1
|
Wang F, Guo B, Jia Z, Jing Z, Wang Q, Li M, Lu B, Liang W, Hu W, Fu X. The Role of CXCR3 in Nervous System-Related Diseases. Mediators Inflamm 2024; 2024:8347647. [PMID: 39429695 PMCID: PMC11488998 DOI: 10.1155/2024/8347647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Inflammatory chemokines are a group of G-protein receptor ligands characterized by conserved cysteine residues, which can be divided into four main subfamilies: CC, CXC, XC, and CX3C. The C-X-C chemokine receptor (CXCR) 3 and its ligands, C-X-C chemokine ligands (CXCLs), are widely expressed in both the peripheral nervous system (PNS) and central nervous system (CNS). This comprehensive literature review aims to examine the functions and pathways of CXCR3 and its ligands in nervous system-related diseases. In summary, while the related pathways and the expression levels of CXCR3 and its ligands are varied among different cells in PNS and CNS, the MPAK pathway is the core via which CXCR3 exerts physiological functions. It is not only the core pathway of CXCR3 after activation but also participates in the expression of CXCR3 ligands in the nervous system. In addition, despite CXCR3 being a common inflammatory chemokine receptor, there is no consensus on its precise roles in various diseases. This uncertainty may be attributable to distinct inflammatory characteristics, that inflammation simultaneously possesses the dual properties of damage induction and repair facilitation.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bing Guo
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ziyang Jia
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qingyi Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bingqi Lu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Fan H, Yang Y, Bai Q, Wang D, Shi X, Zhang L, Yang Y. Neuroprotective Effects of Sinomenine on Experimental Autoimmune Encephalomyelitis via Anti-Inflammatory and Nrf2-Dependent Anti-Oxidative Stress Activity. Neuromolecular Med 2023; 25:545-562. [PMID: 37735290 DOI: 10.1007/s12017-023-08756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). Sinomenine (SIN), a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, has powerful anti-inflammatory and immunosuppressive therapeutic benefits. In our previous research, we found that SIN increased resistance to oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in PC12 neuronal cells. However, whether SIN can improve the symptoms and pathological features of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, via the Nrf2 signaling pathway remains unclear. EAE was immunized followed by SIN treatment. Then we evaluated the effects of SIN in EAE. Subsequently, primary microglia were cultured to explore the effect of SIN on microglia activation. Further, the levels of Nrf2 and its downstream molecules were detected to assess the molecular mechanisms of SIN. We demonstrated that SIN effectively ameliorated the severity of EAE, accompanied by a reduction in the demyelination, axonal damage and inhibition of inflammatory cell infiltration. Mechanistically, SIN decreased the inflammatory cytokines expression, and suppressed microglia and astrocytes activation in EAE mice. Furthermore, SIN suppressed lipopolysaccharide (LPS)-induced microglial activation and the production of pro-inflammatory factors in vitro. Moreover, SIN inhibited oxidative stress via the activation of the Nrf2 signaling pathway. Our work proves that SIN exerts its neuroprotective effects by the Nrf2-dependent anti-oxidative stress and diminishing neuroinflammation, suggesting that the "antioxiflammation" effect of SIN is expected to be an ideal treatment strategy for MS/EAE.
Collapse
Affiliation(s)
- Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Yang Yang
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qianqian Bai
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lele Zhang
- Department of traditional Chinese medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yanhui Yang
- Department of Trauma center, The First Affiliated Hospital, College of Clinical Medicine , Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
3
|
Piazzesi A, Putignani L. Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Front Microbiol 2022; 13:958346. [PMID: 36071979 PMCID: PMC9441770 DOI: 10.3389/fmicb.2022.958346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic inflammation is a hallmark for a variety of disorders and is at least partially responsible for disease progression and poor patient health. In recent years, the microbiota inhabiting the human gut has been associated with not only intestinal inflammatory diseases but also those that affect the brain, liver, lungs, and joints. Despite a strong correlation between specific microbial signatures and inflammation, whether or not these microbes are disease markers or disease drivers is still a matter of debate. In this review, we discuss what is known about the molecular mechanisms by which the gut microbiota can modulate inflammation, both in the intestine and beyond. We identify the current gaps in our knowledge of biological mechanisms, discuss how these gaps have likely contributed to the uncertain outcome of fecal microbiota transplantation and probiotic clinical trials, and suggest how both mechanistic insight and -omics-based approaches can better inform study design and therapeutic intervention.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Lorenza Putignani,
| |
Collapse
|
4
|
Yu H, Bai S, Hao Y, Guan Y. Fatty acids role in multiple sclerosis as "metabokines". J Neuroinflammation 2022; 19:157. [PMID: 35715809 PMCID: PMC9205055 DOI: 10.1186/s12974-022-02502-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS), as an autoimmune neurological disease with both genetic and environmental contribution, still lacks effective treatment options among progressive patients, highlighting the need to re-evaluate disease innate properties in search for novel therapeutic targets. Fatty acids (FA) and MS bear an interesting intimate connection. FA and FA metabolism are highly associated with autoimmunity, as the diet-derived circulatory and tissue-resident FAs level and composition can modulate immune cells polarization, differentiation and function, suggesting their broad regulatory role as “metabokines”. In addition, FAs are indeed protective factors for blood–brain barrier integrity, crucial contributors of central nervous system (CNS) chronic inflammation and progressive degeneration, as well as important materials for remyelination. The remaining area of ambiguity requires further exploration into this arena to validate the existed phenomenon, develop novel therapies, and confirm the safety and efficacy of therapeutic intervention targeting FA metabolism.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
5
|
Shi C, Cha J, Gong J, Wang S, Zeng P, Lian J, Zhang B, Hua Q, Lv J, Du C, Xie X, Zhang R. Amelioration of Experimental Autoimmune Encephalomyelitis in Alzheimer’s Disease Mouse Models: A Potential Role for Aβ. Cells 2022; 11:cells11061004. [PMID: 35326455 PMCID: PMC8946952 DOI: 10.3390/cells11061004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Emerging data have highlighted the coexistence of multiple sclerosis (MS) and Alzheimer’s disease (AD), both of which are common central nervous system degenerative diseases with a heavy burden on patients, their families, and society. However, it is unclear how MS progresses under an AD pathological background. We aimed to address the question of how MS progresses under an AD pathological background. We induced the experimental autoimmune encephalomyelitis (EAE) model of MS in two types of AD mouse models, Tg6799 and APP/PS1 mice. We found that, compared with wild-type mice, the clinical symptoms of EAE were significantly ameliorated in APP/PS1 mice but not in Tg6799 mice. Moreover, a much lower level of serum Aβ was observed in Tg6799 mice. EAE clinical symptoms in Tg6799 and C57BL/6J mice were ameliorated by intraperitoneal injection of Aβ42. Peripheral administration of Aβ42 peptides was able to inhibit Th17 development in vivo, which is likely to occur through the inhibition of IL-6 production in dendritic cells. Our findings revealed that AD and EAE could coexist in the same mouse, and Aβ residing in peripheral circulation likely plays an anti-inflammatory role in preventing EAE progression. These findings reveal the potential benefit of Aβ, one of the supervillains of AD, at least in certain contexts.
Collapse
Affiliation(s)
- Changjie Shi
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Jiaxue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Junyuan Gong
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Shaodeng Wang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Peng Zeng
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Junjiang Lian
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Bowen Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Qiuhong Hua
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Jie Lv
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Changsheng Du
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (C.S.); (J.C.); (J.G.); (S.W.); (P.Z.); (J.L.); (B.Z.); (Q.H.); (J.L.); (C.D.)
- Correspondence: ; Tel.: +86-216-598-6852
| |
Collapse
|