1
|
Perfilyeva YV, Aquino AD, Borodin MA, Kali A, Abdolla N, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Jainakbayev NT, Sharipov KO, Belyaev NN. Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations? Int Rev Immunol 2024:1-17. [PMID: 39707917 DOI: 10.1080/08830185.2024.2443423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arthur D Aquino
- Almazov National Medical Research Center, St. Petersburg, Russia
| | - Maxim A Borodin
- Almazov National Medical Research Center, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Al-Farabi, Kazakh National University, Almaty, Kazakhstan
| | | | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | |
Collapse
|
2
|
Guerreiro A, Compañón I, Lazaris FS, Labão-Almeida C, Oroz P, Ghirardello M, Marques MC, Corzana F, Bernardes GJL. Non-Natural MUC1 Glycopeptide Homogeneous Cancer Vaccine with Enhanced Immunogenicity and Therapeutic Activity. Angew Chem Int Ed Engl 2024; 63:e202411009. [PMID: 39275921 DOI: 10.1002/anie.202411009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Glycopeptides derived from the glycoprotein mucin-1 (MUC1) have shown potential as tumor-associated antigens for cancer vaccine development. However, their low immunogenicity and non-selective conjugation to carriers present significant challenges for the clinical efficacy of MUC1-based vaccines. Here, we introduce a novel vaccine candidate based on a structure-guided design of an artificial antigen derived from MUC1 glycopeptide. This engineered antigen contains two non-natural amino acids and has an α-S-glycosidic bond, where sulfur replaces the conventional oxygen atom linking the peptide backbone to the sugar N-acetylgalactosamine. The glycopeptide is then specifically conjugated to the immunogenic protein carrier CRM197 (Cross-Reactive Material 197), a protein approved for human use. Conjugation involves selective reduction and re-bridging of a disulfide in CRM197, allowing the attachment of a single copy of MUC1. This strategy results in a chemically defined vaccine while maintaining both the structural integrity and immunogenicity of the protein carrier. The vaccine elicits a robust Th1-like immune response in mice and generates antibodies capable of recognizing human cancer cells expressing tumor-associated MUC1. When tested in mouse models of colon adenocarcinoma and pancreatic cancer, the vaccine is effective both as a prophylactic and therapeutic use, significantly delaying tumor growth. In therapeutic applications, improved outcomes were observed when the vaccine was combined with an anti-programmed cell death protein 1 (anti-PD-1) checkpoint inhibitor. Our strategy reduces batch-to-batch variability and enhances both immunogenicity and therapeutic potential. This site-specific approach disputes a prevailing dogma where glycoconjugate vaccines require multivalent display of antigens.
Collapse
Affiliation(s)
- Ana Guerreiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Basinnov Lifesciences, Av. José Malhoa 2, Escritório 3.7, 1070-325, Lisboa, Portugal
| | - Ismael Compañón
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Foivos S Lazaris
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Carlos Labão-Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Paula Oroz
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Mattia Ghirardello
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Marta C Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Basinnov Lifesciences, Av. José Malhoa 2, Escritório 3.7, 1070-325, Lisboa, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| |
Collapse
|
3
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
4
|
Wang X, Miao Y, Shen J, Li D, Deng X, Yang C, Ji Y, Dai Z, Ma Y. Unlocking PD-1 antibody resistance: The MUC1 DNA vaccine augments CD8 + T cell infiltration and attenuates tumour suppression. Scand J Immunol 2024; 99:e13356. [PMID: 38605549 DOI: 10.1111/sji.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 04/13/2024]
Abstract
In light of increasing resistance to PD1 antibody therapy among certain patient populations, there is a critical need for in-depth research. Our study assesses the synergistic effects of a MUC1 DNA vaccine and PD1 antibody for surmounting PD1 resistance, employing a murine CT26/MUC1 colon carcinoma model for this purpose. When given as a standalone treatment, PD1 antibodies showed no impact on tumour growth. Additionally, there was no change observed in the intra-tumoural T-cell ratios or in the functionality of T-cells. In contrast, the sole administration of a MUC1 DNA vaccine markedly boosted the cytotoxicity of CD8+ T cells by elevating IFN-γ and granzyme B production. Our compelling evidence highlights that combination therapy more effectively inhibited tumour growth and prolonged survival compared to either monotherapy, thus mitigating the limitations intrinsic to single-agent therapies. This enhanced efficacy was driven by a significant alteration in the tumour microenvironment, skewing it towards pro-immunogenic conditions. This assertion is backed by a raised CD8+/CD4+ T-cell ratio and a decrease in immunosuppressive MDSC and Treg cell populations. On the mechanistic front, the synergistic therapy amplified expression levels of CXCL13 in tumours, subsequently facilitating T-cell ingress into the tumour setting. In summary, our findings advocate for integrated therapy as a potent mechanism for surmounting PD1 antibody resistance, capitalizing on improved T-cell functionality and infiltration. This investigation affords critical perspectives on enhancing anti-tumour immunity through the application of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- The Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yinsha Miao
- Department of Clinical laboratory, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | | | - Dandan Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyue Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chengcheng Yang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanhong Ji
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - ZhiJun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunfeng Ma
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
5
|
Chen X, Sandrine IK, Yang M, Tu J, Yuan X. MUC1 and MUC16: critical for immune modulation in cancer therapeutics. Front Immunol 2024; 15:1356913. [PMID: 38361923 PMCID: PMC10867145 DOI: 10.3389/fimmu.2024.1356913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Duan Z, Yang D, Yuan P, Dai X, Chen G, Wu D. Advances, opportunities and challenges in developing therapeutic cancer vaccines. Crit Rev Oncol Hematol 2024; 193:104198. [PMID: 37949152 DOI: 10.1016/j.critrevonc.2023.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Therapeutic cancer vaccines have shown promising efficacy in helping immunotherapy for cancer patients, but the systematic characterization of the clinical application and the method for improving efficacy is lacking. Here, we mainly summarize the classification of therapeutic cancer vaccines, including protein vaccines, nucleic acid vaccines, cellular vaccines and anti-idiotypic antibody vaccines, and subdivide the above vaccines according to different types and delivery forms. Additionally, we outline the clinical efficacy and safety of vaccines, as well as the combination strategies of therapeutic cancer vaccines with other therapies. This review will provide a detailed overview and rationale for the future clinical application and development of therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Liu G, Zhang Z, Wu Y, Feng J, Lan Y, Dong D, Liu Y, Yuan H, Tai G, Li S, Ni W. Anti-PD-L1 antibody reverses the immune tolerance induced by multiple MUC1-MBP vaccine immunizations by increasing the CD80/PD-L1 ratio, resulting in DC maturation, and decreasing Treg activity in B16-MUC1 melanoma-bearing mice. Int Immunopharmacol 2023; 121:110487. [PMID: 37364328 DOI: 10.1016/j.intimp.2023.110487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
In this study, we explored the possible mechanism of tumor tolerance induced by multiple repeated immunizations with a tumor vaccine (MUC1-MBP fusion protein plus CpG2006). We first analyzed the mechanism of tolerance by immunizing tumor-bearing mice 2, 5, or 8 times and found that compared with five immunizations with the M-M vaccine, eight immunizations increased tumor volume and weight and Treg levels, while the proportions of Th1 and Tc1 cells in the spleen and lymph nodes were decreased. In particular, the M-M vaccine induced PD-L1 expression in CD11c + DCs and decreased their CD80/PD-L1 ratio. Therefore, the mechanism of tolerance induction by multiple immunizations with the M-M vaccine was investigated by focusing on the CD80/PD-L1 ratio, and an anti-PD-L1 antibody (αPD-L1) and the M-M vaccine were used in combination to treat melanoma. The results showed that αPD-L1 increased the CD80/PD-L1 ratio and enhanced the maturation of cDC1s by blocking PD-L1 on DCs, which potentially increased the activity of Th1 and Tc1 cells. Furthermore, the combination of the M-M vaccine with αPD-L1 decreased the activity and proportion of Tregs, which reversed the immune tolerance induced by eight immunizations with the vaccine. This study reveals the mechanism of the combination of M-M and αPD-L1 and provides a new combination strategy for improving the therapeutic effect of the M-M vaccine, laying a theoretical basis for the clinical application of the vaccine.
Collapse
Affiliation(s)
- Guomu Liu
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zenan Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yixuan Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jingyue Feng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yue Lan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dai Dong
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yu Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Yang SF, Weng MT, Liang JD, Chiou LL, Hsu YC, Lee YT, Liu SY, Wu MC, Chou HC, Wang LF, Yu SH, Lee HS, Sheu JC. Neoantigen vaccination augments antitumor effects of anti-PD-1 on mouse hepatocellular carcinoma. Cancer Lett 2023; 563:216192. [PMID: 37088327 DOI: 10.1016/j.canlet.2023.216192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Immune checkpoint inhibitors are groundbreaking resources for cancer therapy. However, only a few patients with hepatocellular carcinoma (HCC) have shown positive responses to anti-PD-1 therapy. Neoantigens are sequence-altered proteins resulting from somatic mutations in cancer. This study identified the neoantigens of Hep-55.1C and Dt81 Hepa1-6 HCCs by comparing their whole exome sequences with those of a normal C57BL/6 mouse liver. Immunogenic long peptides were pooled as peptide vaccines. The vaccination elicited tumor-reactive immune responses in C57BL/6 mice, as demonstrated by IFN-γ ELISPOT and an in vitro killing assay of splenocytes. In the treatment of three mouse HCC models, combined neoantigen vaccination and anti-PD-1 resulted in more significant tumor regression than monotherapies. Flow cytometry of the tumor-infiltrating lymphocytes showed decreased Treg cells and monocytic myeloid-derived suppressor cells, increased CD8+ T cells, enhanced granzyme B expression, and reduced exhaustion-related markers PD-1 and Lag-3 on CD8+ T cells in the combination group. These findings provide a strong rationale for conducting clinical studies of using neoantigen vaccination in combination with anti-PD-1 to treat patients with HCC.
Collapse
Affiliation(s)
- Shih-Feng Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Meng-Tzu Weng
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ja-Der Liang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ling-Ling Chiou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Yu-Chen Hsu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Ying-Te Lee
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Shin-Yun Liu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Meng-Chuan Wu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Huei-Chi Chou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Li-Fang Wang
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Hsuan-Shu Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Jin-Chuan Sheu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| |
Collapse
|
9
|
Li T, Wang L, Yu N, Zeng A, Huang J, Long X. CDCA3 is a prognostic biomarker for cutaneous melanoma and is connected with immune infiltration. Front Oncol 2023; 12:1055308. [PMID: 36713580 PMCID: PMC9876620 DOI: 10.3389/fonc.2022.1055308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Dysregulation of cell cycle progression (CCP) is a trait that distinguishes cancer from other diseases. In several cancer types, CCP-related genes serve as the primary risk factor for prognosis, but their role in cutaneous melanoma remains unclear. METHODS Data from cutaneous melanoma patients were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Using a Wilcoxon test, the level of CCP-related gene expression in cutaneous melanoma patient tissues was compared to that in normal skin tissues. Logistic analysis was then utilized to calculate the connection between the CCP-related genes and clinicopathological variables. The important functions of the CCP-related genes were further investigated using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and single-sample Gene Set Enrichment Analysis (ssGSEA). Univariate and multivariate Cox analyses and Kaplan-Meier analysis were used to estimate the association between CCP-related genes and prognosis. In addition, using Cox multivariate analysis, a nomogram was constructed to forecast the influence of CCP-related genes on survival rates. RESULTS High expression of CCP-related genes was associated with TNM stage, age, pathological grade, and Breslow depth (P < 0.05). Multivariate analysis demonstrated that CCP-related genes were an independent factor in overall survival and disease-specific survival. High levels of gene expression originating from CCP were shown by GSEA to trigger DNA replication, the G1-S specific transcription factor, the mitotic spindle checkpoint, and the cell cycle. There was a negative association between CCP-related genes and the abundance of innate immune cells. Finally, we revealed that knockdown of cell division cycle-associated gene 3 (CDCA3) significantly suppressed the proliferation and migration ability of cutaneous melanoma cells. CONCLUSION According to this study, CCP-related genes could serve as potential biomarkers to assess the prognosis of cutaneous melanoma patients and are crucial immune response regulators.
Collapse
Affiliation(s)
| | | | | | | | - Jiuzuo Huang
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Long
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|