1
|
Kim HB, Kim H, Oh SH, Kang MJ, Park JH, Lee SB, Shim S, Lee HJ, Yoo KC, Jang H. Bixin alleviates radiation-induced intestinal damage via inflammation regulation and barrier recovery. Int J Radiat Biol 2025:1-10. [PMID: 40397619 DOI: 10.1080/09553002.2025.2505523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/15/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE Radiotherapy for cancer treatment or unintentional exposure to ionizing radiation causes severe damage to the unaffected tissues of the digestive system, including gastrointestinal (GI) tract. Radiation exposure leads to an inflammatory response, and uncontrolled inflammation exacerbates radiation-induced tissue injury. Bixin is a liposoluble apocarotenoid isolated from Bixa orrellana seeds, which effectively attenuates several inflammatory diseases. In this study, we investigated whether bixin mitigated radiation-induced intestinal damage through an examination of its role in inflammation and the protection of the epithelial barrier. MATERIALS AND METHODS To determine the therapeutic effects of bixin in treating radiation-induced intestinal damage, we carried out histological analyses, inflammatory response examinations, and barrier function assessments using a mouse model of radiation-induced enteropathy. RESULTS We uncovered that bixin effectively mitigates radiation-induced enteropathy by suppressing the inflammatory response, reducing inflammatory cell accumulation, and limiting cytokine expression in the radiation-induced intestinal injury. In a mouse model of acute radiation-induced intestinal injury, treatment with bixin enhanced nuclear factor erythroid-2-related factor 2 (NRF2) activation and promoted tight junction expression in the epithelium, while also hindering bacterial translocation to the mesenteric lymph nodes. CONCLUSION Bixin represents a potential therapeutic candidate for the treatment of radiation-induced enteropathy.
Collapse
Affiliation(s)
- Han Byul Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hyewon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Su-Hyun Oh
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Min-Ji Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Jung Hwan Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Seung Bum Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Sehwan Shim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hae-June Lee
- College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Ki-Chun Yoo
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hyosun Jang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| |
Collapse
|
2
|
Li Q, Gao L. TRIM7 knockdown protects against LPS-induced autophagy, ferroptosis, and inflammatory responses in human bronchial epithelial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4265-4277. [PMID: 39446150 DOI: 10.1007/s00210-024-03546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Asthma is one of the most common respiratory diseases in pediatric department. Several asthma-associated events including inflammatory responses, autophagy, and ferroptosis have been identified as typical pathological processes. TRIM7 is a member of TRIM proteins family associated with several types of diseases. Nevertheless, its role in asthma is still elusive. The current research showed that TRIM7 was involved in the pathogenesis of asthma mainly by regulating the Akt signaling pathway. In detail, we found that TRIM7 was highly expressed in patients with asthma and in an in vitro model of asthma. The following analysis indicated that TRIM7 knockdown attenuated the expression and secretion of inflammatory cytokines including TNF-α, IL-1β and IL-6 in lipopolysaccharide (LPS)-exposed human bronchial epithelial cells (HBECs). Meanwhile, knockdown of TRIM7 exerted inhibitory effects on LPS-induced autophagy and ferroptosis. Further mechanistic studies showed that TRIM7 knockdown inhibited LPS-induced activation of Akt pathway, while overexpression of Akt attenuated the inhibitory effects of TRIM7 knockdown on LPS-exposed HBECs. Collectively, we reported here that TRIM7 knockdown inhibited LPS-induced autophagy, ferroptosis, and inflammatory cytokine secretion in HBECs via regulating the Akt pathway, providing a new insight into the strategies for improving asthma treatments.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatrics, Nanyang First People's Hospital, Nanyang, China
| | - Ling Gao
- Department of Pediatrics, Nanyang First People's Hospital, Nanyang, China.
| |
Collapse
|
3
|
Li K, Ji X, Tian S, Li J, Tian Y, Ma X, Li H, Zhang H, Chen CT, Gu W. Oxidative stress in asthma pathogenesis: mechanistic insights and implications for airway smooth muscle dysfunction. Cell Tissue Res 2025; 400:17-34. [PMID: 39918765 DOI: 10.1007/s00441-025-03953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 04/04/2025]
Abstract
Airway smooth muscle (ASM) dysfunction is a key factor in the narrowing of airways in asthma patients, characterized by excessive secretion of inflammatory factors, increased mass, and amplified contractile responses. These pathological features are instrumental in the propagation of airway inflammation, structural remodeling, and the escalation of airway hyperresponsiveness (AHR), which are also principal factors underlying the limitations of current therapeutic strategies. In asthmatic ASM, an imbalance between oxidant production and antioxidant defenses culminates in oxidative stress, which is involved in the excessive secretion of inflammatory factors, increased mass, and amplified contractile responses of ASM, and is a critical etiological factor implicated in the dysregulation of ASM function. The molecular pathways through which oxidative stress exerts its effects on ASM in asthma are multifaceted, with the Nrf2/HO-1, MAPK, and PI3K/Akt pathways being particularly noteworthy. These characteristic pathways play a potential role by connecting with different upstream and downstream signaling molecules and are involved in the amplification of ASM inflammatory responses, increased mass, and AHR. This review provides a comprehensive synthesis of the phenotypic expression of ASM dysfunction in asthma, the interplay between oxidants and antioxidants, and the evidence base and molecular underpinnings linking oxidative stress to ASM dysfunction. Given the profound implications of ASM dysfunction on the airflow limitation in asthma and the seminal role of oxidative stress in this process, a deeper exploration of these mechanisms is essential for unraveling the pathogenesis of asthma and may offer novel perspectives for its prophylaxis and management.
Collapse
Affiliation(s)
- Kangxia Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiang Ji
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Shan Tian
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Jian Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Yizhu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoqing Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Huanping Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Hong Zhang
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
| | - Cai-Tao Chen
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China.
| |
Collapse
|
4
|
Takamoto RTDO, Hübner AA, Matuo MCS, Kikuchi IS. Potential use of bixin beyond function as a natural colourant in food and cosmetics. Nat Prod Res 2025; 39:2238-2251. [PMID: 38726906 DOI: 10.1080/14786419.2024.2350634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 04/09/2025]
Abstract
Bixin is a carotenoid found in the covering of Bixa orellana seeds and widely used as a dye, mainly in food products and cosmetics. This compound is insoluble in water, but technologies have been developed for its use in aqueous preparations, as well as a component for new formulations to disperse other lipophilic ingredients. It has recently aroused the interest of researchers in areas such as Pharmacology, Endocrinology and Oncology, but also new applications in Food Technology. This work aimed to review the main studies in the period from 1911 to 2023, but we emphasised aspects in technologies related to the field of health such as Pharmacology and Pharmacy. We used 'bixin' as a keyword to search for articles on the Web of Science and obtained 488 results, most of which were original articles and 20 were reviews. The analysis demonstrated a continuing large number of studies in Food Technology, but a rapid growth in areas related to health aspects.
Collapse
Affiliation(s)
| | | | | | - Irene Satiko Kikuchi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| |
Collapse
|
5
|
Zhang H, Zhang H, Wang L, Zhang Y, Hu L, Liu J, Zhou Y, Wang J. Bioinformatics and Network Pharmacology Identify the Therapeutic Role of Guominkang in Allergic Asthma by Inhibiting PI3K/Akt Signaling. J Inflamm Res 2025; 18:2805-2821. [PMID: 40026302 PMCID: PMC11871930 DOI: 10.2147/jir.s484251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/21/2024] [Indexed: 03/05/2025] Open
Abstract
Background As a classical regulating formula, Guominkang (GMK) has been extensively employed in clinical practice to treat the allergic asthma (AA) and alleviate allergy symptoms, however, the underlying mechanism remains elusive. The aim of this study was to explored the mechanism of action through which GMK combats AA. Methods Potential target genes for the compounds were identified from the database and subjected to functional enrichment analysis. Subsequently, a protein-protein interaction (PPI) network was constructed in order to screen the core target and confirmed by molecular docking. An asthma model was further developed in mice and airway hyperresponsiveness and lung pathological changes were observed following drug administration. The expression of PI3K and AKT proteins in lung tissues was then detected by Western blotting. Subsequently, the GSE104468 data were normalised and visualised using the R language, compared to the PI3K-Akt pathway gene set to identify overlapping genes, constructed a PPI network and analysed correlations between genes. Results 267 compounds and 475 disease-relevant GMK targets have been obtained, primarily in the areas of chemokine binding, drug binding, and PI3K-Akt pathway modulation. Molecular docking simulations revealed that predicted targets (PI3K, TNF, IL6, AKT1, SRC, TP53, and STAT3) could be closely bonded with component of GMK. According to in vivo experiments, GMK could reduce mucus obstruction and airway inflammation (P < 0.05), decrease airway hyperresponsiveness (P < 0.05), and inhibited the PI3K-Akt pathway (P < 0.05). After normalising the genes in the dataset between AA and healthy individuals, GO showed that 388 DEGs were associated with PI3K/AKT signaling pathway. The PPI network showed that the overlapping gene were located in the centre of asthma-associated network and that exhibited a correlation with the PI3K-Akt signaling pathway. Conclusion Based on our findings, GMK potentially acts via the PI3K/Akt pathway and alleviates allergic symptoms in AA.
Collapse
Affiliation(s)
- Honglei Zhang
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Haiyun Zhang
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- Dalian Women and Children’s Medical Group, Dalian, 116000, People’s Republic of China
| | - Lei Wang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, People’s Republic of China
| | - Yihang Zhang
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Linhan Hu
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Juntong Liu
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yumei Zhou
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ji Wang
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
6
|
Claymore SR, Allen-Gipson DS. Effects of E-Cigs on Physiological Pathways and Proposed Therapeutic Intervention with Bixin. Biomedicines 2024; 12:2705. [PMID: 39767612 PMCID: PMC11673039 DOI: 10.3390/biomedicines12122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Electronic cigarettes (e-cigs) have increased in popularity and usage over the last few decades. There is rising concern regarding the long-term effects of e-cigs on human health, considering their relatively recent introduction to the market. E-cigs are generally composed of a liquid containing nicotine and various chemicals, a battery, a vaporization chamber, and a coil that serves to heat the liquid upon inhalation of the mouthpiece. While e-cigs were initially introduced as a healthy alternative to cigarette smoking, recent research has demonstrated the cytotoxic effects of nicotinic e-cig devices on multiple cell types, including epithelial and endothelial cells, along with causing dysregulation of inflammatory pathways. This review will discuss the harmful effects of e-cigs on the human body, highlighting the physiological impact of e-cigs on pulmonary, cardiovascular, and cerebrovascular health. Moreover, this review will highlight the potential therapeutic effects of bixin, an apocarotenoid found in the seeds of Bixa orellana, also known as the achiote tree, due to its innate anti-inflammatory, antioxidant, and anti-cancer activities that have been demonstrated in recent research. Nanotechnology has surfaced in the past few decades as a powerful tool for medicinal practice. Specifically, nanoparticles serve as a potential method for treating various conditions and diseases. Bixin nanoparticles show promise as a viable method for treating e-cig-induced damage due to the innate properties of bixin and the advantages of using nanoparticles compared to conventional medicinal interventions.
Collapse
Affiliation(s)
- Sophia Rene Claymore
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
| | - Diane S. Allen-Gipson
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Yu H, Wei X, Ding H, Hu S, Sun F, Cao Z, Shi L. Exploring the potential mechanisms of Mahuang Fuzi Xixin decoction in treating elderly bronchial asthma through network pharmacology, molecular docking, and molecular dynamics simulations. Medicine (Baltimore) 2024; 103:e39921. [PMID: 39465880 PMCID: PMC11479521 DOI: 10.1097/md.0000000000039921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Modern medical practice has confirmed the efficacy of Mahuang Fuzi Xixin Decoction (MHFZXXD) in treating elderly bronchial asthma, but its specific mechanisms of action remain to be clarified. Therefore, this study utilizes network pharmacology, molecular docking techniques, and molecular dynamics simulations to explore the key active components, core target genes, and potential mechanisms of MHFZXXD in the treatment of elderly bronchial asthma. Active components and related targets of MHFZXXD were identified through the retrieval and screening of the TCMSP, Swiss Targets Prediction, and Uniprot databases. Relevant targets for elderly bronchial asthma were searched using the GeneCards, OMIM, and Pharm GKB databases, followed by the selection of intersecting targets between the drug's active components and the disease. A PPI network diagram was created using String and Cytoscape software, and the intersecting targets of the disease and the active components of traditional Chinese medicine were imported into the DAVID database for GO and KEGG enrichment analysis to further explore their potential mechanisms of action. Subsequently, molecular docking and molecular dynamics simulations were performed using AutoDock Vina and Gromacs to verify the binding capacity and stability of the core genes with the key active components. The study results indicate that the active components of MHFZXXD, such as quercetin, luteolin, and kaempferol, target multiple genes including AKT1, EGF, MYC, TGFB1, PTEN, and CCND1. They exert effects through signaling pathways such as TNF, PI3K-Akt, and HIF-1. Molecular docking and dynamics simulations show that the core targets bind stably with the key active components. Overall, MHFZXXD may reduce inflammatory responses and improve hypoxic conditions and apoptosis during the progression of elderly bronchial asthma through multiple active components, targets, and signaling pathways, thereby delaying the malignant progression of the disease. This provides relevant evidence and experimental data for clinical treatment and further research.
Collapse
Affiliation(s)
- Hongpeng Yu
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Xiaotong Wei
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Ding
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Shaodan Hu
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Feng Sun
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Zhenghua Cao
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Li Shi
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
8
|
Subali D, Kurniawan R, Surya R, Lee IS, Chung S, Ko SJ, Moon M, Choi J, Park MN, Taslim NA, Hardinsyah H, Nurkolis F, Kim B, Kim KI. Revealing the mechanism and efficacy of natural products on treating the asthma: Current insights from traditional medicine to modern drug discovery. Heliyon 2024; 10:e32008. [PMID: 38882318 PMCID: PMC11176852 DOI: 10.1016/j.heliyon.2024.e32008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Asthma remains a significant global health challenge, demanding innovative approaches to treatment. Traditional medicine has a rich history of using natural products to alleviate asthmatic symptoms. However, transitioning from these traditional remedies to modern drug discovery approaches has provided fresh insights into the mechanisms and effectiveness of these natural products. This study provides our comprehensive review, which examines the current state of knowledge in the treatment of asthma. It delves into the mechanisms through which natural products ameliorate asthma symptoms, and it discusses their potential in the development of novel therapeutic interventions. Our analysis reveals that natural products, traditionally employed for asthma relief, exhibit diverse mechanisms of action. These include anti-inflammatory, bronchodilatory, immunomodulatory effects, and reducing gene expression. In the context of modern drug discovery, these natural compounds serve as valuable candidates for the development of novel asthma therapies. The transition from traditional remedies to modern drug discovery represents a promising avenue for asthma treatment. Our review highlights the substantial efficacy of natural products in managing asthma symptoms, underpinned by well-defined mechanisms of action. By bridging the gap between traditional and contemporary approaches, we contribute to the growing body of knowledge in the field, emphasizing the potential of natural products in shaping the future of asthma therapy.
Collapse
Affiliation(s)
- Dionysius Subali
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Rudy Kurniawan
- Diabetes Connection Care, Eka Hospital Bumi Serpong Damai, Tangerang, 15321, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Kyung Hee Myungbo Clinic of Korean Medicine, Hwaseong-si, 18466, Republic of Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, 05253, Republic of Korea
| | - Myunghan Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Hardinsyah Hardinsyah
- Division of Applied Nutrition, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, 16680, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Shadisvaaran S, Chin KY, Mohd-Said S, Leong XF. Therapeutic potential of bixin on inflammation: a mini review. Front Nutr 2023; 10:1209248. [PMID: 37781110 PMCID: PMC10534043 DOI: 10.3389/fnut.2023.1209248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic inflammation is the underlying mechanism for many diseases. Thus, inflammatory signaling pathways are valuable targets for new treatment modalities. Natural products have gained interest as a potential source of bioactive compounds which provide health benefits in combating inflammatory-related diseases. Recent reports have linked the medicinal values of Bixa orellana L. with its anti-inflammatory activities. Therefore, this review aims to examine the therapeutic potential of bixin, a major bioactive constituent found in the seeds of B. orellana, on inflammatory-related diseases based on existing in vitro and in vivo evidence. Additionally, the anti-inflammatory mechanism of bixin via signaling pathways is explored and possible toxic effects are addressed. The findings suggest that bixin may ameliorate inflammation via inhibition of toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and thioredoxin-interacting protein/NOD-like receptor protein 3 (TXNIP/NLRP3) inflammasome mechanisms. More well-planned clinical studies should be performed to verify its effectiveness and safety profile.
Collapse
Affiliation(s)
- Saminathan Shadisvaaran
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Shahida Mohd-Said
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Xin-Fang Leong
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Lou F, Huang H, Li Y, Yang S, Shi Y. Investigation of the inhibitory effect and mechanism of epigallocatechin-3-gallate against Streptococcus suis sortase A. J Appl Microbiol 2023; 134:lxad191. [PMID: 37634082 DOI: 10.1093/jambio/lxad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/28/2023]
Abstract
AIMS Streptococcus suis seriously harms people and animals, and importantly, causes great economic losses in the pig industry. Similar to most Gram-positive pathogenic bacteria, sortase A (SrtA) of S. suis can mediate the anchoring of a variety of virulence factors that contain specific sorting sequences to the surface of the bacterial cell wall envelope and participate in pathogenicity. The purpose of this study is to clarify the molecular mechanism of epigallocatechin-3-gallate (EGCG) inhibiting S. suis SrtA and provide more evidence for the development of novel anti-S. suis infections drugs. METHODS AND RESULTS Through the SrtA substrate cleavage experiment, we found that the main component of green tea, EGCG, can effectively inhibit the enzyme activity of S. suis SrtA. Further, molecular docking and molecular dynamics simulation were used to clarify the molecular mechanism of its inhibitory effect, demonstrating that EGCG mainly interacts with amino acids at 113 and 115 to exert its inhibitory function. It was previously found that EGCG can inhibit the growth of S. suis and reduce the activity of suilysin and inhibit its expression. Our research reveals a new function of EGCG in S. suis infection. CONCLUSIONS Our research proves that EGCG can effectively inhibit the transpeptidase activity of SrtA. We also clarify the accompanying molecular mechanism, providing more sufficient evidence for the use of EGCG as a potential lead compound against S. suis infection.
Collapse
Affiliation(s)
- Fei Lou
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Hui Huang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yaping Li
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Shuo Yang
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Yangqian Shi
- School of Basic Medical Sciences, Beihua University, Jilin, China
| |
Collapse
|
11
|
Cong S, Feng Y, Tang H. Network pharmacology and molecular docking to explore the potential mechanism of urolithin A in combined allergic rhinitis and asthma syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2165-2177. [PMID: 36961550 DOI: 10.1007/s00210-023-02404-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 03/25/2023]
Abstract
This research used network pharmacology, molecular docking, in vivo studies, and other techniques to investigate the biological activity and mechanism of action of urolithin A (UA) in treating combined allergic rhinitis and asthma syndrome (CARAS). Urolithin A and potential related targets of allergic rhinitis and asthma were searched from the public databases. Then, bioinformatics analyses were given to protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking and molecular dynamic simulation were performed, aiming at predicting the binding of the active compound to the core target. Finally, in vivo experiment was conducted for further validation. A total of 45 common targets of allergic rhinitis and urolithin A and 62 common targets of asthma and urolithin A were identified, among which six common core targets were screened with Cytoscape. Molecular docking indicated that these core targets had good binding activity to urolithin A, which was further confirmed by molecular dynamics simulation. In the CARAS mouse model, urolithin A showed anti-inflammatory properties. The biological activity and regulatory network of UA on CARAS were revealed, and the anti-inflammatory effect of UA was clarified, which could be associated with the equilibrium of the immune system's Th1/Th2 cells.
Collapse
Affiliation(s)
- Shuang Cong
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yan Feng
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Huaping Tang
- Department of Respiratory Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China.
| |
Collapse
|
12
|
Abdelmawgood IA, Mahana NA, Badr AM, Mohamed AS, Al Shawoush AM, Atia T, Abdelrazak AE, Sakr HI. Echinochrome Ameliorates Physiological, Immunological, and Histopathological Alterations Induced by Ovalbumin in Asthmatic Mice by Modulating the Keap1/Nrf2 Signaling Pathway. Mar Drugs 2023; 21:455. [PMID: 37623736 PMCID: PMC10455754 DOI: 10.3390/md21080455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Asthma is a persistent inflammatory disease of the bronchi characterized by oxidative stress, airway remodeling, and inflammation. Echinochrome (Ech) is a dark-red pigment with antioxidant and anti-inflammatory activities. In this research, we aimed to investigate the effects of Ech against asthma-induced inflammation, oxidative stress, and histopathological alterations in the spleen, liver, and kidney in mice. Mice were divided into four groups (n = 8 for each): control, asthmatic, and asthmatic mice treated intraperitoneally with 0.1 and 1 mg/kg of Ech. In vitro, findings confirmed the antioxidant and anti-inflammatory activities of Ech. Ech showed antiasthmatic effects by lowering the serum levels of immunoglobulin E (IgE), interleukin 4 (IL-4), and interleukin 1β (IL-1β). It attenuated oxidative stress by lowering malondialdehyde (MDA) and nitric oxide (NO) contents and increasing reduced glutathione (GSH), superoxide dismutase (SOD), glutathione-s-transferase (GST), and catalase (CAT) in the liver, spleen, and kidney. Moreover, it protected asthma-induced kidney and liver functions by increasing total protein and albumin and decreasing aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, urea, and uric acid levels. Additionally, it ameliorated histopathological abnormalities in the lung, liver, spleen, and kidney. Additionally, molecular docking studies were used to examine the interactions between Ech and Kelch-like ECH-associated protein 1 (Keap1). PCR and Western blot analyses confirmed the association of Ech with Keap1 and, consequently, the regulatory role of Ech in the Keap1-(nuclear factor erythroid 2-related factor 2) Nrf2 signaling pathway in the liver, spleen, and kidney. According to our findings, Ech prevented asthma and its complications in the spleen, liver, and kidney. Inhibition of inflammation and oxidative stress are two of echinochrome's therapeutic actions in managing asthma by modulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
| | - Noha Ahmed Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | | | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amir Elhadi Abdelrazak
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; (A.E.A.); (H.I.S.)
| | - Hader I. Sakr
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; (A.E.A.); (H.I.S.)
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
13
|
Yuan J, Wang M, Wang C, Zhang L. Epithelial cell dysfunction in chronic rhinosinusitis: the epithelial-mesenchymal transition. Expert Rev Clin Immunol 2023; 19:959-968. [PMID: 37386882 DOI: 10.1080/1744666x.2023.2232113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) is a type of epithelial cell dysfunction, which is widely present in the nasal mucosa of patients with chronic rhinosinusitis (CRS), especially CRS with nasal polyps, and contributes to pathogenesis of the disease. EMT is mediated via complex mechanisms associated with multiple signaling pathways. AREAS COVERED We have summarized the underlying mechanisms and signaling pathways promoting EMT in CRS. Strategies or drugs/agents targeting the genes and pathways related to the regulation of EMT are also discussed for their potential use in the treatment of CRS and asthma. A literature search of studies published in English from 2000 to 2023 was conducted using the PubMed database, employing CRS, EMT, signaling, mechanisms, targeting agents/drugs, as individual or combinations of search terms. EXPERT OPINION EMT in nasal epithelium not only leads to epithelial cell dysfunction but also plays an important role in nasal tissue remodeling in CRS. A comprehensive understanding of the mechanisms underlying EMT and the development of drugs/agents targeting these mechanisms may provide new treatment strategies for CRS.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Enayati A, Rezaei A, Falsafi SR, Rostamabadi H, Malekjani N, Akhavan-Mahdavi S, Kharazmi MS, Jafari SM. Bixin-loaded colloidal nanodelivery systems, techniques and applications. Food Chem 2023; 412:135479. [PMID: 36709686 DOI: 10.1016/j.foodchem.2023.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Bixin is the cis-carotenoid from the seed of achiote tree or annatto. It is an approved liposoluble apocarotenoid by FDA as colorant and additive in the food industry. Nonetheless, bixin is unstable in the presence of oxygen, light, high pHs (alkali) and heat; thereby reducing its bioavailability/bioactivity, and also, with a low solubility in water. Some biopolymeric (e.g., nanofibers, nanogels, and nanotubes) and lipid-based nanocarriers (nanoliposomes, niosomes, hexosomes, nanoemulsions, solid-lipid nanoparticles, and nanostructured lipid carriers) have been introduced for bixin. Thus, this review focuses on the updated information regarding bixin-loaded nanodelivery platforms. Moreover, it provides a comprehensive review of bioavailability, physicochemical properties, and applications of nanoencapsulated-bixin as an additive, its release rate and safety issues. These findings will bring potential strategies for the usage of nanocarriers in managing bixin defaults to improve its broad application in various industries.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Sahar Akhavan-Mahdavi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
15
|
Liu HB, Bai J, Wang WX. CST1 promotes the proliferation and migration of PDGF-BB-treated airway smooth muscle cells via the PI3K/AKT signaling pathway. Kaohsiung J Med Sci 2023; 39:145-153. [PMID: 36354198 DOI: 10.1002/kjm2.12619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Typically, airway remodeling caused by migration and proliferation of airway smooth muscle cells (ASMCs) plays a crucial role in the pathophysiological characteristics of asthma development. Cystatin 1 (CST1), a protein-coding gene referred to as Cystatin SN, is highly expressed in asthma patients. However, the role of CST1 and related molecular mechanisms in the development of asthma remains to be explored. This study aims to investigate the role of CST1 in asthma progression and present related molecular mechanisms. To explore these aspects, human ASMCs with platelet-derived growth factor BB (PDGF-BB) are initially stimulated and applied as a cellular model of asthma. Further, CST1 is knocked down with small interfering ribose nucleic acid (siRNA) overexpressed with plasmids. Then, 5-ethynyl-2'-deoxyuridine (EdU) and Cell Count Kit (CCK)-8 assays are applied to assess the cell proliferation rates. Further, Transwell and Western blot analyses for migration of cells and expression of MMP1 and MMP9 proteins are assessed, respectively. Under PDGF-BB stimulation, human ASMCs showed an increased CST1 expression, enhanced proliferation, and migration abilities, as well as up-regulated PI3K/AKT signaling pathway. Further, knockdown or overexpression of CST1 presented the declined or enhanced proliferation, migration, and up-regulation of the PI3K/AKT signaling pathway of human ASMCs. Inhibiting PI3K/AKT signaling pathway displayed the reduced migration and proliferation of human ASMCs. In summary, these findings indicated that CST1 played an essential role in the progression of asthma by activating the PI3K/AKT signaling pathway and promoting the migration and proliferation abilities of human ASMCs treated with PDGF-BB.
Collapse
Affiliation(s)
- Hong-Bo Liu
- Department of Paediatrics, Yantai Yuhuangding Hospital, Yantai, China
| | - Juan Bai
- Department of Paediatrics, Yantai Yeda Hospital, Yantai, China
| | - Wen-Xiao Wang
- Department of Paediatrics, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
16
|
Islam F, Muni M, Mitra S, Emran TB, Chandran D, Das R, Rauf A, Safi SZ, Chidambaram K, Dhawan M, Cheon C, Kim B. Recent advances in respiratory diseases: Dietary carotenoids as choice of therapeutics. Biomed Pharmacother 2022; 155:113786. [PMID: 36271564 DOI: 10.1016/j.biopha.2022.113786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
A group of bioactive, isoprenoid pigments known as carotenoids is mostly present in fruits and vegetables. Carotenoids are essential for the prevention of physiological issues, which makes maintaining excellent health easier. They are effective functional ingredients with potent health-promoting properties that are widely present in our food and linked to a decrease in the prevalence of chronic diseases, including respiratory diseases. Respiratory infections are the primary cause of death and life-threatening conditions globally, wreaking havoc on the global health system. People rely on dietary sources of carotenoids to reduce a plethora of respiratory diseases such as chronic obstructive pulmonary disease (COPD), lung cancer, asthma, and so on. Carotenoids have received a lot of interest recently in several parts of the world due to their therapeutic potential in altering the pathogenic pathways underlying inflammatory respiratory diseases, which may improve disease control and have beneficial health benefits. This review aimed to provide a thorough understanding of the therapeutic potential of dietary carotenoids in the treatment of respiratory diseases and to identify possible candidates for novel therapeutic development.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Maniza Muni
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu 642109, India
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana,141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Chunhoo Cheon
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 05254, South Korea.
| |
Collapse
|
17
|
He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Front Pharmacol 2022; 13:981578. [PMID: 36188562 PMCID: PMC9522319 DOI: 10.3389/fphar.2022.981578] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a heterogenous and highly complex clinical syndrome, which is caused by infectious or noninfectious factors. Acute kidney injury (AKI) is one of the most common and severe complication of sepsis, and it is associated with high mortality and poor outcomes. Recent evidence has identified that autophagy participates in the pathophysiology of sepsis-associated AKI. Despite the use of antibiotics, the mortality rate is still at an extremely high level in patients with sepsis. Besides traditional treatments, many natural products, including phytochemicals and their derivatives, are proved to exert protective effects through multiple mechanisms, such as regulation of autophagy, inhibition of inflammation, fibrosis, and apoptosis, etc. Accumulating evidence has also shown that many pharmacological inhibitors might have potential therapeutic effects in sepsis-induced AKI. Hence, understanding the pathophysiology of sepsis-induced AKI may help to develop novel therapeutics to attenuate the complications of sepsis and lower the mortality rate. This review updates the recent progress of underlying pathophysiological mechanisms of sepsis-associated AKI, focuses specifically on autophagy, and summarizes the potential therapeutic effects of phytochemicals and pharmacological inhibitors.
Collapse
|
18
|
Manochkumar J, Singh A, Efferth T, Ramamoorthy S. Untapping the protective role of carotenoids against respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154286. [PMID: 35820304 DOI: 10.1016/j.phymed.2022.154286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent studies revealed a substantial role of carotenoids to treat respiratory diseases. This review aimed to give an updated overview of the investigational evidence on the preventive properties of carotenoids against respiratory diseases both in vitro and in vivo along with their pathophysiology and mechanisms of action. HYPOTHESIS Carotenoids as a potential therapeutic class of bioactive compounds to treat respiratory diseases. RESULTS Carotenoids such as β-carotene, lycopene, crocin, bixin, lutein, and astaxanthin show beneficial effects against chronic lung diseases (e.g., asthma, emphysema, fibrosis, COPD, acute lung injury, and lung cancer). Moreover, in vitro and in vivo studies also supported the preventive role of carotenoids. These carotenoids showed a beneficial role by activation of the NRF2/HO-1 pathway and inhibition of the NF-кB, MAPK, JAK/STAT-3, and PI3K/AKT pathways. Additionally, epidemiological studies also showed that dietary intake of carotenoids lowers the risk of lung diseases. CONCLUSION Carotenoids may be used as drugs or can be given in combination with other drugs to prevent and treat respiratory diseases. Although in vitro and in vivo results are encouraging, further well-conducted randomized clinical trials are required to approve carotenoids as drug candidates.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Anuma Singh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India.
| |
Collapse
|
19
|
Cheng X, Chen Q, Sun P. Natural phytochemicals that affect autophagy in the treatment of oral diseases and infections: A review. Front Pharmacol 2022; 13:970596. [PMID: 36091810 PMCID: PMC9461701 DOI: 10.3389/fphar.2022.970596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a critical factor in eukaryotic evolution. Cells provide nutrition and energy during autophagy by destroying non-essential components, thereby allowing intracellular material conversion and managing temporary survival stress. Autophagy is linked to a variety of oral disorders, including the type and extent of oral malignancies. Furthermore, autophagy is important in lymphocyte formation, innate immunity, and the regulation of acquired immune responses. It is also required for immunological responses in the oral cavity. Knowledge of autophagy has aided in the identification and treatment of common oral disorders, most notably cancers. The involvement of autophagy in the oral immune system may offer a new understanding of the immune mechanism and provide a novel approach to eliminating harmful bacteria in the body. This review focuses on autophagy creation, innate and acquired immunological responses to autophagy, and the status of autophagy in microbial infection research. Recent developments in the regulatory mechanisms of autophagy and therapeutic applications in oral illnesses, particularly oral cancers, are also discussed. Finally, the relationship between various natural substances that may be used as medications and autophagy is investigated.
Collapse
Affiliation(s)
| | | | - Ping Sun
- *Correspondence: Ping Sun, ; Qianming Chen,
| |
Collapse
|
20
|
Lysionotin Induces Ferroptosis to Suppress Development of Colorectal Cancer via Promoting Nrf2 Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1366957. [PMID: 35993016 PMCID: PMC9385354 DOI: 10.1155/2022/1366957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
Abstract
Extensive use of substances derived from natural sources has been documented in the treatment of colorectal cancer (CRC). Lysionotin (Lys) is a flavonoid present in the flowers and leaves of Gesneriaceae family plants. Despite its various pharmacological properties, which include neuroprotective, pro, antimalarial, and anticancer effects, the therapeutic advantages of Lys for CRC remain uncertain. In this present study, we demonstrated that Lys treatment successfully inhibited cell proliferation, migration, and invasion in HCT116 and SW480 CRC cells in vitro. Intriguingly, significant ferroptosis and reactive oxygen species (ROS) accumulation in CRC cells were induced by Lys treatment, whereas antagonism of ferroptosis by Liproxstatin-1 (Lip1) pretreatment retarded the anti-CRC effects of Lys. In addition, Lys reduced the amount of Nrf2 protein in CRC cells by increasing the rate at which it is degraded. Overexpression of Nrf2 rescued Lys reduced ferroptosis, suggesting the Nrf2 signaling is a crucial determinant of whether Lys induces ferroptosis in CRC cells. We also revealed that Lys suppressed tumor growth in vivo without obvious adverse effects on the main organs of mice. In conclusion, our results discovered that Lys treatment induced ferroptosis to exert antitumor effects in HCT116 and SW480 CRC cells by modulating Nrf2 signaling, providing a potential therapeutic approach for the prevention of colorectal cancer.
Collapse
|
21
|
Li H, Guo L, Ding X, An Q, Wang L, Hao S, Li W, Wang T, Gao Z, Zheng Y, Zhang D. Molecular Networking, Network Pharmacology, and Molecular Docking Approaches Employed to Investigate the Changes in Ephedrae Herba before and after Honey-Processing. Molecules 2022; 27:molecules27134057. [PMID: 35807303 PMCID: PMC9268138 DOI: 10.3390/molecules27134057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Raw Ephedrae herba (REH) and honey-processed Ephedrae herba (HEH) were the different decoction pieces of Ephedrae herba (EH). Honey-processing that changes REH into HEH has been shown to relieve cough and asthma to a synergistic extent. However, the chemical markers and the synergistic mechanism of HEH need to be further studied. In this study, the ultra-high performance liquid chromatography coupled with hybrid quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS) and molecular networking (MN) were used to investigate the chemical composition of REH and HEH, which led to the identification of 92 compounds. A total of 38 differential chemical markers for REH and HEH were identified using principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Network pharmacology suggests that the synergistic effect of HEH in relieving cough and asthma may be due to 31 differential chemical markers acting through 111 biological targets. Among them, four compounds and two targets probably played an important role based on the results of molecular docking. This study enriched our knowledge about the chemical composition of REH and HEH, as well as the synergistic mechanism of HEH.
Collapse
Affiliation(s)
- Hengyang Li
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050200, China
| | - Xiaoying Ding
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
| | - Qi An
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
| | - Lei Wang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050200, China
| | - Shenghui Hao
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
| | - Wenjie Li
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
| | - Tao Wang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
| | - Zetong Gao
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
- Correspondence: (Y.Z.); (D.Z.); Tel.: +86-311-8511-0166 (Y.Z.); +86-311-8992-6466 (D.Z.)
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (H.L.); (L.G.); (X.D.); (Q.A.); (L.W.); (S.H.); (W.L.); (T.W.); (Z.G.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050200, China
- Correspondence: (Y.Z.); (D.Z.); Tel.: +86-311-8511-0166 (Y.Z.); +86-311-8992-6466 (D.Z.)
| |
Collapse
|
22
|
Zeng L, Sun S, Chen P, Ye Q, Lin X, Wan H, Cai Y, Chen X. Mechanism of Peitu Shengjin Formula Shenlingbaizhu Powder in Treating Bronchial Asthma and Allergic Colitis through Different Diseases with Simultaneous Treatment Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4687788. [PMID: 35586697 PMCID: PMC9110165 DOI: 10.1155/2022/4687788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Shenlingbaizhu powder (SLBZP), one of the classic Earth-cultivating and gold-generating prescriptions of traditional Chinese medicine, is widely used to treat various diseases. However, the pharmacological mechanisms of SLBZP on bronchial asthma (BA) and allergic colitis (AC) remain to be elucidated. METHODS Network pharmacology and molecular docking technology were used to explore the potential mechanism of SLBZP in treating BA and AC with the simultaneous treatment of different diseases. The potential active compounds of SLBZP and their corresponding targets were obtained from BATMAN-TCM, ETCM, SymMap TCM@TAIWAN, and TCMSP databases. BA and AC disease targets were collected through DisGeNET, TTD, GeneCards, PharmGKB, OMIM, NCBI, The Human Phenotype Ontology, and DrugBank databases. Common targets for drugs and diseases were screened by using the bioinformatics and evolutionary genomics platform. The analyses and visualizations of Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of common targets were carried out by R software. The key targets were screened by using the plug-in "cytoHubba" of Cytoscape software, and the "active compound-key target" network was constructed. Molecular docking analysis was performed using AutoDock software. The miRTarBase database was used to predict microRNAs (miRNAs) targeting key targets, and the key target-miRNA network was constructed. RESULT Through screening, 246 active compounds and 281 corresponding targets were obtained. Common targets were mainly enriched in 2933 biological processes and 182 signal pathways to play the role of treating BA and AC. There were 131 active compounds related to key targets. The results of molecular docking showed that the important active compounds in SLBZP had good binding ability with the key targets. The key target-miRNA network showed that 94 miRNAs were predicted. CONCLUSION SLBZP has played the role of treating different diseases with the same treatment on BA and AC through the characteristics of multicompound, multitarget, and multipathway of traditional Chinese medicine, which provides a theoretical basis for explaining the mechanism and clinical application of SLBZP treating different diseases with the same treatment in BA and AC.
Collapse
Affiliation(s)
- Liying Zeng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Shaodan Sun
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Peiwen Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Qina Ye
- Guangzhou Women and Children Medical Center, Guangzhou 510623, Guangdong, China
| | - Xiaoling Lin
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Hongjun Wan
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yawen Cai
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Xiaogang Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| |
Collapse
|
23
|
Zhou L, Li A, Zhang Q. 6'-O-Galloylpaeoniflorin Exerts Inhibitory Bioactivities in Human Neuroblastoma Cells via Modulating AMPK/miR-489/XIAP Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1327835. [PMID: 35572727 PMCID: PMC9098314 DOI: 10.1155/2022/1327835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Although therapies against neuroblastoma (NBM) have advanced, the patients still suffer from poor prognoses due to distal metastasis or the occurrence of multidrug resistance. Accumulating evidence has proved that chemicals derived from natural products possess potent anti-NBM properties or can be used as adjuvants for chemotherapy. In the present study, we demonstrated that 6'-O-galloylpaeoniflorin (GPF), a galloylated derivative of paeoniflorin isolated from the roots of Paeonia lactiflora Pall, exerted significant inhibitory effects on proliferation and invasion of SH-SY5Y cells (an NBM cell line) and enhanced the sensitivity of SH-SY5Y cells to cisplatin in vitro. Further studies showed that GPF treatment upregulated miR-489 in NBM cells via activating AMP-activated protein kinase (AMPK). We also demonstrated that similar to GPF treatment, miR-489 exhibited a significant anti-NBM capacity. Further studies showed that miR-489 directly targeted the X-linked inhibitor of apoptosis protein (XIAP). Overall, our results indicated that GPF possessed an evident anti-NBM capacity dependent on AMPK/miR-489/XIAP pathway, providing an emerging strategy for clinical treatment of NBM.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qiangye Zhang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
24
|
Effects of Traditional Chinese Medicine Anticancer Decoction Combined with Basic Chemotherapy and Nursing Intervention on Oral Cancer Patients after Surgery and Its Effect on Tumor Markers and Immune Function. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6341381. [PMID: 35402612 PMCID: PMC8986392 DOI: 10.1155/2022/6341381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Objective To prospectively study the application effect of traditional Chinese medicine (TCM) anticancer decoction with basic chemotherapy and nursing intervention on oral cancer patients after surgery and the effect on tumor markers and immune function. Methods Eighty-four postoperative oral cancer patients in our hospital from May 2017 to February 2019 were selected and divided into observation group (42 cases) and control group (42 cases). The control group was treated with basic chemotherapy combined with basic nursing care, and the observation group was treated with TCM anticancer decoction and comprehensive nursing intervention on the basis of the control group. The clinical efficacy, the occurrence of adverse reactions, the satisfaction of nursing care, and the two-year cumulative survival rate of the two groups were compared. The immune function, tumor marker level, VAS score, QoR40 score, and survival quality score of the two groups were compared before and after nursing care. Results The total clinical treatment efficiency of the observation group (88.10%) was significantly higher than that of the control group (69.05%), and the differences between the two groups in oral cleanliness, aspiration frequency, and oral comfort were statistically significant (P < 0.05). The differences in the occurrence of halitosis, oral fungal infection, leukopenia, gastrointestinal reaction, and fever in the observation group were statistically significant compared with the control group (P < 0.05). The nursing satisfaction rate in the observation group (95.24%) was significantly higher than that in the control group (78.57%). The two-year cumulative survival rate of the observation group (92.86%) was significantly higher than that of the control group (73.81%). After nursing care, CD4+, CD4+/CD8+, VAS scores, QoR40 scores, and quality of survival scores in both groups all increased, and CD8+, CD56+, CEA level, NSE level, and CA19-9 level all decreased (all P < 0.05). Conclusion The clinical efficacy of TCM anticancer decoction with basic chemotherapy and nursing interventions in the treatment of postoperative oral cancer patients was remarkable, which could significantly improve patients' oral cleanliness and comfort, reduce the frequency of sputum aspiration, improve patients' immunity, reduce tumor marker levels, inhibit tumor activity, improve patients' nursing satisfaction, further improve patients' treatment compliance, reduce patients' pain level, improve patients' survival quality, and prolong patients' survival time with high safety. It could be used as a theoretical basis for subsequent clinical research.
Collapse
|
25
|
Bixin Prevents Colorectal Cancer Development through AMPK-Activated Endoplasmic Reticulum Stress. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9329151. [PMID: 35252457 PMCID: PMC8894005 DOI: 10.1155/2022/9329151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Chemicals isolated from natural products have been broadly applied in the treatment of colorectal cancer (CRC). Bixin, an apocarotenoid from the seeds of Bixa orellana, exerts multiple pharmacological properties, including neuroprotective, anti-inflammatory, cardioprotective, and antitumor effects; yet, the therapeutic effects of Bixin on CRC are still unknown. Here, we described that Bixin treatment significantly inhibited the proliferation and motility of two CRC cell lines (CaCO2 and SW480) in vitro and in vivo. In addition, Bixin administration has sensitized CRC cells to TNF-related apoptosis-inducing ligand- (TRAIL-) induced cell apoptosis. Moreover, we showed that Bixin treatment initiated the activation of PERK/eIF-2α signal in CaCO2 and SW480 cells, leading to endoplasmic reticulum stress-associated apoptosis. Pharmacological inhibition of AMP-activated protein kinase (AMPK) abrogated the Bixin-induced activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF-2α) pathway, as well as reversed the inhibitory effects of Bixin on CRC development. In conclusion, this study indicated that Bixin treatment inhibits the progression of CRC through activating the AMPK/PERK/eIF-2α pathway, providing a novel potential strategy for clinical prevention of CRC.
Collapse
|
26
|
Zhang Y, Liu Y, Zhang B, Gao L, Jie J, Deng X, Liu X, Sun D, Song L, Luo J. A natural compound hyperoside targets Salmonella Typhimurium T3SS needle protein InvG. Food Funct 2022; 13:9761-9771. [DOI: 10.1039/d2fo00908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial actions of natural compounds derived from medicinal plants have been well documented. However, their detailed mechanism underlying the action against microorganisms remains largely unexplored. Salmonella enterica is a...
Collapse
|