1
|
Li Y, Xiao G, Fu X, Luo X, Yang F, Li Y, Zheng Z. CH25H/25-HC promotes pulmonary fibrosis via AMPK/STAT6 pathway-dependent M2 macrophage polarization in COPD. Immunobiology 2025; 230:152908. [PMID: 40311344 DOI: 10.1016/j.imbio.2025.152908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/04/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is intricately linked to pulmonary fibrosis, yet the underlying mechanisms remain unclear. This study investigates whether CH25H/25-hydroxycholesterol (25-HC) promotes pulmonary fibrosis in COPD by modulating AMPK/STAT6-dependent M2 macrophage polarization. METHODS Using GEO datasets and a cigarette smoke-induced COPD mouse model, we analyzed CH25H expression and fibrotic pathology. CH25H was silenced via adeno-associated virus (AAV)-delivered shRNA. Histopathology, flow cytometry, qPCR, and Western blotting assessed fibrosis, macrophage polarization (M1/M2), and AMPK/STAT6 pathway activity. Bone marrow-derived macrophages (BMDMs) were employed to validate polarization mechanisms. The role of the AMPK/STAT6 pathway was investigated using the specific activator. RESULTS Analysis of the GEO database and experimental verification showed significantly increased CH25H expression in both lung tissues and macrophages from COPD mice. CH25H knockdown alleviated alveolar damage, airway remodeling, and pulmonary fibrosis in COPD mice, evidenced by reduced expression of fibrosis-related proteins, improved lung function, and attenuated inflammatory responses. Moreover, CH25H knockdown inhibited M2 macrophage polarization and decreased the proportion of M2-type macrophages. Importantly, decreased levels of 25-HC following CH25H knockdown were asso ciated with suppressed activation of the AMPK/STAT6 pathway. Rescue experiments demonstrated that the protective effects of CH25H knockdown could be reversed by adding the AMPKα activator GSK621. CONCLUSION Our findings demonstrate that CH25H/25-HC exacerbates COPD-associated pulmonary fibrosis by promoting AMPK/STAT6-dependent M2 macrophage polarization. Targeting CH25H may represent a novel therapeutic strategy for mitigating fibrosis in COPD.
Collapse
Affiliation(s)
- Ying Li
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangzhi Xiao
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xianghui Fu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xing Luo
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fengfan Yang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yadan Li
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Guo S, Zhang Q, Guo Y, Yin X, Zhang P, Mao T, Tian Z, Li X. The role and therapeutic targeting of the CCL2/CCR2 signaling axis in inflammatory and fibrotic diseases. Front Immunol 2025; 15:1497026. [PMID: 39850880 PMCID: PMC11754255 DOI: 10.3389/fimmu.2024.1497026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
CCL2, a pivotal cytokine within the chemokine family, functions by binding to its receptor CCR2. The CCL2/CCR2 signaling pathway plays a crucial role in the development of fibrosis across multiple organ systems by modulating the recruitment and activation of immune cells, which in turn influences the progression of fibrotic diseases in the liver, intestines, pancreas, heart, lungs, kidneys, and other organs. This paper introduces the biological functions of CCL2 and CCR2, highlighting their similarities and differences concerning fibrotic disorders in various organ systems, and reviews recent progress in the diagnosis and treatment of clinical fibrotic diseases linked to the CCL2/CCR2 signaling pathway. Additionally, further in-depth research is needed to explore the clinical significance of the CCL2/CCR2 axis in fibrotic conditions affecting different organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Wang Y, Ge J, Dou M, Cheng X, Chen X, Ma L, Xie J. Inhibition of CCR2 attenuates NLRP3-dependent pyroptosis after myocardial ischaemia-reperfusion in rats via the NF-kB pathway. Int Immunopharmacol 2025; 145:113803. [PMID: 39672029 DOI: 10.1016/j.intimp.2024.113803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Myocardial infarction (MI) is a leading cause of mortality worldwide, contributing significantly to long-term cardiac dysfunction and heart failure. Effective therapeutic strategies are urgently needed to mitigate the extensive damage caused by MI and subsequent ischemia-reperfusion (I/R) injury. This study investigates the role of the Chemokine receptor 2 (CCR2) in regulating NLRP3-dependent cardiomyocyte pyroptosis following myocardial ischemia-reperfusion (MIR), elucidating its molecular mechanisms. A myocardial ischemia-reperfusion model was established using 124 Sprague-Dawley rats by ligating the left coronary artery, inducing 30 min of ischemia. Following ischemia, RS504393, a selective CCR2 antagonist, was administered intraperitoneally one hour after reperfusion. To further explore the underlying mechanisms, the NF-κB pathway agonist Phorbol 12-myristate 13-acetate (PMA) was administered 1 h post-MIR. The results showed a marked increase in CCR2 expression in the heart, peaking on the first day of reperfusion. Treatment with RS504393 significantly improved short-term cardiac function and reduced myocardial infarction size, decreased myocardial pyroptosis and suppressed the expression of NLRP3, GSDMD, Caspase-1, IL-1β, and IL-18 through inhibition of the NF-κB signaling pathway. This effect was reversed with the administration of PMA. In summary, the inhibition of CCR2 shows potential in mitigating myocardial injury following MIR by modulating the NF-κB signaling pathway. These findings highlight CCR2 as a promising therapeutic target for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China; Department of Electrocardiography, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Jinlong Ge
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230001, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xueying Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230001, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xinran Chen
- Department of Electrocardiography, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Lan Ma
- Department of Electrocardiography, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Jun Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China.
| |
Collapse
|
4
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed Pharmacother 2024; 177:117079. [PMID: 38968801 DOI: 10.1016/j.biopha.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-β1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Geng J, Zhang X, Zhang Y, Meng X, Sun J, Zhou B, Ma J. TGFβ2 mediates oxidative stress-induced epithelial-to-mesenchymal transition of bladder smooth muscle. In Vitro Cell Dev Biol Anim 2024; 60:793-804. [PMID: 38409639 PMCID: PMC11297077 DOI: 10.1007/s11626-024-00864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Bladder outlet obstruction (BOO) is the primary clinical manifestation of benign prostatic hyperplasia, the most common urinary system disease in elderly men, and leads to associated lower urinary tract symptoms. Although BOO is reportedly associated with increased systemic oxidative stress (OS), the underlying mechanism remains unclear. The elucidation of this mechanism is the primary aim of this study. A Sprague-Dawley rat model of BOO was constructed and used for urodynamic monitoring. The bladder tissue of rats was collected and subjected to real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), histological examination, and immunohistochemical staining. Through bioinformatics prediction, we found that transforming growth factor β2 (TGFβ2) expression was upregulated in rats with BOO compared with normal bladder tissue. In vitro analyses using primary bladder smooth muscle cells (BSMCs) revealed that hydrogen peroxide (H2O2) induced TGFβ2 expression. Moreover, H2O2 induced epithelial-to-mesenchymal transition (EMT) by reducing E-cadherin, an endothelial marker and CK-18, a cytokeratin maker, and increasing mesenchymal markers, including N-cadherin, vimentin, and α-smooth muscle actin (α-SMA) levels. The downregulation of TGFβ2 expression in BSMCs using siRNA technology alleviated H2O2-induced changes in EMT marker expression. The findings of the study indicate that TGFβ2 plays a crucial role in BOO by participating in OS-induced EMT in BSMCs.
Collapse
Affiliation(s)
- Jingwen Geng
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Xiaofan Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Yansong Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Xiaojia Meng
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jinqi Sun
- Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Bo Zhou
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jun Ma
- Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| |
Collapse
|
7
|
Hwang S, Cho JM, Yoon YJ, Seo S, Hong Y, Lim JY. Retroductal dexamethasone administration promotes the recovery from obstructive and inflammatory salivary gland dysfunction. Front Immunol 2024; 15:1418703. [PMID: 39044831 PMCID: PMC11263033 DOI: 10.3389/fimmu.2024.1418703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Salivary gland dysfunction, often resulting from salivary gland obstruction-induced inflammation, is a prevalent condition. Corticosteroid, known for its anti-inflammatory and immunomodulatory properties, is commonly prescribed in clinics. This study investigates the therapeutic implications and potential side effects of dexamethasone on obstructive sialadenitis recovery using duct ligation mice and salivary gland organoid models. Methods Functional and pathological changes were assessed after administering dexamethasone to the duct following deligation 2 weeks after maintaining ligation of the mouse submandibular duct. Additionally, lipopolysaccharide- and tumor necrosis factor-induced salivary gland organoid inflammation models were established to investigate the effects and underlying mechanisms of action of dexamethasone. Results Dexamethasone administration facilitated SG function restoration, by increasing salivary gland weight and saliva volume while reducing saliva lag time. Histological evaluation revealed, reduced acinar cell atrophy and fibrosis with dexamethasone treatment. Additionally, dexamethasone suppressed pro-inflammatory cytokines IL-1β and TNF expression. In a model of inflammation in salivary gland organoids induced by inflammatory substances, dexamethasone restored acinar markers such as AQP5 gene expression levels, while inhibiting pro-inflammatory cytokines TNF and IL6, as well as chemokines CCL2, CXCL5, and CXCL12 induction. Macrophages cultured in inflammatory substance-treated media from salivary gland organoid cultures exhibited pro-inflammatory polarization. However, treatment with dexamethasone shifted them towards an anti-inflammatory phenotype by reducing M1 markers (Tnf, Il6, Il1b, and Cd86) and elevating M2 markers (Ym1, Il10, Cd163, and Klf4). However, high-dose or prolonged dexamethasone treatment induced acino-ductal metaplasia and had side effects in both in vivo and in vitro models. Conclusions Our findings suggest the effectiveness of corticosteroids in treating obstructive sialadenitis-induced salivary gland dysfunction by regulating pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunyoung Seo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yongpyo Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Su H, Zou R, Su J, Chen X, Yang H, An N, Yang C, Tang J, Liu H, Yao C. Sterile inflammation of peritoneal membrane caused by peritoneal dialysis: focus on the communication between immune cells and peritoneal stroma. Front Immunol 2024; 15:1387292. [PMID: 38779674 PMCID: PMC11109381 DOI: 10.3389/fimmu.2024.1387292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Peritoneal dialysis is a widely used method for treating kidney failure. However, over time, the peritoneal structure and function can deteriorate, leading to the failure of this therapy. This deterioration is primarily caused by infectious and sterile inflammation. Sterile inflammation, which is inflammation without infection, is particularly concerning as it can be subtle and often goes unnoticed. The onset of sterile inflammation involves various pathological processes. Peritoneal cells detect signals that promote inflammation and release substances that attract immune cells from the bloodstream. These immune cells contribute to the initiation and escalation of the inflammatory response. The existing literature extensively covers the involvement of different cell types in the sterile inflammation, including mesothelial cells, fibroblasts, endothelial cells, and adipocytes, as well as immune cells such as macrophages, lymphocytes, and mast cells. These cells work together to promote the occurrence and progression of sterile inflammation, although the exact mechanisms are not fully understood. This review aims to provide a comprehensive overview of the signals from both stromal cells and components of immune system, as well as the reciprocal interactions between cellular components, during the initiation of sterile inflammation. By understanding the cellular and molecular mechanisms underlying sterile inflammation, we may potentially develop therapeutic interventions to counteract peritoneal membrane damage and restore normal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cuiwei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Chen J, Peng L, Chen G, Chen Y, Zeng X, Zhang J, Zhang C, Shen H, Liao B, Luo D. Single-cell transcriptomics reveal the remodeling landscape of bladder in patients with obstruction-induced detrusor underactivity. MedComm (Beijing) 2024; 5:e490. [PMID: 38414668 PMCID: PMC10896249 DOI: 10.1002/mco2.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Detrusor underactivity (DUA) is a common and thorny problem in urology, which severely impairs patients' bladder function and quality of life. However, its underlying pathophysiological mechanism remains unclear. Hence, we sequenced 69,973 cells from five controls and nine patients with bladder dysfunction using single-cell RNA sequencing. Twelve distinct cell types were identified and they showed high cellular and functional heterogeneity among each group. Among them, fibroblasts, macrophages, and epithelial cells had the most intercellular communications. Their aberrant gene expressions and altered intercellular interactions were mainly involved in extracellular matrix organization, inflammation/immune regulation, and cellular injury. Further re-cluster analysis revealed an accumulation of the RBFOX1+ fibroblasts and RIPOR2+ macrophages in dysfunctional bladder wall, which mediated bladder remodeling through dysfunctional extracellular matrix organization and inflammation/immune reaction. Besides, the subtype of the epithelial cells was significantly altered. They underwent an intricate process including inflammation, damage, and repair during bladder remodeling. Overall, this work constructed the first single-cell atlas for obstruction-induced DUA, which could provide a valuable resource for deciphering the cellular heterogeneity and function changes in DUA, as well as potential strategies for bladder function improvement.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
| | - Liao Peng
- Department of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
| | - Guo Chen
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology and Pelvic surgeryWest China School of Public Health and West China Fourth HospitalSichuan UniversitySichuanChina
| | - Yuanzhuo Chen
- Department of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
| | - Xiao Zeng
- Department of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
| | - Jie Zhang
- Department of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
| | - Chi Zhang
- Department of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
| | - Hong Shen
- Department of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
| | - Banghua Liao
- Department of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
| | - Deyi Luo
- Department of UrologyWest China HospitalSichuan UniversitySichuanChina
- Department of Urology, Institute of UrologyWest China HospitalSichuan UniversitySichuanChina
- Pelvic Floor Diseases CenterWest China Tianfu HospitalSichuan UniversitySichuanChina
| |
Collapse
|
10
|
Long J, Yang Y, Yang J, Chen L, Wang S, Zhou X, Su Y, Liu C. Targeting Thbs1 reduces bladder remodeling caused by partial bladder outlet obstruction via the FGFR3/p-FGFR3 pathway. Neurourol Urodyn 2024; 43:516-526. [PMID: 38108523 DOI: 10.1002/nau.25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Partial bladder outlet obstruction (pBOO) may lead to bladder remodeling, including fibrosis and extracellular matrix (ECM) deposition. Despite the extensive research on the mechanisms underlying pBOO, potential therapeutic targets for the treatment of pBOO require further research. Dysregulated expression of thrombospondin-1 (Thbs1) has been reported in various human fibrotic diseases; however, its relationship with pBOO remains unclear. AIMS Investigate the effects of Thbs1 on bladder remodeling caused by pBOO. METHODS We established a pBOO model in Sprague-Dawley rats and performed urodynamic analyses to estimate functional changes in the bladder, validated the histopathological changes in the bladder by using haematoxylin-eosin and Masson's trichrome staining, identified key target genes by integrating RNA sequencing (RNA-seq) and bioinformatics analyses, validated the expression of related factors using Western blot analysis and RT-qPCR, and used immunofluorescence staining to probe the potential interaction factors of Thbs1. RESULTS Urodynamic results showed that pressure-related parameters were significantly increased in rats with pBOO. Compared with the sham group, the pBOO group demonstrated significant increases in bladder morphology, bladder weight, and collagen deposition. Thbs1 was significantly upregulated in the bladder tissues of rats with pBOO, consistent with the RNA-seq data. Thbs1 upregulation led to increased expression of matrix metalloproteinase (MMP) 2, MMP9, and fibronectin (Fn) in normal human urinary tract epithelial cells (SV-HUC-1), whereas anti-Thbs1 treatment inhibited the production of these cytokines in TGF-β1-treated SV-HUC-1. Further experiments indicated that Thbs1 affected bladder remodeling in pBOO via the fibroblast growth factor receptor 3 (FGFR3) pathway. CONCLUSIONS Thbs1 plays a crucial role in bladder remodeling caused by pBOO. Targeting Thbs1 might alleviate ECM damage. Mechanistically, Thbs1 may function via the FGFR signaling pathway by regulating the FGFR3 receptor, identified as the most relevant disease target of pBOO, and FGF2 may be a mediator. These findings suggest that Thbs1 plays a role in BOO development and is a therapeutic target for this condition.
Collapse
Affiliation(s)
- Jun Long
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yafei Yang
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jin Yang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Lin Chen
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Song Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Zhou
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yao Su
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Chenhuan Liu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Alkubaisi BO, Aljobowry R, Ali SM, Sultan S, Zaraei SO, Ravi A, Al-Tel TH, El-Gamal MI. The latest perspectives of small molecules FMS kinase inhibitors. Eur J Med Chem 2023; 261:115796. [PMID: 37708796 DOI: 10.1016/j.ejmech.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raya Aljobowry
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Salma M Ali
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sara Sultan
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
12
|
Chen G, Gao X, Chen J, Peng L, Chen S, Tang C, Dai Y, Wei Q, Luo D. Actomyosin Activity and Piezo1 Activity Synergistically Drive Urinary System Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303369. [PMID: 37867255 PMCID: PMC10667826 DOI: 10.1002/advs.202303369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Indexed: 10/24/2023]
Abstract
Mechanical cues play a crucial role in activating myofibroblasts from quiescent fibroblasts during fibrosis, and the stiffness of the extracellular matrix is of significant importance in this process. While intracellular force mediated by myosin II and calcium influx regulated by Piezo1 are the primary mechanisms by which cells sense and respond to mechanical forces, their intercellular mechanical interaction remains to be elucidated. Here, hydrogels with tunable substrate are used to systematically investigate the crosstalk of myosin II and Piezo1 in fibroblast to myofibroblast transition (FMT). The findings reveal that the two distinct signaling pathways are integrated to convert mechanical stiffness signals into biochemical signals during bladder-specific FMT. Moreover, it is demonstrated that the crosstalk between myosin II and Piezo1 sensing mechanisms synergistically establishes a sustained feed-forward loop that contributes to chromatin remodeling, induces the expression of downstream target genes, and ultimately exacerbates FMT, in which the intracellular force activates Piezo1 by PI3K/PIP3 pathway-mediated membrane tension and the Piezo1-regulated calcium influx enhances intracellular force by the classical FAK/RhoA/ROCK pathway. Finally, the multifunctional Piezo1 in the complex feedback circuit of FMT drives to further identify that targeting Piezo1 as a therapeutic option for ameliorating bladder fibrosis and dysfunction.
Collapse
Affiliation(s)
- Guo Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Urology and Pelvic surgeryWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xiaoshuai Gao
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Jiawei Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Liao Peng
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Shuang Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Cai Tang
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yi Dai
- Department of Urology and Pelvic surgeryWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Deyi Luo
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
13
|
Yuan J. CCR2: A characteristic chemokine receptor in normal and pathological intestine. Cytokine 2023; 169:156292. [PMID: 37437448 DOI: 10.1016/j.cyto.2023.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
C-C motif chemokine receptor 2 (CCR2), together with its ligands, especially C-C motif ligand 2 (CCL2), to which CCR2 has the highest affinity, form a noteworthy signaling pathway in recruiting macrophages for the immune responses among variegated disorders in vivo environment. Scientometric methods are used to analyze intestine-related CCR2 expression. We describe the current knowledge on biological function of CCR2 in physiological intestine in three dimensions, namely its effects on stromal cells, angiogenesis, and remodeling. However, anomalous expression of CCR2 has also been conveyed to correlate with detrimental outcomes in intestine, such as infective colitis, inflammatory bowel disease, carcinogenesis, and colon-related metastasis. In this article, we briefly summarize recent experimental works on CCR2 and its ligands, mostly CCL2, in intestinal-related physiological and pathological states to ravel out their working mechanisms in intestinal diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Zhao H, Zhang HL, Jia L. High glucose dialysate-induced peritoneal fibrosis: Pathophysiology, underlying mechanisms and potential therapeutic strategies. Biomed Pharmacother 2023; 165:115246. [PMID: 37523983 DOI: 10.1016/j.biopha.2023.115246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Peritoneal dialysis is an efficient renal replacement therapy for patients with end-stage kidney disease. However, continuous exposure of the peritoneal membrane to dialysate frequently leads to peritoneal fibrosis, which alters the function of the peritoneal membrane and results in withdrawal from peritoneal dialysis in patients. Among others, high glucose dialysate is considered as a predisposing factor for peritoneal fibrosis in patients on peritoneal dialysis. Glucose-induced inflammation, metabolism disturbance, activation of the renin-angiotensin-aldosterone system, angiogenesis and noninflammation-induced reactive oxygen species are implicated in the pathogenesis of high glucose dialysate-induced peritoneal fibrosis. Specifically, high glucose causes chronic inflammation and recurrent peritonitis, which could cause migration and polarization of inflammatory cells, as well as release of cytokines and fibrosis. High glucose also interferes with lipid metabolism and glycolysis by activating the sterol-regulatory element-binding protein-2/cleavage-activating protein pathway and increasing hypoxia inducible factor-1α expression, leading to angiogenesis and peritoneal fibrosis. Activation of the renin-angiotensin-aldosterone system and Ras-mitogen activated protein kinase signaling pathway is another contributing factor in high glucose dialysate-induced fibrosis. Ultimately, activation of the transforming growth factor-β1/Smad pathway is involved in mesothelial-mesenchymal transition or epithelial-mesenchymal transition, which leads to the development of fibrosis. Although possible intervention strategies for peritoneal dialysate-induced fibrosis by targeting the transforming growth factor-β1/Smad pathway have occasionally been proposed, lack of laboratory evidence renders clinical decision-making difficult. We therefore aim to revisit the upstream pathways of transforming growth factor-beta1/Smad and propose potential therapeutic targets for high glucose-induced peritoneal fibrosis.
Collapse
Affiliation(s)
- Hanxue Zhao
- First Clinical Medical College, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, No. 83 Shuangqing Road, Beijing 100085, China.
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China.
| |
Collapse
|
15
|
Lei W, Jia L, Wang Z, Liang Z, Aizhen Z, Liu Y, Tian Y, Zhao L, Chen Y, Shi G, Yang Z, Yang Y, Xu X. CC chemokines family in fibrosis and aging: From mechanisms to therapy. Ageing Res Rev 2023; 87:101900. [PMID: 36871782 DOI: 10.1016/j.arr.2023.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.
Collapse
Affiliation(s)
- Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, 430064, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Zhao Aizhen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yawu Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guangyong Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
16
|
Wang W, Xiao D, Lin L, Gao X, Peng L, Chen J, Xiao K, Zhu S, Chen J, Zhang F, Xiong Y, Chen H, Liao B, Zhou L, Lin Y. Antifibrotic Effects of Tetrahedral Framework Nucleic Acids by Inhibiting Macrophage Polarization and Macrophage-Myofibroblast Transition in Bladder Remodeling. Adv Healthc Mater 2023; 12:e2203076. [PMID: 36603196 DOI: 10.1002/adhm.202203076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Bladder outlet obstruction (BOO) is a prevalent condition arising from urethral stricture, posterior urethral valves, and benign prostatic hyperplasia. Long-term obstruction can lead to bladder remodeling, which is characterized by inflammatory cell infiltration, detrusor hypertrophy, and fibrosis. Until now, there are no efficacious therapeutic options for BOO-induced remodeling. Tetrahedral framework nucleic acids (tFNAs) are a type of novel 3D DNA nanomaterials that possess excellent antifibrotic effects. Here, to determine the treatment effects of tFNAs on BOO-induced remodeling is aimed. Four single-strand DNAs are self-assembled to form tetrahedral framework DNA nanostructures, and the antifibrotic effects of tFNAs are investigated in an in vivo BOO animal model and an in vitro transforming growth factor beta1 (TGF-β1)-induced fibrosis model. The results demonstrated that tFNAs could ameliorate BOO-induced bladder fibrosis and dysfunction by inhibiting M2 macrophage polarization and the macrophage-myofibroblast transition (MMT) process. Furthermore, tFNAs regulate M2 polarization and the MMT process by deactivating the signal transducer and activator of transcription (Stat) and TGF-β1/small mothers against decapentaplegic (Smad) pathways, respectively. This is the first study to reveal that tFNAs might be a promising nanomaterial for the treatment of BOO-induced remodeling.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Lede Lin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoshuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Liao Peng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Jiawei Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Shiyu Zhu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Jixiang Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Yang Xiong
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Huiling Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
17
|
Wang W, Sun W, Gao X, Peng L, Lin L, Xiao K, Liu Y, Di X, Zhu S, Chen H, Zhou L. The preventive effects of colony-stimulating factor 1 receptor (CSF-1R) inhibition on bladder outlet obstruction induced remodeling. Neurourol Urodyn 2022; 41:787-796. [PMID: 35170790 DOI: 10.1002/nau.24896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Bladder outlet obstruction (BOO) is a common problem that can affect bladder structure and function. Currently, there is no effective drugs available to prevent BOO-induced remodeling. Previous reports have demonstrated that the pathogenesis of BOO is associated with macrophage infiltration and polarization, which is physiologically dependent on colony-stimulating factor 1 receptor (CSF-1R) activation. Here we utilized a highly selective CSF-1R inhibitor, GW2580, to determine its preventive effects on BOO-induced remodeling. METHODS A total of 24 Sprague-Dawley rats were randomly divided into sham, BOO + vehicle, and BOO + GW2580 group. GW2580 or vehicle control was administrated by oral gavage at daily doses of 40 mg/kg for 6 weeks. Bladder samples were collected for histopathology, immunohistochemistry, immunofluorescence, western blotting, and flow cytometry analysis. RESULTS Our results demonstrated that bladder fibrosis was ameliorated by GW2580 compared with the vehicle group (22.01% ± 5.13% vs. 32.15% ± 7.24%, p < 0.01). Furthermore, treatment with GW2580 induced an inhibition of macrophage infiltration (4.41% ± 1.28% vs. 13.57% ± 3.42%, p < 0.001) and M2 macrophage polarization (10.67% ± 4.15% vs. 28.59% ± 6.38%, p < 0.001). There was also a decrease of profibrotic F4/80+ α-smooth muscle actin+ (α-SMA+ ) macrophage to myofibroblast transition (9.11% ± 2.58% vs. 17.33% ± 4.01%, p < 0.001) and CD163+ TGF-β1+ cells (7.68% ± 2.10% vs. 14.17% ± 4.09%, p < 0.01) in the GW2580 group when compared with the vehicle group. CONCLUSIONS In summary, our findings showed that GW2580 is a worthwhile candidate for a follow-up study to test in the treatment of BOO-induced remodeling.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjin Sun
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuai Gao
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liao Peng
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lede Lin
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kaiwen Xiao
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingpeng Di
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyu Zhu
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Huiling Chen
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Zhou
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
He J, Yang J, Chen L, He P, Liu X, Wang K, Dong T, Li J, Ma X, Bastian A, Arnulf S. SGK1-targeted TRPV1 regulates bladder smooth muscle cell proliferation due to BOO in mice via NFAT2. IUBMB Life 2022; 74:463-473. [PMID: 35148462 PMCID: PMC9303793 DOI: 10.1002/iub.2605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Bladder outlet obstruction (BOO) is a type of chronic disease that is mainly caused by benign prostatic hyperplasia. Previous studies discovered the involvements of both SGK1 and NFAT2 in the proliferation of smooth muscle cells after BOO. However, the relationship between these two molecules is yet to be explored. Thus, this study explored the specific mechanism of the SGK1-NFAT2 signaling pathway in mouse BOO-mediated BSMC proliferation in vivo and in vitro. MATERIALS AND METHODS In vivo experiments were performed by suturing 1/2 of the external urethra of female BALB/C mice to cause BOO for 2 weeks. In vitro, MBSMCs were treated with dexamethasone (Dex) or dexamethasone + SB705498 for 12 hours and were transfected with SGK1 siRNA for 48 hours. The expression and distribution of SGK1, TRPV1, NFAT2, and PCNA were measured by Western blotting, polymerase chain reaction and immunohistochemistry. The relationship between SGK1 and TRPV1 was analyzed by immunoprecipitation. The proliferation of MBSMCs was examined by EdU and CCK-8 assays. Bladder weight, smooth muscle thickness and collagen deposition in mice after 2 weeks of BOO were examined. RESULTS Bladder weight, smooth muscle thickness, the collagen deposition ratio and the expression of SGK1, TRPV1, NFAT2, and PCNA were significantly increased in mice after 2 weeks of BOO. Compared with the control, 10 μM Dex promoted the expression of these four molecules and the proliferation of MBSMCs. After inhibiting TRPV1, only the expression of SGK1 was not affected, and the proliferation of MBSMCs was inhibited. After silencing SGK1, the expression of these four molecules and the proliferation of MBSMCs decreased. CoIP suggested that SGK1 acted directly on TRPV1. CONCLUSION In this study, SGK1 targeted TRPV1 to regulate the proliferation of MBSMCs mediated by BOO in mice through NFAT2 and then affected the process of bladder remodeling after BOO. This finding may provide a strategy for BOO drug target screening. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiangshu He
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Chen
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Pinglin He
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xun Liu
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Kai Wang
- Department of Urology, Xichang People's Hospital, Xichang, Sichuan, China
| | - Taotao Dong
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jia Li
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xudong Ma
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Amend Bastian
- Department of Urology, University of Tübingen, D- 72070 Tübingen, Baden-W¨1rttemberg, Germany
| | - Stenzl Arnulf
- Department of Urology, University of Tübingen, D- 72070 Tübingen, Baden-W¨1rttemberg, Germany
| |
Collapse
|