1
|
Wang M, Wang Y, Wang X, Qiu Y, Li C, Li H, Li H, Yu J. Lactoferrin ameliorates cognitive impairment in D-galactose-induced aging mice by regulating the PI3K/Akt/mTOR signaling pathway and the microbiome-gut-brain axis. Int J Biol Macromol 2025; 309:143033. [PMID: 40222540 DOI: 10.1016/j.ijbiomac.2025.143033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Lactoferrin (LF) has been shown to be effective in attenuating oxidative stress, neuroinflammation, but its potential and mechanisms in alleviating brain aging remain to be clarified. In this study, the effect of different doses of LF (L: 50, M: 500 and H: 2000 mg/kg) on D-galactose (D-gal)-induced brain aging C57BL/6 mice was evaluated. The results showed that body weight, mobility, and spatial memory capacity of aging mice were restored after LF (M & H) intervention. It also attenuated hippocampal neuronal damage and intestinal barrier damage in aging mice. LF (M & H) increased brain and serum levels of antioxidant defense enzymes (SOD, GSH, CAT) and decreased colon and serum levels of inflammatory factors (IL-1β, IL-6 and TNF-α). Western blotting results showed that LF (M & H) increased LC3II/I, Beclin1 expression, decreased p-mTOR, p-akt, and p62 expression, and restored autophagy through the PI3K/Akt/m-TOR pathway. Furthermore, LF (M & H) protected the intestinal barrier by regulating the ratio of Firmicutes/Bacteroidetes and increased levels of the beneficial metabolites short chain fatty acids (SCFAs). Notably, LF (H) exhibited the best anti-aging potential. 500 mg/kg/day LF intervention may be cost-effective in prevents brain aging by regulating the autophagy pathway and the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Mengqi Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yi Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Xin Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaqi Qiu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Cong Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongbo Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Hongjuan Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jinghua Yu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Yang J, Gao J, E Y, Jiao L, Wu R, Yan Q, Wei Z, Yan G, Liang J, Li H. Hydrogen sulfide inhibits skeletal muscle ageing by up-regulating autophagy through promoting deubiquitination of adenosine 5'-monophosphate (AMP)-activated protein kinase α1 via ubiquitin specific peptidase 5. J Cachexia Sarcopenia Muscle 2024; 15:2118-2133. [PMID: 39189428 PMCID: PMC11446701 DOI: 10.1002/jcsm.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/16/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S), the third gasotransmitter discovered, regulates a variety of physiological functions. Whether H2S alleviates skeletal muscle ageing by regulating autophagy has not been reported. METHODS Mice were administered 150 mg/kg/day of D-galactose (D-gal), and C2C12 myotubes were cultured in 20 g/L D-gal to induce ageing. Sodium hydrosulfide (NaHS) was employed as an exogenous donor in the treatment group. The intracellular concentration of H2S was quantified by the 7-azido-4-methylcoumarin fluorescence probe. The proteins involved in the ubiquitin-mediated degradation of AMPKα1 were detected by liquid chromatography tandem mass spectrometry (LC-MS/MS) and co-immunoprecipitation (Co-IP). S-sulfhydration of USP5 was tested by a biotin-switch assay. Associated proteins were analysed by western blot. RESULTS NaHS was found to effectively restore the H2S content in both ageing gastrocnemius (+91.89%, P < 0.001) and C2C12 myotubes (+27.55%, P < 0.001). In comparison to the D-gal group, NaHS was observed to increase the mean cross-sectional area of muscle fibres (+44.91%, P < 0.001), to decrease the collagen volume fraction of gastrocnemius (-81.32%, P = 0.001) and to reduce the β-galactosidase-positive area of C2C12 myotubes (-28.74%, P < 0.001). NaHS was also found to reverse the expression of muscle atrophy F box protein (MAFbx), muscle-specific RING finger protein 1 (MuRF1), Cyclin D1 and p21 in the ageing gastrocnemius tissue (MAFbx: -31.73%, P = 0.008; MuRF1: -32.37%, P = 0.003; Cyclin D1: +45.34%, P = 0.010; p21: -25.53%, P = 0.022) and C2C12 myotubes (MAFbx: -16.38%, P < 0.001; MuRF1: -16.45%, P = 0.003; Cyclin D1: +40.23%, P < 0.001; p21: -35.85%, P = 0.026). The AMPKα1-ULK1 pathway was activated and autophagy was up-regulated in NaHS-treated gastrocnemius tissue (p-AMPKα1: +61.61%, P = 0.018; AMPKα1: +30.64%, P = 0.010; p-ULK1/ULK1: +85.87%, P = 0.005; p62: -29.07%, P < 0.001; Beclin1: +24.75%, P = 0.007; light chain 3 II/I [LC3 II/I]: +55.78%, P = 0.004) and C2C12 myotubes (p-AMPKα1: +77.49%, P = 0.018; AMPKα1: +26.18%, P = 0.022; p-ULK1/ULK1: +38.34%, P = 0.012; p62: -9.02%, P = 0.014; Beclin1: +13.36%, P < 0.001; LC3 II/I: +79.38%, P = 0.017; autophagy flux: +24.88%, P = 0.034) compared with the D-gal group. The effects of NaHS on autophagy were comparable to those of acadesine and LYN-1604, and chloroquine could reverse its effects on ageing. LC-MS/MS and Co-IP experiments demonstrated that USP5 is a deubiquitinating enzyme of AMPKα1. Following the knockdown of USP5, the activation of AMPKα1 was decreased (p-AMPKα1: -42.10%, P < 0.001; AMPKα1: -43.93%, P < 0.001), autophagy was inhibited (p-ULK1/ULK1: -27.51, P = 0.001; p62: +36.00, P < 0.001; Beclin1: -22.15%, P < 0.001) and NaHS lost its ability to up-regulate autophagy. NaHS was observed to restore the expression (gastrocnemius: +62.17%, P < 0.001; C2C12 myotubes: +37.51%, P = 0.003) and S-sulfhydration (+53.07%, P = 0.009) of USP5 and reduce the ubiquitination of AMPKα1. CONCLUSIONS H2S promotes the deubiquitination of AMPKα1 by increasing the expression and S-sulfhydration of USP5, thereby up-regulating autophagy and alleviating skeletal muscle ageing.
Collapse
Affiliation(s)
- Jia‐He Yang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Jun Gao
- Department of Emergency MedicineXiangan Hospital of Xiamen UniversityXiamenFujianChina
| | - Ya‐Qi E
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Li‐Jie Jiao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Ren Wu
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Qiu‐Yi Yan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Zi‐Yi Wei
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Guo‐Liang Yan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Jin‐Long Liang
- Department of General SurgeryXiamen Fifth HospitalXiamenFujianChina
| | - Hong‐Zhu Li
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| |
Collapse
|
3
|
Younis RL, El-Gohary RM, Ghalwash AA, Hegab II, Ghabrial MM, Aboshanady AM, Mostafa RA, El-Azeem AHA, Farghal EE, Belal AAE, Khattab H. Luteolin Mitigates D-Galactose-Induced Brain Ageing in Rats: SIRT1-Mediated Neuroprotection. Neurochem Res 2024; 49:2803-2820. [PMID: 38987448 PMCID: PMC11365848 DOI: 10.1007/s11064-024-04203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Luteolin is an essential natural polyphenol found in a variety of plants. Numerous studies have supported its protective role in neurodegenerative diseases, yet the research for its therapeutic utility in D-galactose (D-gal)-induced brain ageing is still lacking. In this study, the potential neuroprotective impact of luteolin against D-gal-induced brain ageing was explored. Forty rats were randomly divided into four groups: control, luteolin, D-gal, and luteolin-administered D-gal groups. All groups were subjected to behavioural, cholinergic function, and hippocampal mitochondrial respiration assessments. Hippocampal oxidative, neuro-inflammatory, senescence and apoptotic indicators were detected. Gene expressions of SIRT1, BDNF, and RAGE were assessed. Hippocampal histopathological studies, along with GFAP and Ki67 immunoreactivity, were performed. Our results demonstrated that luteolin effectively alleviated D-gal-induced cognitive impairment and reversed cholinergic abnormalities. Furthermore, luteolin administration substantially mitigated hippocampus oxidative stress, mitochondrial dysfunction, neuro-inflammation, and senescence triggered by D-gal. Additionally, luteolin treatment considerably attenuated neuronal apoptosis and upregulated hippocampal SIRT1 mRNA expression. In conclusion, our findings revealed that luteolin administration attenuated D-gal-evoked brain senescence, improving mitochondrial function and enhancing hippocampal neuroregeneration in an ageing rat model through its antioxidant, senolytic, anti-inflammatory, and anti-apoptotic impacts, possibly due to upregulation of SIRT1. Luteolin could be a promising therapeutic modality for brain aging-associated abnormalities.
Collapse
Affiliation(s)
- Reham L Younis
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa A Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Islam Ibrahim Hegab
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Bio-Physiology Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Maram M Ghabrial
- Anatomy & Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Azza M Aboshanady
- Anatomy & Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Raghad A Mostafa
- Clinical and Chemical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Alaa H Abd El-Azeem
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman E Farghal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa A E Belal
- Neuropsychiatry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Haidy Khattab
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
4
|
Zhang K, Zhao C, Liu K, Feng R, Zhao Y, Zong Y, Du R. Oral Administration of Deer Bone Collagen Peptide Can Enhance the Skin Hydration Ability and Antioxidant Ability of Aging Mice Induced by D-Gal, and Regulate the Synthesis and Degradation of Collagen. Nutrients 2024; 16:1548. [PMID: 38892482 PMCID: PMC11174718 DOI: 10.3390/nu16111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Skin problems caused by aging have attracted much attention, and marine collagen peptides have been proved to improve these problems, while mammalian collagen peptides are rarely reported. In this study, fermented deer bone collagen peptide (FCP) and non-fermented deer bone collagen peptide (NCP) were extracted from fermented and non-fermented deer bone, respectively, and their peptide sequences and differential proteins were analyzed using LC-MS/MS technology. After they were applied to aging mice induced with D-gal, the skin hydration ability, antioxidant ability, collagen synthesis, and degradation ability of the mice were studied. The results show that FCP and NCP are mainly peptides that constitute type Ⅰ collagen, and their peptide segments are different. In vivo experiments show that FCP and NCP can improve the richness of collagen fibers in the skin of aging mice; improve the hydration ability of skin; promote the activity of antioxidant-related enzymes; and also show that through the TGF-β and MAPK pathways, the synthesis and degradation of collagen in skin are regulated. These results show that deer bone collagen peptide can improve skin problems caused by aging, promote skin hydration and antioxidant capacity of aging mice, and regulate collagen synthesis and degradation through the MAPK pathway.
Collapse
Affiliation(s)
- Ke Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Chenxu Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Kaiyue Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Ruyi Feng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Zhou D, Sun Y, Dong C, Wang Z, Zhao J, Li Z, Huang G, Li W. Folic acid alleviated oxidative stress-induced telomere attrition and inhibited apoptosis of neurocytes in old rats. Eur J Nutr 2024; 63:291-302. [PMID: 37870657 DOI: 10.1007/s00394-023-03266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE Oxidative stress has been reported to cause telomere attrition, which triggers cell apoptosis. Apoptosis of neurocytes may play an essential role in the pathogenesis of neurodegenerative diseases. This study hypothesized that folic acid (FA) supplementation decreased neurocyte apoptosis by alleviating oxidative stress-induced telomere attrition in 25-month-old Sprague Dawley (SD) rats. METHODS Three-month-old male SD rats were randomly divided into four diet groups by different concentrations of folic acid in equal numbers, with intervention for 22 months. Folate, homocysteine (Hcy), reactive oxygen species (ROS) levels, antioxidant activities, and telomere length in the brain tissues were tested at 11, 18, and 22 months of intervention, and 8-hydroxy-deoxyguanosine (8-OHdG) levels, neurocyte apoptosis and telomere length in the cerebral cortex and hippocampal regions were tested during the 22-month intervention. An automated chemiluminescence system, auto-chemistry analyzer, Q-FISH, qPCR, and TUNEL assay were used in this study. RESULTS The rats had lower folate concentrations and higher Hcy, ROS, and 8-OHdG concentrations in brain tissue with aging. However, FA supplementation increased folate concentrations and antioxidant activities while decreasing Hcy, ROS, and 8-OHdG levels in rat brain tissue after 11, 18, and 22 months of intervention. Furthermore, FA supplementation alleviated telomere length shortening and inhibited neurocyte apoptosis during the 22-month intervention. CONCLUSION FA supplementation alleviated oxidative stress-induced telomere attrition and inhibited apoptosis of neurocytes in 25-month-old rats.
Collapse
Affiliation(s)
- Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yue Sun
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Zehao Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Jing Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
6
|
Liang L, Huang Y, Chen L, Shi Z, Wang H, Zhang T, Li Z, Mi J, Fan T, Lu Y, Chen F, Huang W, Hu K. Radioprotective efficacy of Astilbin in mitigating radiation-induced lung injury through inhibition of p53 acetylation. ENVIRONMENTAL TOXICOLOGY 2023; 38:2967-2980. [PMID: 37598414 DOI: 10.1002/tox.23931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Radiation-induced lung injury (RILI) is a common side effect in thoracic tumor patients undergoing radiotherapy. At present, there is no ideal radio-protective agent which is widely used in RILI treatment. Astilbin (AST), a bioactive flavonoid, exhibits various biological effects, including anti-inflammatory, antioxidant, and anti-fibrotic activities, which partly result from reducing oxidative stress and inflammation in various pathogenic conditions. However, the protective efficacy of AST to ameliorate RILI has not been reported. In this study, we employed network pharmacology, RNA sequencing, and experimental evaluation to reveal the effects and pharmacological mechanism of AST to treat RILI in vivo and in vitro. We observed that AST reduced radiation-induced apoptosis, DNA damage, inflammatory reactions, and the reactive oxygen species (ROS) level in human normal lung epithelial cells BEAS-2B. Further study showed that AST treatment significantly ameliorated RILI by reducing the radiation-induced pathology changes and inflammatory reaction of lung tissue in C57BL/6J mice. Mechanistically, the expression of epithelial-mesenchymal transition (EMT) markers and radiation-triggered acetylation of the p53 protein were alleviated by AST treatment. Furthermore, AST alleviated the acetylation of p53 after intervention of Trichostatin A (TSA). Our data indicate that AST can alleviate RILI by inhibiting inflammatory reactions and the EMT process through decreasing the expression of p53 acetylation. In conclusion, our study suggests that AST has great potential to be a new protective and therapeutic compound for RILI.
Collapse
Affiliation(s)
- Lixing Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yaqin Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Liuyin Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhiling Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Housheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhixun Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Jinglin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Ting Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yushuang Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Fuli Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Weimei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| |
Collapse
|
7
|
Zhong ZQ, Li R, Wang Z, Tian SS, Xie XF, Wang ZY, Na W, Wang QS, Pan YC, Xiao Q. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance. Animal 2023; 17:100882. [PMID: 37406393 DOI: 10.1016/j.animal.2023.100882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Heat stress is a major problem that constrains pig productivity. Understanding and identifying adaptation to heat stress has been the focus of recent studies, and the identification of genome-wide selection signatures can provide insights into the mechanisms of environmental adaptation. Here, we generated whole-genome re-sequencing data from six Chinese indigenous pig populations to identify genomic regions with selection signatures related to heat tolerance using multiple methods: three methods for intra-population analyses (Integrated Haplotype Score, Runs of Homozygosity and Nucleotide diversity Analysis) and three methods for inter-population analyses (Fixation index (FST), Cross-population Composite Likelihood Ratio and Cross-population Extended Haplotype Homozygosity). In total, 1 966 796 single nucleotide polymorphisms were identified in this study. Genetic structure analyses and FST indicated differentiation among these breeds. Based on information on the location environment, the six breeds were divided into heat and cold groups. By combining two or more approaches for selection signatures, outlier signals in overlapping regions were identified as candidate selection regions. A total of 163 candidate genes were identified, of which, 29 were associated with heat stress injury and anti-inflammatory effects. These candidate genes were further associated with 78 Gene Ontology functional terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways in enrichment analysis (P < 0.05). Some of these have clear relevance to heat resistance, such as the AMPK signalling pathway and the mTOR signalling pathway. The results improve our understanding of the selection mechanisms responsible for heat resistance in pigs and provide new insights of introgression in heat adaptation.
Collapse
Affiliation(s)
- Z Q Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - R Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Z Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S S Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - X F Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Z Y Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - W Na
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Q S Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y C Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Q Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Zhang JJ, Hu RY, Chen KC, Liu YB, Hou YY, Zhang YZ, Feng ZM, Chen RX, Zheng YN, Liu S, Li W. 20(S)-protopanaxatriol inhibited D-galactose-induced brain aging in mice via promoting mitochondrial autophagy flow. Phytother Res 2023. [PMID: 37037488 DOI: 10.1002/ptr.7779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 01/29/2023] [Indexed: 04/12/2023]
Abstract
Previous reports have confirmed that saponins (ginsenosides) derived from Panax ginseng. C. A. Meyer exerted obvious memory-enhancing and antiaging effects, and the simpler the structure of ginsenosides, the better the biological activity. In this work, we aimed to explore the therapeutic effect and underlying molecular mechanism of 20(S)-protopanaxatriol (PPT), the aglycone of panaxatriol-type ginsenosides, by establishing D-galactose (D-gal)-induced subacute brain aging model in mice. The results showed that PPT treatment (10 and 20 mg/kg) for 4 weeks could significantly restore the D-gal (800 mg/kg for 8 weeks)-induced impaired memory function, choline dysfunction, and redox system imbalance in mice. Meanwhile, PPT also significantly reduced the histopathological changes caused by D-gal exposure. Moreover, PPT could increase TFEB/LAMP2 protein expression to promote mitochondrial autophagic flow. Importantly, the results from molecular docking showed that PPT had good binding ability with LAMP2 and TFEB, suggesting that TFEB/LAMP2 might play an important role in PPT to alleviate D-gal-caused brain aging.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Rui-Yi Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Ke-Cheng Chen
- Looking Up Starry Sky Medical Research Center, Siping, 136001, China
| | - Yong-Bo Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Yun-Yi Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Yu-Zhuo Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi-Meng Feng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ri-Xin Chen
- Looking Up Starry Sky Medical Research Center, Siping, 136001, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shuang Liu
- Goldenwell Biotechnology, Inc., Reno, Nevada, 89501, USA
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| |
Collapse
|
9
|
Su J, He T, You J, Cao J, Wang Q, Cao S, Mei Q, Zeng J, Liu L. Therapeutic effect and underlying mechanism of Shenkang injection against cisplatin-induced acute kidney injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115805. [PMID: 36216195 DOI: 10.1016/j.jep.2022.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenkang injection (SKI), a Chinese patent medicine injection, has been approved for the treatment of chronic kidney disease (CKD) due to its definite clinical therapeutic efficacy. However, the effect and associated underlying mechanism of Shenkang injection against cisplatin (CDDP)-induced acute kidney injury (AKI) has not yet been well elucidated. AIM OF THE STUDY This study aims to investigate the therapeutic effect and associated underlying mechanism of Shenkang injection against CDDP-induced AKI. MATERIALS AND METHODS We established a CDDP-induced AKI mouse model to evaluate renal function by biochemical markers measurement and to observe histopathological alterations by haemotoxylin and eosin (HE)-staining sections of renal. In addition, the distribution of representative components of SKI in the kidneys of mice was evaluated by liquid chromatography tandem mass spectrometry (LC-MS/MS). Furthermore, the degree of oxidative stress and inflammation were assessed by detecting the levels of inflammatory cytokines and oxidants, while the related mechanisms were elucidated by network pharmacology. RESULTS CDDP could induce excessive inflammation and severe injury to the kidneys of mice. However, SKI significantly ameliorated the kidney damages and improved the renal function by reducing the levels of renal function markers (SCr, BUN and urine protein), and inhibiting the production of inflammatory cytokines IL-34, IL-6 and TNF-α. SKI repaired oxidative balance through up-regulation of antioxidants SOD and GSH and down-regulated oxidants MDA. Moreover, 4 components from SKI were detected in the kidney by LC-MS/MS quantification. In addition, pharmacology network indicated the PI3K/AKT, TNF, MAPK, and p53 were the possible signaling pathways for the therapeutic effect of SKI against CDDP-induced AKI, which were related to inflammation, oxidative stress and apoptosis. CONCLUSION In the present study, we for the first time demonstrated that SKI alleviates CDDP-induced nephrotoxicity by antioxidant and anti-inflammation via regulating PI3K/AKT, MAPK, TNF, and p53 signaling pathways. The study may provide a scientific rationale for the clinical indication of SKI.
Collapse
Affiliation(s)
- Jiahan Su
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou New Drug Evaluation and Research Center, Luzhou, Sichuan, 646000, China
| | - Tingting He
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou New Drug Evaluation and Research Center, Luzhou, Sichuan, 646000, China
| | - Jing You
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; The People's Hospital of DaZhu, Dazhou, Sichuan, 635000, China
| | - Jingjie Cao
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qianru Wang
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shousong Cao
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qibing Mei
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou New Drug Evaluation and Research Center, Luzhou, Sichuan, 646000, China
| | - Jing Zeng
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Li Liu
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
10
|
Zhou H, Liu S, Zhang N, Fang K, Zong J, An Y, Chang X. Downregulation of Sirt6 by CD38 promotes cell senescence and aging. Aging (Albany NY) 2022; 14:9730-9757. [PMID: 36490326 PMCID: PMC9792202 DOI: 10.18632/aging.204425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Decreased nicotinamide adenine dinucleotide (NAD+) levels accompany aging. CD38 is the main cellular NADase. Cyanidin-3-O-glucoside (C3G), a natural inhibitor of CD38, is a well-known drug that extends the human lifespan. We investigated mechanisms of CD38 in cell senescence and C3G in antiaging. Myocardial H9c2 cells were induced to senescence with D-gal. CD38 siRNA, C3G and UBCS039 (a chemical activator of Sirt6) inhibited D-gal-induced senescence by reducing reactive oxygen species, hexokinase 2 and SA-β-galactosidase levels. These activators also stimulated cell proliferation and telomerase reverse transcriptase levels, while OSS-128167 (a chemical inhibitor of Sirt6) and Sirt6 siRNA exacerbated the senescent process. H9c2 cells that underwent D-gal-induced cell senescence increased CD38 expression and decreased Sirt6 expression; CD38 siRNA and C3G decreased CD38 expression and increased Sirt6 expression, respectively; and Sirt6 siRNA stimulated cell senescence in the presence of C3G and CD38 siRNA. In D-gal-induced acute aging mice, CD38 and Sirt6 exhibited increased and decreased expression, respectively, in myocardial tissues, and C3G treatment decreased CD38 expression and increased Sirt6 expression in the tissues. C3G also reduced IL-1β, IL-6, IL-17A, TNF-α levels and restored NAD+ and NK cell levels in the animals. We suggest that CD38 downregulates Sirt6 expression to promote cell senescence and C3G exerts an antiaging effect through CD38-Sirt6 signaling.
Collapse
Affiliation(s)
- Hongji Zhou
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China,Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shihai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - NanYang Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Kehua Fang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinbao Zong
- Clinical Laboratory and Central Laboratory, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Yi An
- Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
11
|
Hao M, Ding C, Peng X, Chen H, Dong L, Zhang Y, Chen X, Liu W, Luo Y. Ginseng under forest exerts stronger anti-aging effects compared to garden ginseng probably via regulating PI3K/AKT/mTOR pathway, SIRT1/NF-κB pathway and intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154365. [PMID: 35930860 DOI: 10.1016/j.phymed.2022.154365] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ginseng is deemed to be an effective anti-aging therapy. Evidence for differences in representative active ingredients and anti-aging effects between garden ginseng (GG) and ginseng under forest (FG) is insufficient. PURPOSE The study was designed to systematically analyze the differences in the mechanistic protective effects of GG and FG on aging mice based on their compositional differences. METHODS The chemical ingredients in GG and FG were first determined. In vivo, D-galactose-induced aging mice were orally administered GG or FG (400 mg/kg/day) for 6 weeks. Behavioral parameters of mice were measured by the radial 8-arm maze, and the changes in body weight and organ indices were recorded. Blood, brain tissue, and feces were collected for biochemical analysis, histopathological staining, Western blotting, and 16S rDNA intestinal flora sequencing, respectively. RESULTS The absolute contents of total ginsenosides, polyphenols, crude polysaccharides, starch, and protein in GG were 0.71, 0.68, 1.15, 2.27, and 1.08 folds higher than those in FG, respectively; while FG exhibited a higher relative abundance of representative active ingredients (total ginsenosides, polyphenols, crude polysaccharides, and protein) but lower relative content of starch than GG. GG and FG improved hippocampal lesions and poor weight gain, organ indices, and behavioral indices, and prevented excessive oxidative stress and acetylcholinesterase activity in aging mice. What's more, GG and FG treatment ameliorated excessive apoptosis and inflammatory reaction in the aging brain by modulating apoptosis-related proteins, PI3K/AKT/mTOR pathway, and SIRT1/NF-κB pathway. GG and FG also restored the diversity and structure of gut microbiota, up-regulated the relative abundance of beneficial bacteria (e.g., Lactobacillus), and tended to exert key anti-aging effects via the microbiota-gut-brain axis. Notably, in vivo experiments confirmed that FG had a stronger anti-aging activity than GG. CONCLUSION FG exerts a more powerful anti-aging effect than GG by regulating oxidative stress, apoptosis, inflammation, and the microbe-gut-brain axis, possibly relying on the higher relative abundance of representative active ingredients (total ginsenosides, polyphenols, crude polysaccharides, and protein) in FG.
Collapse
Affiliation(s)
- Mingqian Hao
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China; School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China.
| | - Xiaojuan Peng
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Huiying Chen
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ling Dong
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yue Zhang
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xueyan Chen
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Wencong Liu
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; College of Resources and Environment Sciences, Jilin Agricultural University, Changchun, China.
| | - Yunqing Luo
- College of Resources and Environment Sciences, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
12
|
Wang W, Xu C, Zhou X, Zhang L, Gu L, Liu Z, Ma J, Hou J, Jiang Z. Lactobacillus plantarum Combined with Galactooligosaccharides Supplement: A Neuroprotective Regimen Against Neurodegeneration and Memory Impairment by Regulating Short-Chain Fatty Acids and the c-Jun N-Terminal Kinase Signaling Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8619-8630. [PMID: 35816280 DOI: 10.1021/acs.jafc.2c01950] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Probiotics and prebiotics have received attention in alleviating neurodegenerative diseases. Lactobacillus plantarum (L. plantarum) 69-2 was combined with galactooligosaccharides (GOS) and supplemented in a d-galactose (d-gal)-induced neurodegeneration and memory impairment mice model to explore its effects on the brain and the regulation of short-chain fatty acids. The results showed that the L. plantarum-GOS supplementation inhibited d-gal-induced oxidative stress and increased the brain's nuclear factor erythroid 2-related factor 2 (Nrf2) levels. Butyrate, a metabolite of the gut microbiota regulated by L. plantarum combined with GOS, inhibits p-JNK expression, downregulates pro-apoptotic proteins expression and the activation of inflammatory mediators, and upregulates synaptic protein expression. This might be a potential mechanism for L. plantarum 69-2 combined with GOS supplementation to alleviate d-gal-induced neurodegeneration and memory impairment. This study sheds new light on the development of aging-related neuroprotective dietary supplements based on the gut-brain axis.
Collapse
Affiliation(s)
- Wan Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xuan Zhou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Le Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liya Gu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhijing Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jiage Ma
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
13
|
Han X, Sun J, Niu T, Mao B, Gao S, Zhao P, Sun L. Molecular Insight into the Binding of Astilbin with Human Serum Albumin and Its Effect on Antioxidant Characteristics of Astilbin. Molecules 2022; 27:molecules27144487. [PMID: 35889360 PMCID: PMC9321622 DOI: 10.3390/molecules27144487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Astilbin is a dihydroflavonol glycoside identified in many natural plants and functional food with promising biological activities which is used as an antioxidant in the pharmaceutical and food fields. This work investigated the interaction between astilbin and human serum albumin (HSA) and their effects on the antioxidant activity of astilbin by multi-spectroscopic and molecular modeling studies. The experimental results show that astilbin quenches the fluorescence emission of HSA through a static quenching mechanism. Astilbin and HSA prefer to bind at the Site Ⅰ position, which is mainly maintained by electrostatic force, hydrophobic and hydrogen bonding interactions. Multi-spectroscopic and MD results indicate that the secondary structure of HSA could be changed because of the interaction of astilbin with HSA. DPPH radical scavenging assay shows that the presence of HSA reduces the antioxidant capacity of astilbin. The explication of astilbin–HSA binding mechanism will provide insights into clinical use and resource development of astilbin in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiangyu Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
| | - Jing Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianmei Niu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
| | - Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
| | - Shijie Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
- Correspondence: (P.Z.); (L.S.)
| | - Linlin Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Correspondence: (P.Z.); (L.S.)
| |
Collapse
|
14
|
Fu Q, Duan R, Sun Y, Li Q. Hyperbaric oxygen therapy for healthy aging: From mechanisms to therapeutics. Redox Biol 2022; 53:102352. [PMID: 35649312 PMCID: PMC9156818 DOI: 10.1016/j.redox.2022.102352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT), a technique through which 100% oxygen is provided at a pressure higher than 1 atm absolute (ATA), has become a well-established treatment modality for multiple conditions. The noninvasive nature, favorable safety profile, and common clinical application of HBOT make it a competitive candidate for several new indications, one of them being aging and age-related diseases. In fact, despite the conventional wisdom that excessive oxygen accelerates aging, appropriate HBOT protocols without exceeding the toxicity threshold have shown great promise in therapies against aging. For one thing, an extensive body of basic research has expanded our mechanistic understanding of HBOT. Interestingly, the therapeutic targets of HBOT overlap considerably with those of aging and age-related diseases. For another, pre-clinical and small-scale clinical investigations have provided validated information on the efficacy of HBOT against aging from various aspects. However, a generally applicable protocol for HBOT to be utilized in therapies against aging needs to be defined as a subsequent step. It is high time to look back and summarize the recent advances concerning biological mechanisms and therapeutic implications of HBOT in promoting healthy aging and shed light on prospective directions. Here we provide the first comprehensive overview of HBOT in the field of aging and geriatric research, which allows the scientific community to be aware of the emerging tendency and move beyond conventional wisdom to scientific findings of translational value.
Collapse
|
15
|
Zhang H, Zhao F, Gai X, Cai J, Zhang X, Chen X, Zhu Y, Zhang Z. Astilbin attenuates apoptosis induced by cadmium through oxidative stress in carp (Cyprinus carpio L.) head kidney lymphocyte. FISH & SHELLFISH IMMUNOLOGY 2022; 125:230-237. [PMID: 35577320 DOI: 10.1016/j.fsi.2022.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
As a kind of environmental pollutant, heavy metal Cadmium (Cd) exists widely in the environment. It is well known that Cd can accumulate and cause damage in liver, kidney and other organs. However, there are few studies on the immune cytotoxicity of Cd to fish. In particular, there are few studies on the toxicity of Cd to the head kidney lymphocytes of common carp. In order to further explore these mechanisms, we established an Cd exposure model in vitro. At the same time, we used the natural antioxidant astilbin (AST) to treat the cells to study its antagonistic effect on the toxicity of Cd. After exposure to Cd, the level of oxidative stress in head kidney lymphocytes increased, and the mRNA and protein expression of apoptosis-related markers Fas, FADD, Caspase8 and Caspase3 increased significantly (P < 0.05), which led to lymphocytes apoptosis. Hoechst staining and AO/EB staining also showed that the level of apoptosis increased after exposure to Cd. This is consistent with our previous research results. AST treatment reduced oxidative stress and apoptosis induced by Cd. In addition, oxidative stress inhibitor NAC could also reduce head kidney lymphocytes apoptosis induced by Cd, indicating that oxidative stress was involved in this process. Our results suggested that AST can alleviate the apoptosis of carp head kidney lymphocytes induced by Cd through oxidative stress. This study enriches the theoretical mechanism of Cd toxicity to fish head kidney lymphocytes, and puts forward a method to solve the toxicity of Cd, which provides a theoretical and research basis for the in vivo study of animal models in the future.
Collapse
Affiliation(s)
- Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fuqing Zhao
- Liao ning Agricultural Technical College, Ying kou, Liao ning, 115009, China
| | - Xiaoxue Gai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China.
| |
Collapse
|
16
|
Chen H, Zhang Y, Zou M, Qi X, Xu S. Bisphenol A aggravates renal apoptosis and necroptosis in selenium-deficient chickens via oxidative stress and PI3K/AKT pathway. J Cell Physiol 2022; 237:3292-3304. [PMID: 35616291 DOI: 10.1002/jcp.30781] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) in the environment can have deleterious effects on humans and animals. BPA can exert nephrotoxicity by inducing oxidative stress. Selenium (Se) deficiency can specifically impair kidney tissues and additionally show a synergistic effect on the toxicity of several environmental chemicals. However, the toxic effects of BPA on the chicken kidney and whether Se deficiency produces synergistic effects on the toxicity of BPA remain poorly understood. Herein, we established BPA exposure models and Se deficiency model in vivo and in vitro, and described the discovery path of BPA aggravation on apoptosis and necroptosis in Se-deficient chicken kidneys via regulation of oxidative stress and phosphatidylinositol 3-kinase/threonine kinase (PI3K/AKT) signaling pathway. We found that BPA exposure increased reactive oxygen species and malondialdehyde levels, reduced activities of catalase, GPx, and superoxide dismutase, downregulated PI3K and AKT expressions, activated Bcl/Bax-Caspase 9-Caspase 3, and receptor-interacting protein kinase 1/mixed lineage kinase domain-like protein signaling pathways, resulting in apoptosis and necroptosis in the chicken kidney. In addition, Se deficiency significantly promoted the expression of renal apoptosis and necroptosis in BPA-exposed chicken kidneys. Altogether, our results showed that BPA aggravates apoptosis and necroptosis in Se-deficient chicken kidneys via regulation of oxidative stress and PI3K/AKT signaling pathway. Our findings elucidate the mechanism of BPA nephrotoxicity and Se deficiency exacerbation toxicity in chickens and will provide great significance for the protection of the ecological environment and animal health.
Collapse
Affiliation(s)
- Huijie Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mengmeng Zou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Exploring the Protective Effect and Mechanism of Buddlejae Flos on Sodium Selenite-Induced Cataract in Rats by Network Pharmacology, Molecular Docking, and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7776403. [PMID: 35607520 PMCID: PMC9124124 DOI: 10.1155/2022/7776403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/26/2022] [Indexed: 12/18/2022]
Abstract
Objective Buddlejae Flos has a long history of utilization by humans to treat ophthalmic diseases. Although in vitro study revealed that it can be used for treating cataract, the bioactive components and the mechanism of efficacy remained unclear. This study aims to discover the bioactive components and mode of efficacy of Buddlejae Flos in cataract treatment. Methods Several databases were screened for bioactive components and corresponding targets, as well as cataract-related targets. Using the String database, common targets were determined and utilized to construct protein-protein interactions (PPI). The drug-component-target-disease network map was drawn using Cytoscape software. R language was utilized to execute Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analysis. Molecular docking was done through Schrödinger Maestro software utilization. Luteolin's (LUT) effect on cataract induced by sodium selenite in rat pups was evaluated. Results Six bioactive components with 38 common targets were identified as being associated with cataract. TP53, AKT1, EGFR, CASP3, TNF, ESR1, INS, IL6, HIF1A, and VEGFA were identified as core targets in PPI analysis, and the binding energy of LUT with AKT was the lowest. LUT has been demonstrated to significantly lower MDA levels, raise glutathione (GSH) levels, and boost the activity of antioxidant enzymes like GST, SOD, GPx, and CAT. After LUT treatment, TNF-a, IL-2, and IL-6 levels were significantly lowered. Bcl-2 mRNA expression levels and p-PI3K and p-AKT protein expression were significantly elevated. In contrast, caspase-3 and Bax mRNA expression levels were significantly decreased. Conclusion This study demonstrates that LUT is a possible bioactive component that may be utilized for cataract treatment. Its mode of action includes oxidative stress suppression, reducing inflammation, and inhibiting apoptosis via regulating the PI3K/AKT single pathway.
Collapse
|
18
|
Yang D, Zhang QF. The natural source, physicochemical properties, biological activities and metabolism of astilbin. Crit Rev Food Sci Nutr 2022; 63:9506-9518. [PMID: 35442837 DOI: 10.1080/10408398.2022.2065661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astilbin is a dihydroflavanol found in many plants and processed foods. Astilbin possesses multiple health-beneficial bioactivities and has received great attention. Hence, the natural source, physicochemical properties, biological activities and metabolism of astilbin are summarized in the present article. Engelhardia roxburghiana Wall. and Smilax glabra Roxb. are the main resource for astilbin purification because of high content. Because of chemical instability, astilbin amount in foods is dependent on the processing and storage conditions. The degradation of astilbin includes isomerization and decomposition. The interconversion of astilbin and its isomers occurs through a chalcone intermediates, which significantly affects the taste of wine during storage. Many factors such as temperature, pH, metal ions and food additives could affect the chemical stability of astilbin. Astilbin exhibits very novel selective immunosuppressive activity, which is not found in other compounds. The rhamnose moiety of astilbin is essential for this bioactivity. After digestion, astilbin was mainly absorbed and transported in circulatory blood in its intact form, and only one metabolite, 3'-O-methylastilbin, was found. Although having many bioactivities, astilbin faces the challenge of poor bioavailability. Some promising strategies were developed for improving its bioavailability, particularly through fabrication the zein nanoparticles.
Collapse
Affiliation(s)
- Dan Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|