differentially expressed genes- MBOAT2- SLC25A21- SOX6 in experimental autoimmune encephalomyelitis model. Int J Neurosci 2024:1-8. [PMID: 38315116 DOI: 10.1080/00207454.2024.2313022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) plays a key role in neuroinflammation and neurodegeneration and provides anti-inflammatory and neuroprotective effects in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). AIM In this study, we aimed to investigate whether NAD+ affects differentially expressed genes (DEGs) in splenocytes of EAE mice to reveal candidate genes for the pathogenesis of MS. METHODS The EAE model was used to perform an intervention on NAD+ to investigate its potential as a protective agent in inflammation and demyelination. Transcriptome analysis of nerve tissue was carried out to gain better insights into NAD+ function. Effects of NAD+ on DEGs in the splenocytes of EAE mice were investigated to determine its anti-inflammatory effect. RESULTS NAD+ in EAE mice showed the clinical score was significantly improved (EAE 3.190 ± 0.473 vs. NAD+ 2.049 ± 0.715). DEGs (MBOAT2, SLC25A21, and SOX6) between the EAE and the EAE + NAD+ groups showed that SOX6 was significantly improved after NAD+ treatment compared with the EAE group, and other indicators were improved but did not reach statistical significance. NAD+ exhibited clinical scores in EAE mice, and key inflammation was ameliorated in EAE mice spleen after NAD+ intervention, while transcriptome analysis between EAE and EAE + NAD+ groups showed several DEGs in the underlying mechanism. CONCLUSION NAD+ on DEGs attenuates disease severity in EAE. Transcriptome analysis on nerve tissue reveals several protein targets in the underlying mechanisms. However, NAD+ does not significantly improve DEGs in the splenocytes of the EAE model.
Collapse
Affiliation(s)
- Xu Zeng
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Kexue Zhang
- Senior Department of Pediatric, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ming Liang
- Senior Department of Pediatric, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Bin Yu
- Senior Department of Pediatric, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Hongtian Zhang
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Kaffe D, Kaplanis SI, Karagogeos D. The Roles of Caloric Restriction Mimetics in Central Nervous System Demyelination and Remyelination. Curr Issues Mol Biol 2023; 45:9526-9548. [PMID: 38132442 PMCID: PMC10742427 DOI: 10.3390/cimb45120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The dysfunction of myelinating glial cells, the oligodendrocytes, within the central nervous system (CNS) can result in the disruption of myelin, the lipid-rich multi-layered membrane structure that surrounds most vertebrate axons. This leads to axonal degeneration and motor/cognitive impairments. In response to demyelination in the CNS, the formation of new myelin sheaths occurs through the homeostatic process of remyelination, facilitated by the differentiation of newly formed oligodendrocytes. Apart from oligodendrocytes, the two other main glial cell types of the CNS, microglia and astrocytes, play a pivotal role in remyelination. Following a demyelination insult, microglia can phagocytose myelin debris, thus permitting remyelination, while the developing neuroinflammation in the demyelinated region triggers the activation of astrocytes. Modulating the profile of glial cells can enhance the likelihood of successful remyelination. In this context, recent studies have implicated autophagy as a pivotal pathway in glial cells, playing a significant role in both their maturation and the maintenance of myelin. In this Review, we examine the role of substances capable of modulating the autophagic machinery within the myelinating glial cells of the CNS. Such substances, called caloric restriction mimetics, have been shown to decelerate the aging process by mitigating age-related ailments, with their mechanisms of action intricately linked to the induction of autophagic processes.
Collapse
Affiliation(s)
- Despoina Kaffe
- Department of Biology, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
| | - Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
5
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. A comparison of rat models that best mimic immune-driven preeclampsia in humans. Front Endocrinol (Lausanne) 2023; 14:1219205. [PMID: 37842294 PMCID: PMC10569118 DOI: 10.3389/fendo.2023.1219205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Preeclampsia (PE), a hypertensive pregnancy disorder, can originate from varied etiology. Placenta malperfusion has long been considered the primary cause of PE. However, we and others have showed that this disorder can also result from heightened inflammation at the maternal-fetal interface. To advance our understanding of this understudied PE subtype, it is important to establish validated rodent models to study the pathophysiology and test therapies. We evaluated three previously described approaches to induce inflammation-mediated PE-like features in pregnant rats: 1) Tumor necrosis factor-α (TNF-α) infusion via osmotic pump from gestational day (GD) 14-19 at 50ng/day/animal; 2) Polyinosinic:polycytidylic acid (Poly I:C) intraperitoneal (IP) injections from GD 10-18 (alternate days) at 10mg/kg/day/animal; and, 3) Lipopolysaccharide (LPS) IP injections from GD 13-18 at 20ug-70ug/kg/day per animal. Maternal blood pressure was measured by tail-cuff. Upon sacrifice, fetal and placenta weights were recorded. Placenta histomorphology was assessed using H&E sections. Placenta inflammation was determined by quantifying TNF-α levels and inflammatory gene expression. Placenta metabolic and mitochondrial health were determined by measuring mitochondrial respiration rates and placenta NAD+/NADH content. Of the three rodent models tested, we found that Poly I:C and LPS decreased both fetal weight and survival; and correlated with a reduction in region specific placenta growth. As the least effective model characterized, TNF-α treatment resulted in a subtle decrease in fetal/placenta weight and placenta mitochondrial respiration. Only the LPS model was able to induce maternal hypertension and exhibited pronounced placenta metabolic and mitochondrial dysfunction, common features of PE. Thus, the rat LPS model was most effective for recapitulating features observed in cases of human inflammatory PE. Future mechanistic and/or therapeutic intervention studies focuses on this distinct PE patient population may benefit from the employment of this rodent model of PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alex Green
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keir J. Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Cui YR, Bu ZQ, Yu HY, Yan LL, Feng J. Emodin attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis. Neural Regen Res 2023; 18:1535-1541. [PMID: 36571359 PMCID: PMC10075100 DOI: 10.4103/1673-5374.358612] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Emodin, a substance extracted from herbs such as rhubarb, has a protective effect on the central nervous system. However, the potential therapeutic effect of emodin in the context of multiple sclerosis remains unknown. In this study, a rat model of experimental autoimmune encephalomyelitis was established by immune induction to simulate multiple sclerosis, and the rats were intraperitoneally injected with emodin (20 mg/kg/d) from the day of immune induction until they were sacrificed. In this model, the nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and the microglia exacerbated neuroinflammation, playing an important role in the development of multiple sclerosis. In addition, silent information regulator of transcription 1 (SIRT1)/peroxisome proliferator-activated receptor-alpha coactivator (PGC-1α) was found to inhibit activation of the NLRP3 inflammasome, and SIRT1 activation reduced disease severity in experimental autoimmune encephalomyelitis. Furthermore, treatment with emodin decreased body weight loss and neurobehavioral deficits, alleviated inflammatory cell infiltration and demyelination, reduced the expression of inflammatory cytokines, inhibited microglial aggregation and activation, decreased the levels of NLRP3 signaling pathway molecules, and increased the expression of SIRT1 and PGC-1α. These findings suggest that emodin improves the symptoms of experimental autoimmune encephalomyelitis, possibly through regulating the SIRT1/PGC-1α/NLRP3 signaling pathway and inhibiting microglial inflammation. These findings provide experimental evidence for treatment of multiple sclerosis with emodin, enlarging the scope of clinical application for emodin.
Collapse
Affiliation(s)
- Yue-Ran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhong-Qi Bu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hai-Yang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Li-Li Yan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
7
|
Plafker SM, Titcomb T, Zyla-Jackson K, Kolakowska A, Wahls T. Overview of diet and autoimmune demyelinating optic neuritis: a narrative review. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00022. [PMID: 37128292 PMCID: PMC10144304 DOI: 10.1097/in9.0000000000000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
This review summarizes the cellular and molecular underpinnings of autoimmune demyelinating optic neuritis (ADON), a common sequela of multiple sclerosis and other demyelinating diseases. We further present nutritional interventions tested for people with multiple sclerosis focusing on strategies that have shown efficacy or associations with disease course and clinical outcomes. We then close by discuss the potential dietary guidance for preventing and/or ameliorating ADON.
Collapse
Affiliation(s)
- Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tyler Titcomb
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katarzyna Zyla-Jackson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aneta Kolakowska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Terry Wahls
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Kubiliute A, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Bruzaite A, Zaliuniene D, Liutkeviciene R. The role of SIRT1 level and SIRT1 gene polymorphisms in optic neuritis patients with multiple sclerosis. Orphanet J Rare Dis 2023; 18:64. [PMID: 36949521 PMCID: PMC10031967 DOI: 10.1186/s13023-023-02665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/11/2023] [Indexed: 03/24/2023] Open
Abstract
THE AIM To investigate the role of Sirtuin 1 (SIRT1) level and SIRT1 (rs3818292, rs3758391, rs7895833) gene polymorphisms in patients with optic neuritis (ON) and multiple sclerosis (MS). METHODS 79 patients with ON and 225 healthy subjects were included in the study. ON patients were divided into 2 subgroups: patients with MS (n = 30) and patients without MS (n = 43). 6 ON patients did not have sufficient data for MS diagnosis and were excluded from the subgroup analysis. DNA was extracted from peripheral blood leukocytes and genotyped by real-time polymerase chain reaction. Results were analysed using the program "IBM SPSS Statistics 27.0". RESULTS We discovered that SIRT1 rs3758391 was associated with a twofold increased odds of developing ON under the codominant (p = 0.007), dominant (p = 0.011), and over-dominant (p = 0.008) models. Also, it was associated with a threefold increased odds ofON with MS development under the dominant (p = 0.010), twofold increased odds under the over-dominant (p = 0.032) models and a 1.2-fold increased odds of ON with MS development (p = 0.015) under the additive model. We also discovered that the SIRT1 rs7895833 was significantly associated with a 2.5-fold increased odds of ON development under the codominant (p = 0.001), dominant (p = 0.006), and over-dominant (p < 0.001) models, and a fourfold increased odds of ON with MS development under the codominant (p < 0.001), dominant (p = 0.001), over-dominant (p < 0.001) models and with a twofold increased odds of ON with MS development (p = 0.013) under the additive genetic model. There was no association between SIRT1 levels and ON with/without MS development. CONCLUSIONS SIRT1 rs3758391 and rs7895833 polymorphisms are associated with ON and ON with MS development.
Collapse
Affiliation(s)
- Aleksandra Kubiliute
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania.
| | - Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Akvile Bruzaite
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Dalia Zaliuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2 Str, 50161, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2 Str, 50161, Kaunas, Lithuania
| |
Collapse
|
9
|
Bu F, Huang S, Yang X, Wei L, Zhang D, Zhang Z, Tian D. Damage-induced NAD release activates intestinal CD4+ and CD8+ T cell via P2X7R signaling. Cell Immunol 2023; 385:104677. [PMID: 36746070 DOI: 10.1016/j.cellimm.2023.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Postoperative ileus (POI) is characterized by the activation of inflammation triggered by tissue damage. Damage-associated molecular patterns (DAMPs) reportedly induce local inflammation after injury. However, the impact of DAMPs on intestinal resident lymphocytes during POI remains poorly elucidated. METHODS POI in mice was induced via intestinal manipulation (IM). The concentration of nicotinamide adenine dinucleotide (NAD) was detected after IM. The gastrointestinal motility of the mice was assessed after IM or NAD injection. Cytokine production and calcium influx in T cells were investigated after NAD stimulation using flow cytometry. RESULTS The concentration of extracellular NAD significantly increased after IM administration, and NAD directly impaired gastrointestinal motility. Intraperitoneal injection of NAD promoted the expression of TNF-α in intestinal CD8+ and CD4+ T cells, but only IFN-γ production by CD8+ T cells was significantly promoted by NAD injection. Granzyme B production in CD8+ and CD4+ T cells decreased after administration. Concordantly, the same results were observed in NAD stimulation of intestinal CD3+ T cells in vitro. Blocking the P2X7R-related membrane enzyme ART2.2 significantly diminished the pro-inflammatory effect of NAD. CONCLUSION IM includes the release of NAD derived from damaged tissues, consequently promoting pro-inflammatory cytokine production in intestinal CD4+ and CD8+ T lymphocytes. NAD-induced intestinal T cells activation may be associated with POI progression in the mouse.
Collapse
Affiliation(s)
- Fandi Bu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyang Huang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China
| | - Xiaobao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luyang Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Dan Tian
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
10
|
Zyla-Jackson K, Walton DA, Plafker KS, Kovats S, Georgescu C, Brush RS, Tytanic M, Agbaga MP, Plafker SM. Dietary protection against the visual and motor deficits induced by experimental autoimmune encephalomyelitis. Front Neurol 2023; 14:1113954. [PMID: 36937529 PMCID: PMC10017782 DOI: 10.3389/fneur.2023.1113954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Five to eight percent of the world population currently suffers from at least one autoimmune disorder. Despite multiple immune modulatory therapies for autoimmune demyelinating diseases of the central nervous system, these treatments can be limiting for subsets of patients due to adverse effects and expense. To circumvent these barriers, we investigated a nutritional intervention in mice undergoing experimental autoimmune encephalomyelitis (EAE), a model of autoimmune-mediated demyelination that induces visual and motor pathologies similar to those experienced by people with multiple sclerosis (MS). Methods EAE was induced in female and male mice and the impact of limiting dietary carbohydrates by feeding a ketogenic diet (KD) enriched in medium chain triglycerides (MCTs), alpha-linolenic acid (an omega-3 fatty acid), and fiber was evaluated in both a preventive regimen (prior to immunization with MOG antigen) and an interventional regimen (following the onset of symptoms). Motor scores were assigned daily and visual acuity was measured using optokinetic tracking. Immunohistochemical analyses of optic nerves were done to assess inflammatory infiltrates and myelination status. Fatty acid and cytokine profiling from blood were performed to evaluate systemic inflammatory status. Results The KD was efficacious when fed as a preventive regimen as well as when initiated as an interventional regimen following symptom onset. The KD minimally impacted body weight during the experimental time course, increased circulating ketones, prevented motor and ocular deficits, preserved myelination of the optic nerve, and reduced infiltration of immune cells to optic nerves. The KD also increased anti-inflammatory-associated omega-3 fatty acids in the plasma and reduced select cytokines in the circulation associated with EAE-mediated pathological inflammation. Discussion In light of ongoing clinical trials using dietary strategies to treat people with MS, these findings support that a KD enriched in MCTs, omega-3 fatty acids, and fiber promotes a systemic anti-inflammatory milieu and ameliorates autoimmune-induced demyelinating visual and motor deficits.
Collapse
Affiliation(s)
- Katarzyna Zyla-Jackson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Dorothy A. Walton
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kendra S. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Richard S. Brush
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Madison Tytanic
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Scott M. Plafker
| |
Collapse
|
11
|
Liao C, Zhang L, Jiang R, Hu D, Xu J, Hu K, Jiang S, Li L, Yang Y, Huang J, Tang L, Li L. Nicotinamide adenine dinucleotide attenuates acetaminophen-induced acute liver injury via activation of PARP1, Sirt1, and Nrf2 in mice. Can J Physiol Pharmacol 2022; 100:796-805. [PMID: 35983933 DOI: 10.1139/cjpp-2022-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the protective effect of nicotinamide adenine dinucleotide (NAD+) against acute liver injury (ALI) induced by acetaminophen (APAP) overdose in mice. First, serum transaminases were used to assess the protective effect of NAD+, and the data revealed that NAD+ mitigated the APAP-induced ALI in a dose-dependent manner. Then, we performed hematoxylin-eosin staining of liver tissues and found that NAD+ alleviated the abnormalities of histopathology. Meanwhile, increase in the malondialdehyde content and decrease in glutathione, superoxide dismutase (SOD), and glutathione peroxidase were identified in the APAP group, which were partially prevented by the NAD+ pretreatment. Moreover, compared with the mice treated with APAP only, the expression of poly ADP-ribose polymerase 1 (PARP1), Sirtuin1 (Sirt1), SOD2, nuclear factor erythroid 2-related factor 2 (Nrf2), and hemoxygenase-1 was upregulated, while Kelch-like ECH-associated protein 1 and histone H2AX phosphorylated on Ser-139 were downregulated by NAD+ in NAD+ + APAP group. Conversely, NAD+ could not correct the elevated expression of phospho-Jun N-terminal kinase and phospho-extracellular signal-regulated kinase induced by APAP. Taken together, these findings suggest that NAD+ confers an anti-ALI effect to enhance the expression of PARP1 and Sirt1, and to simultaneously stimulate the Nrf2 anti-oxidant signaling pathway.
Collapse
Affiliation(s)
- Cuiting Liao
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Da Hu
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Juanjuan Xu
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Kai Hu
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Shifang Jiang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Longhui Li
- Center of Health Management, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400000, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Tang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Piacente F, Bottero M, Benzi A, Vigo T, Uccelli A, Bruzzone S, Ferrara G. Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23084352. [PMID: 35457169 PMCID: PMC9025744 DOI: 10.3390/ijms23084352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Myeloid cells, including parenchymal microglia, perivascular and meningeal macrophages, and dendritic cells (DCs), are present in the central nervous system (CNS) and establish an intricate relationship with other cells, playing a crucial role both in health and in neurological diseases. In this context, DCs are critical to orchestrating the immune response linking the innate and adaptive immune systems. Under steady-state conditions, DCs patrol the CNS, sampling their local environment and acting as sentinels. During neuroinflammation, the resulting activation of DCs is a critical step that drives the inflammatory response or the resolution of inflammation with the participation of different cell types of the immune system (macrophages, mast cells, T and B lymphocytes), resident cells of the CNS and soluble factors. Although the importance of DCs is clearly recognized, their exact function in CNS disease is still debated. In this review, we will discuss modern concepts of DC biology in steady-state and during autoimmune neuroinflammation. Here, we will also address some key aspects involving DCs in CNS patrolling, highlighting the neuroprotective nature of DCs and emphasizing their therapeutic potential for the treatment of neurological conditions. Recently, inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demonstrated to delay the onset of experimental autoimmune encephalomyelitis, by dampening DC trafficking towards inflamed LNs. Thus, a special focus will be dedicated to sirtuins’ role in DCs functions.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
- Correspondence: ; Tel.: +39-(0)10-353-8150
| | - Giovanni Ferrara
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| |
Collapse
|