1
|
Gorki V, Walter NS, Chauhan M, Dhingra N, Bagai U, Kaur S. Gefitinib as an antimalarial: unveiling its therapeutic potential. Inflammopharmacology 2025; 33:1357-1379. [PMID: 40019687 DOI: 10.1007/s10787-025-01682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Resistant strains of Plasmodium spp. pose a great threat to healthcare. Drug repurposing is a smart, and an effective way to look for new alternatives for different ailments including malaria. Protein tyrosine kinases (PTKs) play a crucial role in growth, maturation as well as differentiation of Plasmodium and this study explores antimalarial activity of PTKs inhibitor gefitinib using in silico and experimental approaches. The drug showed considerable inhibitory activity against P. falciparum 3D7 (IC50 0.49 µg/mL) and RKL-9 (IC50 0.83 µg/mL) strains. Isobologram analysis revealed substantial synergism between gefitinib and artesunate. Gefitinib illustrated highest negative D-score towards phosphoethanolamine methyltransferase followed by PfPK5 and CDPK1. Its acute toxicity was 4 g/kg. Gefitinib (100 mg/kg) exhibited a dose-dependent curative activity against P. berghei with 91.09% chemo-suppression and the combination of gefitinib 100 mg/kg and AS 50 mg/kg exhibited complete parasite clearance with no recrudescence which was also evidenced by cytokine analysis, biochemical as well as histopathological studies. At length, gefitinib illustrated considerable antiplasmodial action by targeting phosphoethanolamine methyltransferase, PfPK5 and CDPK1. The combination of gefitinib (100 mg/kg) and AS (50 mg/kg) holds promise for malaria treatment. Further, research is being done to evaluate its pharmacokinetic properties.
Collapse
Affiliation(s)
- Varun Gorki
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Neha Sylvia Walter
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Monika Chauhan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Upma Bagai
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Walter NS, Bhattacharyya S. Mining parasites for their potential as novel therapeutic agents against cancer. Med Oncol 2024; 41:211. [PMID: 39073638 DOI: 10.1007/s12032-024-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Despite recent advances in the management and therapeutic of cancer, the treatment of the disease is limited by its high cost and severe side effects. In this scenario, there is an unmet need to identify novel treatment alternatives for this dreaded disease. Recently there is growing evidence that parasites may cause anticancer effects because of a negative correlation between parasitic infections and tumour growth despite some parasites that are known to exhibit pro-carcinogenic effects. It has been observed that parasites exert an anticancer effect either by activating the host's immune response or by secreting certain molecules that exhibit anticancer potential. The activation of the immune response by these parasitic organisms results in the inhibition of some of the hallmarks of cancer such as tumour proliferation, angiogenesis, and metastasis. This review summarizes the current advances as well as the mechanisms underlying the possible implications of this diverse group of organisms as anticancer agents.
Collapse
Affiliation(s)
- Neha Sylvia Walter
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
3
|
Devi G, Gorki V, Walter NS, Sivangula S, Sobhia ME, Jachak S, Puri R, Kaur S. Exploring the efficacy of ethnomedicinal plants of Himalayan region against the malaria parasite. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117394. [PMID: 37967777 DOI: 10.1016/j.jep.2023.117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plasmodium falciparum multi-drug resistant (MDR) strains are a great challenge to global health care. This predicament implies the urgent need to discover novel antimalarial drugs candidate from alternative natural sources. The Himalaya constitute a rich repository of medicinal plants which have been used traditionally in the folklore medicine since ages and having no scientific evidence for their activity. Crambe kotschyana Boiss. and Eremurus himalaicus Baker are used for their antipyretic and hepatoprotective properties in Kinnaur district of Himachal Pradesh, India. AIM OF THE STUDY This study would investigate the antiplasmodial efficacy of C. kotschyana and E. himalaicus extracts, their fractions and active components using in vitro, in vivo and in silico approaches to provide a scientific insight into their activity. METHODS The methanol extracts of C. kotschyana (CKME) and E. himalaicus (EHME) were prepared by maceration followed by fractionation using ethyl acetate. The isolation of flavonoid glycosides isorhamnetin-3, 7-di-O-glucoside from C. kotschyana and luteolin-6-C-glucoside (isoorientin) from E. himalaicus was carried out by antiplasmodial activity-guided isolation. In vitro antimalarial activity was assessed by WHO method while in vitro cytotoxicity was ascertained employing the MTT assay. Molecular docking and molecular dynamics simulation were performed using the Glide module of Schrödinger Software and Gromacs-2022 software package respectively. In vivo curative activity was assessed by Ryley and Peters method. RESULTS The methanol extracts of both the plants illustrated the best antiplasmodial activity followed by the ethyl acetate fractions. Iso-orientin (IC50 6.49 μg/ml) and Isorhamnetin-3,7-di-O-glucoside (IC50 9.22 μg/ml) illustrated considerable in vitro activity even against P. falciparum resistant strain. Extracts/fractions as well as the isolated compounds were found to be non-toxic with CC50 > 640 μg/ml. Molecular docking studies were performed with these 2 O-glucosides against four malaria targets to understand the binding pose of these molecules and the results suggested that these molecules have selectivity for lactate dehydrogenase enzyme. CKME and EHME exhibited curative activity in vivo along with increase in Mean Survival Time of mice. CONCLUSION The research delineated the scientific evidence that both the therapeutic herbs possessed antimalarial activity and notably, bioactive compounds responsible to exhibit the antimalarial activity have been isolated, identified and characterized. Further studies are underway to assess the antiplasmodial efficacy of isolated compounds alone and in combination with standard antimalarials.
Collapse
Affiliation(s)
- Geeta Devi
- Ethnobotany and Medicinal Plant Laboratory, Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Varun Gorki
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Neha Sylvia Walter
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Srikanth Sivangula
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S Nagar, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S Nagar, Punjab, India
| | - Sanjay Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Richa Puri
- Ethnobotany and Medicinal Plant Laboratory, Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Plirat W, Chaniad P, Phuwajaroanpong A, Konyanee A, Viriyavejakul P, Septama AW, Punsawad C. Efficacy of artesunate combined with Atractylodes lancea or Prabchompoothaweep remedy extracts as adjunctive therapy for the treatment of cerebral malaria. BMC Complement Med Ther 2023; 23:332. [PMID: 37730604 PMCID: PMC10510250 DOI: 10.1186/s12906-023-04150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Cerebral malaria is one of the most serious complications of Plasmodium infection and causes behavioral changes. However, current antimalarial drugs have shown poor outcomes. Therefore, new antimalarials with neuroprotective effects are urgently needed. This study aimed to evaluate the effects of selected extracts as monotherapy or adjunctive therapy with artesunate on antimalarial, anti-inflammatory, antioxidant, and neuroprotective properties in experimental cerebral malaria (ECM). METHODS ECM was induced in male C57BL/6 mice by infection with Plasmodium berghei ANKA (PbA). Ethanolic extracts of Atractylodes lancea (a dose of 400 mg/kg) and Prabchompoothaweep remedy (a dose of 600 mg/kg) were evaluated as monotherapy and adjunctive therapy combined with artesunate at the onset of signs of cerebral malaria and continued for 7 consecutive days. Parasitemia, clinical scores, and body weight were recorded throughout the study. At day 13 post-infection, mouse brains were dissected and processed for the study of the inflammatory response, oxidative stress, blood-brain barrier (BBB) integrity, histopathological changes, and neurocognitive impairments. RESULTS Ethanolic extracts of A. lancea and Prabchompoothaweep remedy alone improved cerebral malaria outcome in ECM, whereas artesunate combined with extracts of A. lancea or Prabchompoothaweep remedy significantly improved the outcome of artesunate and crude extracts alone. Using real-time PCR, PbA-infected mice that had received the combination treatment showed significantly reduced gene expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10), chemokines (CXCL4 and CXCL10), and adhesion molecules (ICAM-1, VCAM1, and CD36). The PbA-infected mice that received the combination treatment showed a significantly decreased malondialdehyde level compared to the untreated group. Similarly, the Evans blue dye assay revealed significantly less dye extravasation in the brains of infected mice administered the combination treatment, indicating improved BBB integrity. Combination treatment improved survival and reduced pathology in the PbA-infected group. Additionally, combination treatment resulted in a significantly reduced level of cognitive impairment, which was analyzed using a novel object recognition test. CONCLUSIONS This study demonstrated that artesunate combined with A. lancea or Prabchompoothaweep remedy extracts as adjunctive therapy reduced mortality, neuroinflammation, oxidative stress, BBB integrity protection, and neurocognitive impairment in the ECM.
Collapse
Affiliation(s)
- Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Atthaphon Konyanee
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | | | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, 16915, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
5
|
Hasan AM, Ghafil JA. Study on the anti-microbial effect of Sinigrin against some pathogenic bacterial species. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The increasing anti-bacterial drug resistance is one of the biggest challenges facing doctors around the globe, so finding alternative treatments is one of the ideal options to overcome this problem. The cruciferous family is one of the wealthiest plants worldwide because it contains the most important secondary metabolites, glucosinolates, known for their anti-microbial properties. The present study aimed to evaluate the anti-bacterial effect of glucosinolates (Sinigrin) against eight bacterial isolates (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Actinomyces, Proteus mirabilis and Streptococcus pneumoniae). The current study investigated six concentrations of pure Sinigrin (100, 300, 500, 700, 900, and 1100 µg/ml). The sensitivity of bacterial isolates to various antibiotics was tested by VITIK 2DensiCheck equipment. The anti-bacterial activity of Sinigrin was assessed using the agar diffusion method, and the microtiter plate method measured the minimal inhibitory concentration (MIC). The highest anti-bacterial effect of Sinigrin was observed against S. aureus, E. coli, and E. faecalis. The anti-bacterial activity started as lower as 100 µg/ml, while a moderate effect was seen against P. aeruginosa and K. pneumoniae at a concentration lower than 700 µg/ml. On the other hand, Sinigrin was not effective against Actinomyces, P. mirabilis, and S. pneumoniae. It can be concluded from the present study that Sinigrin has an anti-bacterial effect on some isolates of bacteria which suggests the possibility of using Sinigrin as alternative medicine in the future.
Keywords: Anti-bacterial activity, Agar well diffusion, Glucosinolates, Minimum inhibition concentration and antibiotic susceptibility, Sinigrin.
Collapse
Affiliation(s)
- Alaa M. Hasan
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Jenan A. Ghafil
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|