1
|
Huang L, Chen Y, Fan X, Zhang X, Wang X, Liu L, Liu T, Wang P, Xu A, Zhao X, Cong M. Fluorofenidone mitigates liver fibrosis through GSK-3β modulation and hepatocyte protection in a 3D tissue-engineered model. Int Immunopharmacol 2025; 149:114209. [PMID: 39919455 DOI: 10.1016/j.intimp.2025.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Liver fibrosis, a critical stage in chronic liver disease progression, presents a significant global health challenge. This study investigates the antifibrotic and hepatoprotective properties of fluorofenidone (AKF-PD) using a 3D tissue-engineered model. A 3D in vitro liver fibrosis model was developed using decellularized rat liver scaffolds seeded with hepatocytes, hepatic stellate cells (HSCs), and sinusoidal endothelial cells to replicate the multicellular liver microenvironment. The model was stimulated with carbon tetrachloride (CCl4) to induce fibrotic conditions, resulting in collagen deposition, HSC activation, and elevated fibrosis markers. Parallel in vivo studies employed C57BL/6J mice with CCl4-induced liver fibrosis. The antifibrotic and hepatoprotective effects of AKF-PD were evaluated by assessing collagen deposition, fibrosis markers, and hepatocyte apoptosis. Oxidative stress markers and inflammation-related proteins were also measured. Molecular docking identified GSK-3β as a target protein of AKF-PD, and subsequent analyses explored the GSK-3β/β-catenin and Nrf2/HO-1 signaling pathways. AKF-PD demonstrated significant efficacy in reducing fibrosis markers and protecting hepatocytes by inhibiting apoptosis and oxidative stress. Mechanistically, AKF-PD targets the GSK-3β/β-catenin pathway, suppressing β-catenin-mediated pro-fibrotic gene expression, while activating the Nrf2/HO-1 pathway to mitigate oxidative stress, thereby reducing hepatocyte apoptosis. These findings are consistent with results from CCl4-induced mouse fibrosis models, validating the 3D model's applicability for preclinical drug evaluation. This 3D liver fibrosis model provides a physiologically relevant platform for studying fibrosis and anti-fibrotic mechanisms, highlighting AKF-PD's promise as a therapeutic agent and advancing liver fibrosis research.
Collapse
Affiliation(s)
- Long Huang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Xu Fan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Xiaohui Zhang
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Xue Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China.
| |
Collapse
|
2
|
Halabitska I, Petakh P, Lushchak O, Kamyshna I, Oksenych V, Kamyshnyi O. Metformin in Antiviral Therapy: Evidence and Perspectives. Viruses 2024; 16:1938. [PMID: 39772244 PMCID: PMC11680154 DOI: 10.3390/v16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV. Furthermore, metformin reduces oxidative stress and reactive oxygen species (ROS), which are critical for replicating arboviruses such as Zika and dengue. The drug also regulates immune responses, cellular differentiation, and inflammation, disrupting the life cycle of HPV and potentially other viruses. These diverse mechanisms suppress viral replication, enhance immune system functionality, and contribute to better clinical outcomes. This multifaceted approach highlights metformin's potential as an adjunctive therapy in treating a wide range of viral infections.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88017 Uzhhorod, Ukraine
| | - Oleh Lushchak
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
3
|
Tian CB, Qin ML, Qian YL, Qin SS, Shi ZQ, Zhao YL, Luo XD. Liver injury protection of Artemisia stechmanniana besser through PI3K/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118590. [PMID: 39029542 DOI: 10.1016/j.jep.2024.118590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia stechmanniana Besser, one of the most prevalent botanical medicines in Chinese, has been traditionally used for hepatitis treatment. However, the bioactive components and pharmacological mechanism on alcohol-induced liver injury remains unclear. AIM OF THE STUDY To investigate the effect of A. stechmanniana on alcohol-induced liver damage, and further explore its mechanism. MATERIALS AND METHODS Phytochemical isolation and structural identification were used to determine the chemical constituents of A. stechmanniana. Then, the alcohol-induced liver damage animal and cell model were established to evaluate its hepato-protective potential. Network pharmacology, molecular docking and bioinformatics were integrated to explore the mechanism and then the prediction was further supported by experiments. Moreover, both compounds were subjected to ADMET prediction through relevant databases. RESULTS 28 compounds were isolated from the most bioactive fraction, ethyl acetate extract A. stechmanniana, in which five compounds (abietic acid, oplopanone, oplodiol, hydroxydavanone, linoleic acid) could attenuate mice livers damage caused by alcohol intragastration, reduce the degree of oxidative stress, and serum AST and ALT, respectively. Furthermore, abietic acid and hydroxydavanone exhibited best protective effect against alcohol-stimulated L-O2 cells injury among five bioactive compounds. Network pharmacology and bioinformatics analysis suggested that abietic acid and hydroxydavanone exhibiting drug likeliness characteristics, were the principal active compounds acting on liver injury treatment, primarily impacting to cell proliferation, oxidative stress and inflammation-related PI3K-AKT signaling pathways. Both of them displayed strong binding energies with five target proteins (HRAS, HSP90AA1, AKT1, CDK2, NF-κB p65) via molecular docking. Western blotting results further supported the predication with up-regulation of protein expressions of CDK2, and down-regulation of HRAS, HSP90AA1, AKT1, NF-κB p65 by abietic acid and hydroxydavanone. CONCLUSION Alcohol-induced liver injury protection by A. stechmanniana was verified in vivo and in vitro expanded its traditional use, and its two major bioactive compounds, abietic acid and hydroxydavanone exerted hepatoprotective effect through the regulation of PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Cai-Bo Tian
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Ma-Long Qin
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Yan-Ling Qian
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Shi-Shi Qin
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Zhuo-Qi Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
4
|
Lu Y, Xu X, Wu J, Ji L, Huang H, Chen M. Association between neutrophil-to-high-density lipoprotein cholesterol ratio and metabolic dysfunction-associated steatotic liver disease and liver fibrosis in the US population: a nationally representative cross-sectional study using NHANES data from 2017 to 2020. BMC Gastroenterol 2024; 24:300. [PMID: 39237899 PMCID: PMC11378436 DOI: 10.1186/s12876-024-03394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) has emerged as a promising biomarker for assessing inflammation and lipid dysregulation. Increasing evidence indicates that these metabolic disturbances play a crucial role in the development of metabolic dysfunction-associated steatotic liver disease(MASLD). This study aims to investigate the association between NHR, MASLD, and liver fibrosis. METHODS This cross-sectional study analyzed data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES). Weighted multivariate logistic regression models were used to investigate the association between NHR and both MASLD and liver fibrosis. Smoothed curve fitting and threshold effect analysis were performed to detect potential nonlinear relationships. Subgroup analyses were conducted to assess the consistency of these associations across different groups. RESULTS The study involved 4,761 participants. We observed a significant positive association between NHR and MASLD (OR = 1.20, 95% CI: 1.09-1.31). However, there was no significant association between NHR and liver fibrosis (OR = 1.01; 95% CI: 0.94-1.09). The analysis of smoothed curve fitting and threshold effect revealed an inverted U-shaped relationship between NHR and MASLD, with a turning point at 5.63. CONCLUSION Our findings indicate a positive correlation between elevated NHR levels and MASLD prevalence. However, we did not observe a significant association between NHR and liver fibrosis prevalence. Further prospective research is needed to validate these findings in a longitudinal setting.
Collapse
Affiliation(s)
- Yangni Lu
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Xianli Xu
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Jianlin Wu
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Ji
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Huiya Huang
- Department of General Medicine, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Maowei Chen
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
6
|
Raggi P, Milic J, Manicardi M, Cinque F, Swain MG, Sebastiani G, Guaraldi G. Metabolic dysfunction-associated steatotic liver disease: An opportunity for collaboration between cardiology and hepatology. Atherosclerosis 2024; 392:117523. [PMID: 38522165 DOI: 10.1016/j.atherosclerosis.2024.117523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Altered metabolic function has many detrimental effects on the body that can manifest as cardiovascular and liver diseases. Traditional approaches to understanding and treating metabolic dysfunction-associated disorders have been organ-centered, leading to silo-type disease care. However, given the broad impact that systemic metabolic dysfunction has on the human body, approaches that simultaneously involve multiple medical specialists need to be developed and encouraged to optimize patient outcomes. In this review, we highlight how several of the treatments developed for cardiac care may have a beneficial effect on the liver and vice versa, suggesting that there is a need to target the disease process, rather than specifically target the cardiovascular or liver specific sequelae of metabolic dysfunction.
Collapse
Affiliation(s)
- Paolo Raggi
- Department of Medicine and Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada.
| | - Jovana Milic
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy
| | - Marcella Manicardi
- Cardiology Department, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Felice Cinque
- SC-Medicina Indirizzo Metabolico, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan, Department of Pathophysiology and Transplantation, University of Milan, Italy; Division of Gastroenterology and Hepatology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mark G Swain
- Department of Medicine, University of Calgary Liver Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Giovanni Guaraldi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| |
Collapse
|
7
|
Wang Y, Deng X, Liu Y, Wang Y, Luo X, Zhao T, Wang Z, Cheng G. Protective effect of Anneslea fragrans ethanolic extract against CCl4-induced liver injury by inhibiting inflammatory response, oxidative stress and apoptosis. Food Chem Toxicol 2023; 175:113752. [PMID: 37004906 DOI: 10.1016/j.fct.2023.113752] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Anneslea Fragrans Wall. (AF) is a medicinal and edible plant distributed in China. Its leaves and bark generally used for the treatments of diarrhea, fever, and liver diseases. While its ethnopharmacological application against liver diseases has not been fully studied. This study was aimed to evaluate the hepatoprotective effect of ethanolic extract from A. fragrans (AFE) on CCl4 induced liver injury in mice. The results showed that AFE could effectively reduce plasma activities of ALT and AST, increase antioxidant enzymes activities (SOD and CAT) and GSH level, and decrease MDA content in CCl4 induced mice. AFE effectively decreased the expressions of inflammatory cytokines (IL-1β, IL-6, TNF-α, COX-2 and iNOS), cell apoptosis-related proteins (Bax, caspase-3 and caspase-9) and increased Bcl-2 protein expression via inhibiting MAPK/ERK pathway. Additionally, TUNEL staining, Masson and Sirius red staining, immunohistochemical analyses revealed that AFE could inhibit the CCl4-induced hepatic fibrosis formation via reducing depositions of α-SMA, collagen I and collagen III. Conclusively, the present study demonstrated that AFE had an hepatoprotective effect by MAPK/ERK pathway to inhibit oxidative stress, inflammatory response and apoptosis in CCl4-induced liver injury mice, suggesting that AFE might be served as a hepatoprotective ingredient in the prevention and treatment of liver injury.
Collapse
Affiliation(s)
- Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China
| | - Xiaocui Deng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaodong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|