1
|
Li SH, Huang QH, Yang QQ, Huang Q, Wang DX, Yang J, Huang SH, Zhang SY, Wang JM, Xie LS, Yu SG, Wu QF. The shared mechanism of barrier dysfunction in ulcerative colitis and Alzheimer's disease: DDIT4/IL1β neutrophil extracellular traps drive macrophages-mediated phagocytosis. Int Immunopharmacol 2025; 149:114188. [PMID: 39908802 DOI: 10.1016/j.intimp.2025.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Ulcerative colitis (UC) and Alzheimer's disease (AD) share a common etiology as inflammatory diseases characterized by barrier deterioration. The aim of this study is to elucidate how neutrophil extracellular traps (NETs), serving as a comorbid etiological factor, can trigger the dysfunction in both the intestinal barrier and blood-brain barrier (BBB). Integrated bioinformatics analysis revealed 14 overlapped NETs-related differential expressed genes in UC and AD, which strongly featured barrier dysfunction. The following verification experiments identified enriched NETs, as well as damaged intestinal epithelium and BBB permeability, in the colon and prefrontal cortex of colitis mice and APP/PS1 mice. By employing pharmacological interventions (Cl-amidine and Disulfiram), we disrupted the formation of NETs and discovered significantly restored barrier integrity and attenuated inflammation. Further enrichment and correlation analysis indicated, for the first time, DDIT4/IL-1β NETs might drive macrophage-mediated phagocytosis to induce barrier dysfunction in UC and AD. Our findings originally established the peripheral-central inflammation interactions of UC and AD from the perspective of NETs, highlighting the potential valuable roles in gut-brain interactions and future clinic translational therapeutics.
Collapse
Affiliation(s)
- Si-Hui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qian-Hui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qing-Qing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qin Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - De-Xian Wang
- College of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jiao Yang
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining, Sichuan 629000, China
| | - Si-Han Huang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Si-Yu Zhang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jun-Meng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Lu-Shuang Xie
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shu-Guang Yu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| | - Qiao-Feng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of Traditional Chinese Medicine), Ministry of Education, Chengdu, Sichuan 610075, China; Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
2
|
Zhu Y, Wang Y, Zuo X, Liu S, Cao L, Wang J, Yang Q, Huang Q, Huang Q, Tian M, Ping Y, Wu Q. Inhibition SIRT1 to regulate FOXP3 or RORγt can restore the balance of Treg/Th17 axis in ulcerative colitis and enhance the anti-inflammatory effect of moxibustion. Front Immunol 2025; 15:1525469. [PMID: 39867884 PMCID: PMC11757129 DOI: 10.3389/fimmu.2024.1525469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear. Methods This study first analyzed RNA- seq data from public databases of humans and mice, and in vitro cytology experiments were conducted to induce or inhibit the expression of SIRT1. In vivo, UC mice were treated with moxibustion and SIRT1 inhibitor EX-527 to confirm the changes in the transcription factors identified through analysis of the datasets. Results The results show that Treg/Th17 axis disruption is an important feature of UC. Differential gene expression and immune infiltration analysis showed that upstream transcription factors, including Forkhead box P3 (FOXP3), were significantly disrupted. In vitro cytology experiments, the results indicate that SIRT1 is activated in LPS induced inflammation, subsequently perturbing the Treg/Th17 immune balance axis. Finally, in vivo studies, the results have shown that administering EX-527 to inhibit SIRT1 leads to an increasing in FOXP3 expression and a decreasing in RORγt expression in UC colon tissue. In addition, the results indicate that traditional Chinese moxibustion can down regulate the expression of SIRT1, directly affecting the balance of Th17/Treg axis, and the combined use of EX-527 further improves the therapeutic effect of moxibustion. Conclusion Our research shows that inhibition SIRT1 can regulate Treg and Th17 immune balance axis. This finding indicates a new important potential target for the treatment of UC.
Collapse
MESH Headings
- Animals
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Sirtuin 1/metabolism
- Sirtuin 1/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/therapy
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Forkhead Transcription Factors/metabolism
- Mice
- Humans
- Moxibustion/methods
- Male
- Disease Models, Animal
- Mice, Inbred C57BL
- Carbazoles/pharmacology
Collapse
Affiliation(s)
- Yuanbing Zhu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuemei Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaotong Zuo
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuqing Liu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lishuang Cao
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junmeng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingqing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qianhui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Muqiu Tian
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanling Ping
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture & Chronobiology Key Laboratory of Sichuan Province (Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, China
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of Traditional Chinese Medicine), Ministry of Education, Chengdu, Sichuan, China
- Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zhang X, Lu M, An H. Lysine acetylproteome analysis reveals the lysine acetylation in developing fruit and a key acetylated protein involved in sucrose accumulation in Rosa roxburghii Tratt. J Proteomics 2024; 305:105248. [PMID: 38964538 DOI: 10.1016/j.jprot.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Lysine acetylation is a common post-translational modification of proteins in plants. Rosa roxburghii Tratt. is an economically important fruit tree known for its high nutritional value. However, the characteristics of acetylome-related proteins during fruit development in this crop remain unknown. This study aimed to explore the global acetylproteome of R. roxburghii fruit to identify key lysine-acetylated proteins associated with its quality traits. A total of 4280 acetylated proteins were identified, among them, 981 proteins exhibited differential acetylation (DA) while 19 proteins showed increased acetylation level consistently on individual sites. Functional classification revealed that these DA proteins were primarily associated with central metabolic pathways, carbohydrate metabolism, terpenoids and polyketides metabolism, lipid metabolism, and amino acid metabolism, highlighting the importance of lysine acetylation in fruit quality formation. Notably, the most significant up-regulated acetylation occurred in sucrose synthase (SuS1), a key enzyme in sucrose biosynthesis. Enzyme assays, RNA-seq and proteome analysis indicated that SuS activity, which was independent of its transcriptome and proteome level, may be enhanced by up-acetylation, ultimately increasing sucrose accumulation. Thus, these findings offer a better understanding of the global acetylproteome of R. roxburghii fruit, while also uncover a novel mechanism of acetylated SuS-mediated in sucrose metabolism in plant. SIGNIFICANCE: Rosa roxburghii Tratt. is an important horticultural crop whose commercial value is closely linked to its fruit quality. Acetylation modification is a post-translational mechanism observed in plants, which regulates the physiological functions and metabolic fluxes involved in various biological processes. The regulatory mechanism of lysine acetylation in the fruit quality formation in perennial woody plants has not been fully elucidated, while most of the research has primarily focused on annual crops. Therefore, this study, for the first time, uses Rosaceae fruits as the research material to elucidate the regulatory role of lysine-acetylated proteins in fruit development, identify key metabolic processes influencing fruit quality formation, and provide valuable insights for cultivation strategies.
Collapse
Affiliation(s)
- Xue Zhang
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Min Lu
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Huaming An
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Ning Y, Dou X, Wang Z, Shi K, Wang Z, Ding C, Sang X, Zhong X, Shao M, Han X, Cao G. SIRT3: A potential therapeutic target for liver fibrosis. Pharmacol Ther 2024; 257:108639. [PMID: 38561088 DOI: 10.1016/j.pharmthera.2024.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Sirtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase located in the mitochondria, which mainly regulates the acetylation of mitochondrial proteins. In addition, SIRT3 is involved in critical biological processes, including oxidative stress, inflammation, DNA damage, and apoptosis, all of which are closely related to the progression of liver disease. Liver fibrosis characterized by the deposition of extracellular matrix is a result of long termed or repeated liver damage, frequently accompanied by damaged hepatocytes, the recruitment of inflammatory cells, and the activation of hepatic stellate cells. Based on the functions and pharmacology of SIRT3, we will review its roles in liver fibrosis from three aspects: First, the main functions and pharmacological effects of SIRT3 were investigated based on its structure. Second, the roles of SIRT3 in major cells in the liver were summarized to reveal its mechanism in developing liver fibrosis. Last, drugs that regulate SIRT3 to prevent and treat liver fibrosis were discussed. In conclusion, exploring the pharmacological effects of SIRT3, especially in the liver, may be a potential strategy for treating liver fibrosis.
Collapse
Affiliation(s)
- Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhichao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kao Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Zhong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiyu Shao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China; The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wang J, Wang Y, Zhu Y, Cui C, Feng T, Huang Q, Liu S, Wu Q. Peripheral inflammation triggering central anxiety through the hippocampal glutamate metabolized receptor 1. CNS Neurosci Ther 2024; 30:e14723. [PMID: 38676295 PMCID: PMC11053250 DOI: 10.1111/cns.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
AIMS This study aimed to investigate the relationship between ulcerative colitis (UC) and anxiety and explore its central mechanisms using colitis mice. METHODS Anxiety-like behavior was assessed in mice induced by 3% dextran sodium sulfate (DSS) using the elevated plus maze and open-field test. The spatial transcriptome of the hippocampus was analyzed to assess the distribution of excitatory and inhibitory synapses, and Toll-like receptor 4 (TLR4) inhibitor TAK-242 (10 mg/kg) and AAV virus interference were used to examine the role of peripheral inflammation and central molecules such as Glutamate Receptor Metabotropic 1 (GRM1) in mediating anxiety behavior in colitis mice. RESULTS DSS-induced colitis increased anxiety-like behaviors, which was reduced by TAK-242. Spatial transcriptome analysis of the hippocampus showed an excitatory-inhibitory imbalance mediated by glutamatergic synapses, and GRM1 in hippocampus was identified as a critical mediator of anxiety behavior in colitis mice via differential gene screening and AAV virus interference. CONCLUSION Our work suggests that the hippocampus plays an important role in brain anxiety caused by peripheral inflammation, and over-excitation of hippocampal glutamate synapses by GRM1 activation induces anxiety-like behavior in colitis mice. These findings provide new insights into the central mechanisms underlying anxiety in UC and may contribute to the development of novel therapeutic strategies for UC-associated anxiety.
Collapse
Affiliation(s)
- Jun‐Meng Wang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Yue‐Mei Wang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Yuan‐Bing Zhu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Chan Cui
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Tong Feng
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Qin Huang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Shu‐Qing Liu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Qiao‐Feng Wu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Acupuncture and Homeostasis RegulationChengdu University of Traditional Chinese MedicineChengduChina
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of EducationChengduChina
| |
Collapse
|
6
|
Ye S, Lyu Y, Chen L, Wang Y, He Y, Li Q, Tian L, Liu F, Wang X, Ai F. Construction of a molecular inflammatory predictive model with histone modification-related genes and identification of CAMK2D as a potential response signature to infliximab in ulcerative colitis. Front Immunol 2024; 14:1282136. [PMID: 38274809 PMCID: PMC10808628 DOI: 10.3389/fimmu.2023.1282136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Ulcerative colitis (UC) is a lifelong inflammatory disease affecting the rectum and colon with numerous treatment options that require an individualized treatment plan. Histone modifications regulate chromosome structure and gene expression, resulting in effects on inflammatory and immune responses. However, the relationship between histone modification-related genes and UC remains unclear. Methods Transcriptomic data from GSE59071 and GSE66407 were obtained from the Gene Expression Omnibus (GEO), encompassing colonic biopsy expression profiles of UC patients in inflamed and non-inflamed status. Differentially expressed gene (DEG) analyses, functional enrichment analyses, weighted gene co-expression network analysis (WGCNA), and random forest were performed to identify histone modification-related core genes associated with UC inflammation. Features were screened through the least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), establishing a molecular inflammatory predictive model using logistic regression. The model was validated in the GSE107499 dataset, and the performance of the features was assessed using receiver operating characteristic (ROC) and calibration curves. Immunohistochemistry (IHC) staining of colonic biopsy tissues from UC patients treated with infliximab was used to further confirm the clinical application value. Univariate logistic regression on GSE14580 highlighted features linked to infliximab response. Results A total of 253 histone modification-related DEGs were identified between inflammatory and non-inflammatory patients with UC. Seven key genes (IL-1β, MSL3, HDAC7, IRF4, CAMK2D, AUTS2, and PADI2) were selected using WGCNA and random forest. Through univariate logistic regression, three core genes (CAMK2D, AUTS2, and IL-1β) were further incorporated to construct the molecular inflammatory predictive model. The area under the curve (AUC) of the model was 0.943 in the independent validation dataset. A significant association between CAMK2D protein expression and infliximab response was observed, which was validated in another independent verification set of GSE14580 from the GEO database. Conclusion The molecular inflammatory predictive model based on CAMK2D, AUTS2, and IL-1β could reliably distinguish the mucosal inflammatory status of UC patients. We further revealed that CAMK2D was a predictive marker of infliximab response. These findings are expected to provide a new evidence base for personalized treatment and management strategies for UC patients.
Collapse
Affiliation(s)
- Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Libin Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Quansi Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fen Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Sánchez-Quintero MJ, Rodríguez-Díaz C, Rodríguez-González FJ, Fernández-Castañer A, García-Fuentes E, López-Gómez C. Role of Mitochondria in Inflammatory Bowel Diseases: A Systematic Review. Int J Mol Sci 2023; 24:17124. [PMID: 38069446 PMCID: PMC10707203 DOI: 10.3390/ijms242317124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are key cellular organelles whose main function is maintaining cell bioenergetics by producing ATP through oxidative phosphorylation. However, mitochondria are involved in a much higher number of cellular processes. Mitochondria are the home of key metabolic pathways like the tricarboxylic acid cycle and β-oxidation of fatty acids, as well as biosynthetic pathways of key products like nucleotides and amino acids, the control of the redox balance of the cell and detoxifying the cell from H2S and NH3. This plethora of critical functions within the cell is the reason mitochondrial function is involved in several complex disorders (apart from pure mitochondrial disorders), among them inflammatory bowel diseases (IBD). IBD are a group of chronic, inflammatory disorders of the gut, mainly composed of ulcerative colitis and Crohn's disease. In this review, we present the current knowledge regarding the impact of mitochondrial dysfunction in the context of IBD. The role of mitochondria in both intestinal mucosa and immune cell populations are discussed, as well as the role of mitochondrial function in mechanisms like mucosal repair, the microbiota- and brain-gut axes and the development of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Francisco J. Rodríguez-González
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Alejandra Fernández-Castañer
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| |
Collapse
|
8
|
Wang Q, Peng W, Yang Y, Wu Y, Han R, Ding T, Zhang X, Liu J, Liu J, Yang J. Global analysis of lysine acetylation in the brain cortex of K18-hACE2 mice infected with SARS-CoV-2. Proteomics 2023; 23:e2300096. [PMID: 37309728 DOI: 10.1002/pmic.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected hundreds of millions of people all over the world and thus threatens human life. Clinical evidence shows that SARS-CoV-2 infection can cause several neurological consequences, but the existing antiviral drugs and vaccines have failed to stop its spread. Therefore, an understanding of the response to SARS-CoV-2 infection of hosts is vital to find a resultful therapy. Here, we employed a K18-hACE2 mouse infection model and LC-MS/MS to systematically evaluate the acetylomes of brain cortexes in the presence and absence of SARS-CoV-2 infection. Using a label-free strategy, 3829 lysine acetylation (Kac) sites in 1735 histone and nonhistone proteins were identified. Bioinformatics analyses indicated that SARS-CoV-2 infection might lead to neurological consequences via acetylation or deacetylation of important proteins. According to a previous study, we found 26 SARS-CoV-2 proteins interacted with 61 differentially expressed acetylated proteins with high confidence and identified one acetylated SARS-CoV-2 protein nucleocapsid phosphoprotein. We greatly expanded the known set of acetylated proteins and provide the first report of the brain cortex acetylome in this model and thus a theoretical basis for future research on the pathological mechanisms and therapies of neurological consequences after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qiaochu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wanjun Peng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yehong Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rong Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xutong Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Zhang M, Lu J, Liang H, Zhang B, Liang B, Zou H. The succinylome of Pinctada fucata martensii implicates lysine succinylation in the allograft-induced stress response. FISH & SHELLFISH IMMUNOLOGY 2022; 127:585-593. [PMID: 35803507 DOI: 10.1016/j.fsi.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Lysine succinylation is a novel protein post-translational modification associated with the regulation of a variety of cellular processes. Post-translational modifications may regulate the immune response of Pinctada fucata martensii, a marine bivalve used to produce cultured pearls, in response to the surgical implantation of the seed pearl. This allograft-induced stress response may lead to transplant rejection or host death. However, the regulatory effects of post-translational modifications following nucleus insertion surgery in P.f. martensii remain largely unknown. Here, we used 4D label-free quantitative proteomics (4D-LFQ) with LC-MS/MS to explore the effects of nucleus implantation on lysine succinylation in P.f. martensii. We identified 4430 succinylated sites on 964 succinylated proteins in P.f. martensii after nucleus insertion surgery, and seven conserved motifs were identified upstream and downstream of these sites. In total, 269 succinylation sites were differentially expressed in response to implantation (|fold-change| > 1.5 and FDR <1%; 211 upregulation and 58 downregulation), corresponding to 163 differentially expressed succinylated proteins (DESPs; 124 upregulated and 39 downregulated). The terms over-enriched in the DESPs included "cellular processes", "metabolic pathways", and "binding activity", while the significantly enriched pathways included "ECM-receptor interaction", "PI3K-Akt signaling", and "focal adhesion". "EGF-like structural domains", "platelet-responsive protein type 1 structural domains", and "laminin EGF-like (domains III and V) domains" were overrepresented in the DESPs. Parallel reaction-monitoring (PRM) analysis validated 13 DESPs from the proteomics data. The succinylome of P.f. martensii (generated here for the first time) helps to clarify the biological role of large-scale succinylation in this bivalve after nucleus insertion surgery, providing a theoretical basis for further investigations of stress-induced post-translational modifications in other mollusks and extending our knowledge of the molluscan succinylated proteome.
Collapse
Affiliation(s)
- Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Jinzhao Lu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bidan Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Hexin Zou
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|