1
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Yan Q, Xing J, Zou R, Sun M, Zou B, Wang Y, Niu T, Yu T, Huang H, Yang W, Shi C, Yang G, Wang C. LysoPE mediated by respiratory microorganism Aeromicrobium camelliae alleviates H9N2 challenge in mice. Vet Res 2024; 55:136. [PMID: 39390593 PMCID: PMC11468851 DOI: 10.1186/s13567-024-01391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.
Collapse
Affiliation(s)
- Qingsong Yan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Junhong Xing
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Ruonan Zou
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Mingjie Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Boshi Zou
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yingjie Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tianming Niu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Dong W, Liao R, Weng J, Du X, Chen J, Fang X, Liu W, Long T, You J, Wang W, Peng X. USF2 activates RhoB/ROCK pathway by transcriptional inhibition of miR-206 to promote pyroptosis in septic cardiomyocytes. Mol Cell Biochem 2024; 479:1093-1108. [PMID: 37347361 DOI: 10.1007/s11010-023-04781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/03/2023] [Indexed: 06/23/2023]
Abstract
Septic cardiomyopathy (SCM) is one of the most serious complications of sepsis. The present study investigated the role and mechanism of upstream stimulatory factor 2 (USF2) in SCM. Serum samples were extracted from SCM patients and healthy individuals. A murine model of sepsis was induced by caecal ligation and puncture (CLP) surgery. Myocardial injury was examined by echocardiography and HE staining. ELISA assay evaluated myocardial markers (CK-MB, cTnI) and inflammatory cytokines (TNF-α, IL-1β, IL-18). Primary mouse cardiomyocytes were treated with lipopolysaccharide (LPS) to simulate sepsis in vitro. RT-qPCR and Western blot were used for analyzing gene and protein levels. CCK-8 assay assessed cell viability. NLRP3 was detected by immunofluorescence. ChIP, RIP and dual luciferase reporter assays were conducted to validate the molecular associations. USF2 was increased in serum from SCM patients, septic mice and primary cardiomyocytes. USF2 silencing improved the survival of septic mice and attenuated sepsis-induced myocardial pyroptosis and inflammation in vitro and in vivo. Mechanistically, USF2 could directly bind to the promoter of miR-206 to transcriptionally inhibit its expression. Moreover, RhoB was confirmed as a target of miR-206 and could promote ROCK activation and NLRP3 inflammasome formation. Moreover, overexpression of RhoB remarkably reversed the protection against LPS-induced inflammation and pyroptosis mediated by USF2 deletion or miR-206 overexpression in cardiomyocytes. The above findings elucidated that USF2 knockdown exerted a cardioprotective effect on sepsis by decreasing pyroptosis and inflammation via miR-206/RhoB/ROCK pathway, suggesting that USF2 may be a novel drug target in SCM.
Collapse
Affiliation(s)
- Wei Dong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Ruichun Liao
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Junfei Weng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xingxiang Du
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xu Fang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wenyu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Tao Long
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jiaxiang You
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wensheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
4
|
Han H, Xie Q, Shao R, Li J, Du X. Alveolar macrophage-derived gVPLA2 promotes ventilator-induced lung injury via the cPLA2/PGE2 pathway. BMC Pulm Med 2023; 23:494. [PMID: 38057837 DOI: 10.1186/s12890-023-02793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is a clinical complication of mechanical ventilation observed in patients with acute respiratory distress syndrome. It is characterized by inflammation mediated by inflammatory cells and their secreted mediators. METHODS To investigate the mechanisms underlying VILI, a C57BL/6J mouse model was induced using high tidal volume (HTV) mechanical ventilation. Mice were pretreated with Clodronate liposomes to deplete alveolar macrophages or administered normal bone marrow-derived macrophages or Group V phospholipase A2 (gVPLA2) intratracheally to inhibit bone marrow-derived macrophages. Lung tissue and bronchoalveolar lavage fluid (BALF) were collected to assess lung injury and measure Ca2 + concentration, gVPLA2, downstream phosphorylated cytoplasmic phospholipase A2 (p-cPLA2), prostaglandin E2 (PGE2), protein expression related to mitochondrial dynamics and mitochondrial damage. Cellular experiments were performed to complement the animal studies. RESULTS Depletion of alveolar macrophages attenuated HTV-induced lung injury and reduced gVPLA2 levels in alveolar lavage fluid. Similarly, inhibition of alveolar macrophage-derived gVPLA2 had a similar effect. Activation of the cPLA2/PGE2/Ca2 + pathway in alveolar epithelial cells by gVPLA2 derived from alveolar macrophages led to disturbances in mitochondrial dynamics and mitochondrial dysfunction. The findings from cellular experiments were consistent with those of animal experiments. CONCLUSIONS HTV mechanical ventilation induces the secretion of gVPLA2 by alveolar macrophages, which activates the cPLA2/PGE2/Ca2 + pathway, resulting in mitochondrial dysfunction. These findings provide insights into the pathogenesis of VILI and may contribute to the development of therapeutic strategies for preventing or treating VILI.
Collapse
Affiliation(s)
- Hanghang Han
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Qiuwen Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Rongge Shao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Jinju Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, 166 East University Road, Nanning, Guangxi, 530007, China.
| |
Collapse
|
5
|
Yao J, Cheng M, Yang F. Calycosin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice through the miR-375-3p/ROCK2 Axis. J INVEST SURG 2023; 36:2211166. [PMID: 37400250 DOI: 10.1080/08941939.2023.2211166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 07/05/2023]
Abstract
Objective: Septic patients are especially vulnerable to acute lung injury (ALI). Calycosin (CAL) has various promising pharmacological activities. This paper aims to expound on the role of CAL in mice with sepsis-induced ALI and the associated mechanisms.Methods: Mouse models of sepsis-induced ALI were established using lipopolysaccharide (LPS). Pulmonary histopathological changes were observed by HE staining. Cell apoptosis was assessed by TUNEL staining. Pulmonary edema was evaluated by measuring wet/dry weight. Bronchoalveolar lavage fluid (BALF) was collected to count inflammatory cells. In vitro LPS models were established using MLE-12 cells. miR-375-3p expression was determined by RT-qPCR. Cell viability and apoptosis were assessed by MTT assay and flow cytometry. Levels of inflammatory cytokines were determined by ELISA. The target relationship between miR-375-3p and ROCK2 was analyzed by the dual-luciferase assay. ROCK2 protein level was determined by Western blot.Results: miR-375-3p was weakly-expressed in mice with sepsis-induced ALI, and CAL treatment elevated miR-375-3p expression. CAL treatment mitigated pulmonary tissue damage and edema, decreased apoptosis and inflammatory cells, downregulated levels of pro-inflammatory cytokines, and upregulated levels of anti-inflammatory cytokines in mice with sepsis-induced ALI. CAL treatment increased MLE-12 cell viability and decreased apoptosis and inflammation in MLE-12 cells. Inhibition of miR-375-3p partially abrogated CAL-mediated protective action on MLE-12 cells. miR-375-3p attenuated LPS-induced MLE-12 cell injury by targeting ROCK2.Conclusion: CAL upregulates miR-375-3p to target ROCK2, thus protecting against sepsis-induced ALI in mice.
Collapse
Affiliation(s)
- Jie Yao
- Department of Intensive Care Unit, The People's Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| | - Mingfeng Cheng
- Department of Intensive Care Unit, The People's Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| | - Fan Yang
- Department of Intensive Care Unit, The People's Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Chen YC, Chen KF, Lin KYA, Tsang YF, Hsu YF, Lin CH. Evaluation of the pulmonary toxicity of PSNPs using a Transwell-based normal human bronchial epithelial cell culture system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165213. [PMID: 37391157 DOI: 10.1016/j.scitotenv.2023.165213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
To reduce the nanoplastics (NPs) toxicity assessment error, we established a Transwell-based bronchial epithelial cell exposure system to assess the pulmonary toxicity of polystyrene NPs (PSNPs). Transwell exposure system was more sensitive than submerged culture for toxicity detection of PSNPs. PSNPs adhered to the BEAS-2B cell surface, were ingested by the cell, and accumulated in the cytoplasm. PSNPs induced oxidative stress and inhibited cell growth through apoptosis and autophagy. A noncytotoxic dose of PSNPs (1 ng/cm2) increased the expression levels of inflammatory factors (ROCK-1, NF-κB, NLRP3, ICAM-1, etc) in BEAS-2B cells, whereas a cytotoxic dose (1000 ng/cm2) induced apoptosis and autophagy, which might inhibit the activation of ROCK-1 and contribute to reducing inflammation. In addition, the noncytotoxic dose increased the expression levels of zonula occludens-2 (ZO-2) and α1-antitrypsin (α-AT) proteins in BEAS-2B cells. Therefore, in response to PSNP exposure, a compensatory increase in the activities of inflammatory factors, ZO-2, and α-AT may be triggered at low doses as a mechanism to preserve the survival of BEAS-2B cells. In contrast, exposure to a high dose of PSNPs elicits a noncompensatory response in BEAS-2B cells. Overall, these findings suggest that PSNPs may be harmful to human pulmonary health even at an ultralow concentration.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan; Department of Science and Environment Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong; Centre for Environment and Sustainable Development (CESD), The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yiu Fai Tsang
- Department of Science and Environment Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong; Centre for Environment and Sustainable Development (CESD), The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Yu-Fang Hsu
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan; Department of Civil Engineering, National Chi Nan University, Nantou, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
7
|
Fan XY, Ma ZX, Tang LB, Shen HZ, Qi F, Xia JW. lncRNA NEAT1 mediates LPS-induced pyroptosis of BEAS-2B cells via targeting miR-26a-5p/ROCK1 axis. Kaohsiung J Med Sci 2023. [PMID: 37052185 DOI: 10.1002/kjm2.12681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Acute lung injury (ALI) is an adverse disease of the respiratory system, and one of its prevalent causes is sepsis induction. Cell pyroptosis facilitates the progression of ALI and lncRNAs play critical roles in ALI. Thus, this research seeks to investigate the specific mechanism of NEAT1 in sepsis-ALI.BEAS-2B cells were exposed to lipopolysaccharide (LPS) to construct a cell model of sepsis-induced ALI. The gene and protein expression were assessed using qRT-PCR and western blot. Cell viability was identified by CCK-8. Cell death was discovered using PI staining. The secretion of IL-1β and IL-18 was examined using ELISA. The interconnections among NEAT1, miR-26a-5p, and ROCK1 were confirmed using starbase, luciferase assay, and RIP.LPS treatment augmented NEAT1 and ROCK1 levels while mitigating miR-26a-5p level in BEAS-2B cells. Additionally, LPS treatment facilitated cell death and cell pyroptosis, whereas NEAT1 silencing could reverse these effects in BEAS-2B cells. Mechanistically, NEAT1 positively mediated ROCK1 expression by targeting miR-26a-5p. Furthermore, miR-26a-5p inhibitor offset NEAT1 depletion-mediated suppressive effects on cell death and cell pyroptosis. ROCK1 upregulation decreased the inhibitory impacts produced by miR-26a-5p overexpression on cell death and cell pyroptosis. Our outcomes demonstrated NEAT1 could reinforce LPS-induced cell death and cell pyroptosis by repressing the miR-26a-5p/ROCK1 axis, thereby worsening ALI caused by sepsis. Our data indicated NEAT1, miR-26a-5p, and ROCK1 might be biomarkers and target genes for relieving sepsis-induced ALI.
Collapse
Affiliation(s)
- Xiu-Ying Fan
- Department of Critical care, The Third People's Hospital of Kunming, Kunming, Yunnan Province, People's Republic of China
- The Third People's Hospital of Kunming, (Yunnan Infectious Disease Clinical Medical Center), Kunming, Yunnan Province, People's Republic of China
| | - Zhong-Xu Ma
- Department of General Medicine, The Third People's Hospital of Kunming, Kunming, Yunnan Province, People's Republic of China
| | - Li-Bin Tang
- Department of Drug resistance and severe tuberculosis, The Third People's Hospital of Kunming, Kunming, Yunnan Province, People's Republic of China
| | - Han-Zhang Shen
- Department of Critical care, The Third People's Hospital of Kunming, Kunming, Yunnan Province, People's Republic of China
| | - Fei Qi
- Department of Critical care, The Third People's Hospital of Kunming, Kunming, Yunnan Province, People's Republic of China
| | - Jia-Wei Xia
- Department of Critical care, The Third People's Hospital of Kunming, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
8
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|