1
|
Zhang J, Shang S, Liu W, Cheng Y, Hu F, Cao Z, Yue L, Xiang G, Li T. Effect of aspirin on platelet-rich plasma of diabetes mellitus with lower extremity atherosclerosis. Future Sci OA 2024; 10:2413827. [PMID: 39440536 PMCID: PMC11508953 DOI: 10.1080/20565623.2024.2413827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Aim: Platelet-rich plasma (PRP), enriched with multiple growth factors, is a promising adjunctive therapy for diabetic foot ulcers (DFUs). As a classic anti-platelet drug for diabetic patients, the effects of aspirin on the content of growth factors in PRP remains unclear.Methods: Our study enrolled diabetic patients who were currently taking or not taking aspirin as the research subjects, with healthy volunteers as the control. PRP from these individuals was activated with glucose calcium and thrombin. Growth factors levels in PRP activated supernatant (PRP-AS) and wound healing ability of platelet gel (PG) in the full-thickness skin defect diabetic mouse model were compared.Results: We found the level of growth factors in PRP-AS derived from two groups of diabetic patients were not statistically different, whereas both lower than that from healthy volunteers. Similarly, we found better wound healing ability of PG from healthy volunteers than those from diabetic patients, but no difference between the two groups of diabetic patients in the mouse model.Discussion: Aspirin does not interfere with autologous PRP therapy when using calcium gluconate and thrombin as agonists. However considering the content of growth factors, PRP from healthy volunteers is a preferable option for promoting DFU repair.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Shenglan Shang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Wanbing Liu
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Yangyang Cheng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Fan Hu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Zhengwang Cao
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Ling Yue
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - GuangDa Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Tao Li
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
2
|
Guo X, Zhang W, Lu J, Zhu Y, Sun H, Xu D, Xian S, Yao Y, Qian W, Lu B, Shi J, Ding X, Li Y, Tong X, Xiao S, Huang R, Ji S. Amniotic miracle: Investigating the unique development and applications of amniotic membrane in wound healing. Skin Res Technol 2024; 30:e13860. [PMID: 39073182 PMCID: PMC11283885 DOI: 10.1111/srt.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The perfect repair of damaged skin has always been a constant goal for scientists; however, the repair and reconstruction of skin is still a major problem and challenge in injury and burns medicine. Human amniotic membrane (hAM), with its good mechanical properties and anti-inflammatory, antioxidant and antimicrobial benefits, containing growth factors that promote wound healing, has evolved over the last few decades from simple skin sheets to high-tech dressings, such as being made into nanocomposites, hydrogels, powders, and electrostatically spun scaffolds. This paper aims to explore the historical development, applications, trends, and research hotspots of hAM in wound healing. METHODS We examined 2660 publications indexed in the Web of Science Core Collection (WoSCC) from January 1, 1975 to July 12, 2023. Utilizing bibliometric methods, we employed VOSviewer, CiteSpace, and R-bibliometrix to characterize general information, identify development trends, and highlight research hotspots. Subsequently, we identified a collection of high-quality English articles focusing on the roles of human amniotic epithelial stem cells (hAESCs), human amniotic mesenchymal stem cells (hAMSCs), and amniotic membrane (AM) scaffolds in regenerative medicine and tissue engineering. RESULTS Bibliometric analysis identified Udice-French Research Universities as the most productive affiliation and Tseng S.C.G. as the most prolific author. Keyword analysis, historical direct quotations network, and thematic analysis helped us review the historical and major themes in this field. Our examination included the knowledge structure, global status, trends, and research hotspots regarding the application of hAM in wound healing. Our findings indicate that contemporary research emphasizes the preparation and application of products derived from hAM. Notably, both hAM and the cells isolated from it - hADSCs and hAESCs are prominent and promising areas of research in regenerative medicine and tissue engineering. CONCLUSION This research delivers a comprehensive understanding of the knowledge frameworks, global dynamics, emerging patterns, and primary research foci in the realm of hAM applications for wound healing. The field is rapidly evolving, and our findings offer valuable insights for researchers. Future research outcomes are anticipated to be applied in clinical practice, enhancing methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xinya Guo
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Wei Zhang
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Jianyu Lu
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Yushu Zhu
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Hanlin Sun
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Dayuan Xu
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Shuyuan Xian
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Yuntao Yao
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijin Qian
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingnan Lu
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaying Shi
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoyi Ding
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixu Li
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Xirui Tong
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Shichu Xiao
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Runzhi Huang
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Shizhao Ji
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
3
|
Luo P, Liu W, Ye Z, Zhang Y, Zhang Z, Yi J, Zeng R, Yang S, Tu M. 26SCS-Loaded SilMA/Col Composite Sponge with Well-Arranged Layers Promotes Angiogenesis-Based Diabetic Wound Repair by Mediating Macrophage Inflammatory Response. Molecules 2024; 29:1832. [PMID: 38675654 PMCID: PMC11053466 DOI: 10.3390/molecules29081832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic wound healing is a significant clinical challenge because abnormal immune cells in the wound cause chronic inflammation and impair tissue regeneration. Therefore, regulating the behavior and function of macrophages may be conducive to improving treatment outcomes in diabetic wounds. Herein, sulfated chitosan (26SCS)-containing composite sponges (26SCS-SilMA/Col-330) with well-arranged layers and high porosity were constructed based on collagen and silk fibroin, aiming to induce an appropriate inflammatory response and promote angiogenesis. The results indicated that the ordered topological structure of composite sponges could trigger the pro-inflammatory response of Mφs in the early stage, and rapid release of 26SCS in the early and middle stages (within the concentration range of 1-3 mg/mL) induced a positive inflammatory response; initiated the pro-inflammatory reaction of Mφs within 3 days; shifted M1 Mφs to the M2 phenotype within 3-7 days; and significantly up-regulated the expression of two typical angiogenic growth factors, namely VEGF and PDGF-BB, on day 7, leading to rapid HUVEC migration and angiogenesis. In vivo data also demonstrated that on the 14th day after surgery, the 26SCS-SilMA/Col-330-implanted areas exhibited less inflammation, faster re-epithelialization, more abundant collagen deposition and a greater number of blood vessels in the skin tissue. The composite sponges with higher 26SCS contents (the (5.0) 26SCS-SilMA/Col-330 and the (7.5) 26SCS-SilMA/Col-330) could better orchestrate the phenotype and function of Mφs and facilitate wound healing. These findings highlight that the 26SCS-SilMA/Col-330 sponges developed in this work might have great potential as a novel dressing for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Pin Luo
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Wei Liu
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zhangyao Ye
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yuyu Zhang
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zekun Zhang
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jing Yi
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Rong Zeng
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Shenyu Yang
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
González-Restrepo D, Zuluaga-Vélez A, Orozco LM, Sepúlveda-Arias JC. Silk fibroin-based dressings with antibacterial and anti-inflammatory properties. Eur J Pharm Sci 2024; 195:106710. [PMID: 38281552 DOI: 10.1016/j.ejps.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Silk fibroin is a fibrillar protein obtained from arthropods such as mulberry and non-mulberry silkworms. Silk fibroin has been used as a dressing in wound treatment for its physical, chemical, mechanical, and biological properties. This systematic review analyzed studies from PubMed, Web of Science, and Scopus databases to identify the molecules preferred for functionalizing silk fibroin-based dressings and to describe their mechanisms of exhibiting anti-inflammatory and antibacterial properties. The analysis of the selected articles allowed us to classify the dressings into different conformations, such as membranes, films, hydrogels, sponges, and bioadhesives. The incorporation of various molecules, including antibiotics, natural products, peptides, nanocomposites, nanoparticles, secondary metabolites, growth factors, and cytokines, has allowed the development of dressings that promote wound healing with antibacterial and immunomodulatory properties. In addition, silk fibroin-based dressings have been established to have the potential to regenerate wounds such as venous ulcers, arterial ulcers, diabetic foot, third-degree burns, and neoplastic ulcers. Evaluation of the efficacy of silk fibroin-based dressings in tissue engineering is an area of great activity that has shown significant advances in recent years.
Collapse
Affiliation(s)
- David González-Restrepo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Lina M Orozco
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
5
|
Amiri Z, Molavi AM, Amani A, Moqadam KH, Vatanchian M, Hashemi SA, Oroojalian F. Fabrication, Characterization and Wound-Healing Properties of Core-Shell SF@chitosan/ZnO/ Astragalus Arbusculinus Gum Nanofibers. Nanomedicine (Lond) 2024; 19:499-518. [PMID: 38293919 DOI: 10.2217/nnm-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
AIM Silk fibroin/chitosan/ZnO/Astragalus arbusculinus (Ast) gum fibrous scaffolds along with adipose-derived mesenchymal stem cells (ADSCs) were investigated for accelerating diabetic wound healing. METHODS Scaffolds with a core-shell structure and different compositions were synthesized using the electrospinning method. Biological in vitro investigations included antibacterial testing, cell viability analysis and cell attachment evaluation. In vivo experiments, including the chicken chorioallantoic membrane (CAM) test, were conducted to assess wound-healing efficacy and histopathological changes. RESULTS The incorporation of Ast to the silk fibroin@ chitosan/ZnO scaffold improved wound healing in diabetic mice. In addition, seeding of ADSCs on the scaffold accelerated wound healing. CONCLUSION These findings suggest that the designed scaffold can be useful for skin regeneration applications.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | - Amir Mahdi Molavi
- Department of Materials Research, Iranian Academic Center for Education, Culture & Research (ACECR), Khorasan Razavi Branch, Mashhad, 9177-948974, Iran
| | - Amir Amani
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | | | - Mehran Vatanchian
- Department of Anatomical Sciences School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | - Seyyed Ahmad Hashemi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| |
Collapse
|
6
|
Hou Y, Wei D, Zhang Z, Lei T, Li S, Bao J, Guo H, Tan L, Xie X, Zhuang Y, Lu Z, Zhao Y. Downregulation of nutrition sensor GCN2 in macrophages contributes to poor wound healing in diabetes. Cell Rep 2024; 43:113658. [PMID: 38175755 DOI: 10.1016/j.celrep.2023.113658] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Poor skin wound healing, which is common in patients with diabetes, is related to imbalanced macrophage polarization. Here, we find that nutrition sensor GCN2 (general control nonderepressible 2) and its downstream are significantly upregulated in human skin wound tissue and mouse skin wound macrophages, but skin wound-related GCN2 expression and activity are significantly downregulated by diabetes and hyperglycemia. Using wound healing models of GCN2-deleted mice, bone marrow chimeric mice, and monocyte-transferred mice, we show that GCN2 deletion in macrophages significantly delays skin wound healing compared with wild-type mice by altering M1 and M2a/M2c polarization. Mechanistically, GCN2 inhibits M1 macrophages via OXPHOS-ROS-NF-κB pathway and promotes tissue-repairing M2a/M2c macrophages through eukaryotic translation initiation factor 2 (eIF2α)-hypoxia-inducible factor 1α (HIF1α)-glycolysis pathway. Importantly, local supplementation of GCN2 activator halofuginone efficiently restores wound healing in diabetic mice with re-balancing M1 and M2a/2c polarization. Thus, the decreased macrophage GCN2 expression and activity contribute to poor wound healing in diabetes and targeting GCN2 improves wound healing in diabetes.
Collapse
Affiliation(s)
- Yangxiao Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Sihong Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Bao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Kidney Transplantation Department, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xubiao Xie
- Kidney Transplantation Department, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhongbing Lu
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China; Beijing Institute for Stem Cell and Regeneration, Beijing, China.
| |
Collapse
|
7
|
Wu M, Wu S, Tan S, Xu Q, Zhang D, Sun J, Yang H, Wang C, Duan T, Xu Y, Wei Z. VitroGel-loaded human MenSCs promote endometrial regeneration and fertility restoration. Front Bioeng Biotechnol 2024; 11:1310149. [PMID: 38260736 PMCID: PMC10800509 DOI: 10.3389/fbioe.2023.1310149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Intrauterine adhesions (IUA), also known as Asherman's syndrome, is caused by trauma to the pregnant or non-pregnant uterus, which leads to damaged endometrial basal lining and partial or total occlusion of the uterine chambers, resulting in abnormal menstruation, infertility, or recurrent miscarriage. The essence of this syndrome is endometrial fibrosis. And there is no effective treatment for IUA to stimulate endometrial regeneration currently. Recently, menstrual blood-derived stem cells (MenSCs) have been proved to hold therapeutic promise in various diseases, such as myocardial infarction, stroke, diabetes, and liver cirrhosis. Methods: In this study, we examined the effects of MenSCs on the repair of uterine adhesions in a rat model, and more importantly, promoted such therapeutic effects via a xeno-free VitroGel MMP carrier. Results: This combined treatment reduced the expression of inflammatory factors, increased the expression of anti-inflammatory factors, restricted the area of endometrial fibrosis, diminished uterine adhesions, and partially restored fertility, showing stronger effectiveness than each component alone and almost resembling the sham group. Discussion: Our findings suggest a highly promising strategy for IUA treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tao Duan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Liu C, Liu D, Zhang X, Hui L, Zhao L. Nanofibrous polycaprolactone/amniotic membrane facilitates peripheral nerve regeneration by promoting macrophage polarization and regulating inflammatory microenvironment. Int Immunopharmacol 2023; 121:110507. [PMID: 37356125 DOI: 10.1016/j.intimp.2023.110507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Appropriate levels of inflammation are an important part of functional repair of nerve damage. However, excessive inflammation can cause the continuous activation of immune inflammatory cells and degeneration of nerve cells. Regulating the temporal and spatial changes in M1/M2 macrophages can regulate the local inflammatory immune environment of the tissue to promote its transformation to a direction conducive to tissue repair.In the present study, a multi-layer multifunctional nanofiber composite membrane of polycaprolactone(PCL) and amniotic membrane (AM) was constructed using electrospinning. In vitro studies have shown that the PCL/AM composite promoted the axon growth of SH-SY5Y cells and induced their differentiation into neurons. The PCL/AM composite wrapped the nerve stump to form a microenvironment that was conducive to nerve regeneration, blocked the invasion of scar tissue, promoted the recruitment of macrophages and moderate polarization to M2, enhanced the expression of anti-inflammatory factors IL-10 and IL-13, inhibited the expression of pro-inflammatory factors IL-6 and TNF-α, and induced myelin sheath and axon regeneration. By releasing various bioactive substances to regulate the polarization of M2 macrophages and formation of anti-inflammatory factors, the PCL/AM composite can enhance axonal regeneration and improve nerve repair.
Collapse
Affiliation(s)
- Chunjie Liu
- Xingtai People's Hospital Postdoctoral Workstation, Xingtai People's Hospital, Xingtai 054031, China; Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang 050017, China; Department of Orthopedics, Tangshan Workers Hospital, Tangshan 063000, China
| | - Dengxiang Liu
- Institute of Cancer Control, Xingtai People's Hospital, Xingtai 054001, China; Xingtai Key Laboratory of Precision Medicine for Liver Cirrhosis and Portal Hypertension, Xingtai People's Hospital, Xingtai 054001, China
| | - Xiaochong Zhang
- Department of Research and Education, Xingtai People's Hospital, Xingtai 054031, China
| | - Limin Hui
- Department of Gynecology, Xingtai People's Hospital, Xingtai 054001, China
| | - Lili Zhao
- Xingtai People's Hospital Postdoctoral Workstation, Xingtai People's Hospital, Xingtai 054031, China; Department of Orthopedics, Xingtai People's Hospital, Xingtai 054031, China.
| |
Collapse
|
9
|
Jang EJ, Patel R, Patel M. Electrospinning Nanofibers as a Dressing to Treat Diabetic Wounds. Pharmaceutics 2023; 15:pharmaceutics15041144. [PMID: 37111630 PMCID: PMC10142830 DOI: 10.3390/pharmaceutics15041144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Globally, diabetic mellitus (DM) is a common metabolic disease that effectively inhibits insulin production, destroys pancreatic β cells, and consequently, promotes hyperglycemia. This disease causes complications, including slowed wound healing, risk of infection in wound areas, and development of chronic wounds all of which are significant sources of mortality. With an increasing number of people diagnosed with DM, the current method of wound healing does not meet the needs of patients with diabetes. The lack of antibacterial ability and the inability to sustainably deliver necessary factors to wound areas limit its use. To overcome this, a new method of creating wound dressings for diabetic patients was developed using an electrospinning methodology. The nanofiber membrane mimics the extracellular matrix with its unique structure and functionality, owing to which it can store and deliver active substances that greatly aid in diabetic wound healing. In this review, we discuss several polymers used to create nanofiber membranes and their effectiveness in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Eun Jo Jang
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21938, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Rajendran AK, Hwang NS. Silk and silk fibroin in tissue engineering. NATURAL BIOPOLYMERS IN DRUG DELIVERY AND TISSUE ENGINEERING 2023:627-661. [DOI: 10.1016/b978-0-323-98827-8.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|