1
|
Gao F, Feng X, Li X. Recent advances in polymeric nanoparticles for the treatment of hepatic diseases. Front Pharmacol 2025; 16:1528752. [PMID: 39925843 PMCID: PMC11802823 DOI: 10.3389/fphar.2025.1528752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The liver performs crucial roles in energy metabolism, detoxification, and immune regulation. Hepatic diseases, including hepatitis, liver fibrosis, and liver cancer, have posed a significant threat to global health, emphasizing the critical need for the development of novel and effective treatment approaches. Nanotechnology, an emerging technology, has been extensively researched in medicine. Among the many types of nanomaterials, polymeric nanoparticles (NPs) are widely used in drug delivery systems. Compared to traditional therapies, they offer significant advantages in the treatment of liver disease by improving outcomes and reducing side effects. This review introduced the development of liver disease and discussed the application of natural polymers and synthetic polymers in their management. Furthermore, this paper reviewed the application of polymeric nanoparticles -mainly chitosan (CS), hyaluronic acid (HA), polyethylene glycol (PEG) and poly (lactic-co-glycolic acid) (PLGA)-in liver disease treatment, focusing on their use in various delivery systems for pure bioactive compounds of natural origin, drugs, nucleic acids, peptides, and others. Finally, the challenges and future perspectives of the NPs were discussed to provide guidance for further research directions, with the aim of promoting the clinical application of nanotherapeutics in treating hepatic diseases.
Collapse
Affiliation(s)
| | | | - Xinyu Li
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
2
|
He Q, Xu C, Guo J, Chen Y, Huang N, Chen J. Bisphenol A exposure stimulates prostatic fibrosis via exosome-triggered epithelium changes. Food Chem Toxicol 2024; 185:114450. [PMID: 38215961 DOI: 10.1016/j.fct.2024.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Fibrosis is the pathological basis for the clinical progression of benign prostatic hyperplasia (BPH). Prostatic fibrosis is an important risk factor in patients with BPH who experience lower urinary tract symptoms. Bisphenol A (BPA) is an environmental endocrine disruptor (EED) that causes prostate defects. The effects of BPA on the prostate were investigated in this study using mouse and human prostate cell models. BPA-induced mouse prostatic fibrosis is characterized by collagen deposition and an increase in hydroxyproline concentration. Furthermore, BPA-exposed prostatic stromal fibroblasts exosomes promote the epithelial-mesenchymal transition of epithelial cells. High-throughput RNA sequencing and functional enrichment analyses show that substantially altered mRNAs, lncRNAs and circRNAs play roles in cellular interactions and the hypoxia-inducible factor-1 signaling pathway. The results showed that exosomes participated in the pro-fibrogenic effects of BPA on the prostate by mediating communication between stromal and epithelial cells and triggering epithelial changes.
Collapse
Affiliation(s)
- Qingqin He
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Congyue Xu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Jing Guo
- Department of Basic Medicine, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Yao Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Nianfang Huang
- Experimental Center, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Jinglou Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Moetlediwa MT, Ramashia R, Pheiffer C, Titinchi SJJ, Mazibuko-Mbeje SE, Jack BU. Therapeutic Effects of Curcumin Derivatives against Obesity and Associated Metabolic Complications: A Review of In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:14366. [PMID: 37762669 PMCID: PMC10531575 DOI: 10.3390/ijms241814366] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is a major cause of morbidity and mortality globally, increasing the risk for chronic diseases. Thus, the need to identify more effective anti-obesity agents has spurred significant interest in the health-promoting properties of natural compounds. Of these, curcumin, the most abundant and bioactive constituent of turmeric, possesses a variety of health benefits including anti-obesity effects. However, despite its anti-obesity potential, curcumin has demonstrated poor bioavailability, which limits its clinical applicability. Synthesizing curcumin derivatives, which are structurally modified analogs of curcumin, has been postulated to improve bioavailability while maintaining therapeutic efficacy. This review summarizes in vitro and in vivo studies that assessed the effects of curcumin derivatives against obesity and its associated metabolic complications. We identified eight synthetic curcumin derivatives that were shown to ameliorate obesity and metabolic dysfunction in diet-induced obese animal models, while five of these derivatives also attenuated obesity and associated metabolic complications in cell culture models. These curcumin derivatives modulated adipogenesis, lipid metabolism, insulin resistance, steatosis, lipotoxicity, inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, fibrosis, and dyslipidemia to a greater extent than curcumin. In conclusion, the findings from this review show that compared to curcumin, synthetic curcumin derivatives present potential candidates for further development as therapeutic agents to modulate obesity and obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Marakiya T. Moetlediwa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa; (M.T.M.); (R.R.); (C.P.)
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa;
| | - Rudzani Ramashia
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa; (M.T.M.); (R.R.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7505, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa; (M.T.M.); (R.R.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7505, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Salam J. J. Titinchi
- Department of Chemistry, Faculty of Natural Science, University of the Western Cape, Bellville 7535, South Africa;
| | | | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa; (M.T.M.); (R.R.); (C.P.)
| |
Collapse
|
4
|
Shao C, Xu H, Sun X, Huang Y, Guo W, He Y, Ye L, Wang Z, Huang J, Liang X, Zhang J. New Perspectives on Chinese Medicine in Treating Hepatic Fibrosis: Lipid Droplets in Hepatic Stellate Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1413-1429. [PMID: 37429706 DOI: 10.1142/s0192415x23500647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Hepatic fibrosis (HF) is a wound healing response featuring excessive deposition of the extracellular matrix (ECM) and activation of hepatic stellate cells (HSCs) that occurs during chronic liver injury. As an initial stage of various liver diseases, HF is a reversible pathological process that, if left unchecked, can escalate into cirrhosis, liver failure, and liver cancer. HF is a life-threatening disease presenting morbidity and mortality challenges to healthcare systems worldwide. There is no specific and effective anti-HF therapy, and the toxic side effects of the available drugs also impose a heavy financial burden on patients. Therefore, it is significant to study the pathogenesis of HF and explore effective prevention and treatment measures. Formerly called adipocytes, or fat storage cells, HSCs regulate liver growth, immunity, and inflammation, as well as energy and nutrient homeostasis. HSCs in a quiescent state do not proliferate and store abundant lipid droplets (LDs). Catabolism of LDs is characteristic of the activation of HSCs and morphological transdifferentiation of cells into contractile and proliferative myofibroblasts, resulting in the deposition of ECM and the development of HF. Recent studies have revealed that various Chinese medicines (e.g., Artemisia annua, turmeric, Scutellaria baicalensis Georgi, etc.) are able to effectively reduce the degradation of LDs in HSCs. Therefore, this study takes the modification of LDs in HSCs as an entry point to elaborate on the process of Chinese medicine intervening in the loss of LDs in HSCs and the mechanism of action for the treatment of HF.
Collapse
Affiliation(s)
- Chang Shao
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| | - Huihui Xu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Xiguang Sun
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| | - Yan Huang
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| | - Wenqin Guo
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| | - Yi He
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| | - Linmao Ye
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| | - Zhili Wang
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| | - Jiaxin Huang
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| | - Xiaofan Liang
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| | - Junjie Zhang
- School of Basic Medical Sciences, Hangzhou 310053, P. R. China
| |
Collapse
|
5
|
Kotsos D, Tziomalos K. Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:3049. [PMID: 36769370 PMCID: PMC9918023 DOI: 10.3390/ijms24033049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.
Collapse
Affiliation(s)
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|