1
|
Qu N, Meng Y, Zhai J, Griffin N, Shan Y, Gao Y, Shan F. Methionine enkephalin inhibited cervical cancer migration as well as invasion and activated CD11b + NCR1 + NKs of tumor microenvironment. Int Immunopharmacol 2023; 124:110967. [PMID: 37741126 DOI: 10.1016/j.intimp.2023.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
This study was to study the role of methionine enkephalin (menk) in cell invasion and migration as well as NK cells activation of tumor microenvironment in cervical cancer. The results showed that menk inhibited cervical cancer migration and invasion. In addition, we found menk affected epithelial to mesenchymal transition (EMT) related indicators, with increasing E-cadherin level, decreasing N-cadherin and vimentin level. Through in vivo mouse model, we found that menk IFNγ and NKP46 expression was upregulated in tumor tissues by menk compared with controls, while LAG3 expression was inhibited by menk, besides, there was an upregulation of CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer. Therefore, we concluded that menk inhibited cancer migration and invasion via affecting EMT related indicators and activated CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer, laying a theoretical foundation for the further clinical treatment of menk.
Collapse
Affiliation(s)
- Na Qu
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Noreen Griffin
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuanye Shan
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuhua Gao
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China.
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
2
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
3
|
Sánchez ML, Rodríguez FD, Coveñas R. Involvement of the Opioid Peptide Family in Cancer Progression. Biomedicines 2023; 11:1993. [PMID: 37509632 PMCID: PMC10377280 DOI: 10.3390/biomedicines11071993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Peptides mediate cancer progression favoring the mitogenesis, migration, and invasion of tumor cells, promoting metastasis and anti-apoptotic mechanisms, and facilitating angiogenesis/lymphangiogenesis. Tumor cells overexpress peptide receptors, crucial targets for developing specific treatments against cancer cells using peptide receptor antagonists and promoting apoptosis in tumor cells. Opioids exert an antitumoral effect, whereas others promote tumor growth and metastasis. This review updates the findings regarding the involvement of opioid peptides (enkephalins, endorphins, and dynorphins) in cancer development. Anticancer therapeutic strategies targeting the opioid peptidergic system and the main research lines to be developed regarding the topic reviewed are suggested. There is much to investigate about opioid peptides and cancer: basic information is scarce, incomplete, or absent in many tumors. This knowledge is crucial since promising anticancer strategies could be developed alone or in combination therapies with chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Wang X, Li S, Yan S, Shan Y, Wang X, Jingbo Z, Wang Y, Shan F, Griffin N, Sun X. Methionine enkephalin inhibits colorectal cancer by remodeling the immune status of the tumor microenvironment. Int Immunopharmacol 2022; 111:109125. [PMID: 35988519 DOI: 10.1016/j.intimp.2022.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
There is evidence that methionine enkephalin (MENK), an opioid peptide, promotes anti-tumor immune responses. In this study, the effect of MENK on colorectal cancer (CRC) and its mechanisms of action were examined in vivo. The intraperitoneal administration of 20 mg/kg MENK effectively inhibited MC38 subcutaneous colorectal tumor growth in mice. MENK inhibited tumor progression by increasing the immunogenicity and recognition of MC38 cells. MENK down-regulated the oncogene Kras and anti-apoptotic Bclxl and Bcl2, suppressed Il1b, Il6, iNOS, and Arg1 (encoding inflammatory cytokines), and increased Il17a and Il10 levels. MENK promoted a tumor suppressive state by decreasing the immune checkpoints Pd-1, Pd-l1, Lag3, Flgl1, and 2b4 in CRC. MENK also altered the immune status of the tumor immune microenvironment (TIME). It increased the infiltration of M1-type macrophages, CD8+T cells, and CD4+T cells and decreased the proportions of G-MDSCs, M-MDSCs, and M2-type macrophages. MENK accelerated CD4+TEM and CD8+TEM cell activation in the TIME and up-regulated IFN-γ, TNF-α, and IL-17A in CD4+T cells and Granzyme B in CD8+T cells. In addition, analyses of PD-1 and PD-L1 expression indicated that MENK promoted the anti-tumor immune response mediated by effector T cells. Finally, OGFr was up-regulated at the protein and mRNA levels by MENK, and the inhibitory effects of MENK on tumor growth were blocked by NTX, a specific blocker of OGFr. These finding indicate that MENK remodels the TIME in CRC to inhibit tumor progression by binding to OGFr. MENK is a potential therapeutic agent for CRC, especially for improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Shunlin Li
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Siqi Yan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yuanye Shan
- Immune Therapeutics Inc., 2431 Aloma Ave #124 Winter Park, FL 32792, USA
| | - Xiao Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Zhai Jingbo
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China.
| | - Yuanyuan Wang
- Department of Anesthesiology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Noreen Griffin
- Immune Therapeutics Inc., 2431 Aloma Ave #124 Winter Park, FL 32792, USA
| | - Xun Sun
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|