1
|
Zhu Q, Hao H, Gao Y, Li N, Liu Z, Shu L, Wang Q, Zhang L. Dapagliflozin ameliorates kidney injury following limb ischemia-reperfusion via the AMPK/SIRT1/NLRP3 pathway. Ren Fail 2025; 47:2495111. [PMID: 40264429 DOI: 10.1080/0886022x.2025.2495111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Limb ischemia-reperfusion (I/R) results in both localized tissue harm and injury to distant organs, particularly affecting the kidneys and leading to acute kidney injury. This study evaluates the renoprotective effect of dapagliflozin, a drug frequently prescribed for type 2 diabetes management, in relation to kidney injury caused by limb I/R. The extent of kidney injury was detected through serum marker testing in the rat model. Oxidative stress indicators and inflammatory factors were evaluated in rat and cellular models. Histological changes in the kidneys were examined using HE staining and electron microscopy. Cell pyroptosis was quantified using both TUNEL staining and flow cytometry. Cellular mitochondrial function was analyzed with JC-1 staining. AMPK/SIRT1/NLRP3 pathway-related proteins and their mRNAs were assessed via western blotting and RT-qPCR techniques. We showed that dapagliflozin reduced serum CRE, BUN, NGAL and KIM-1 levels and improved renal pathology in rat. Additionally, dapagliflozin significantly raised the concentrations of GSH-Px and SOD, concurrently reduced MDA and ROS levels in vivo and in vitro. It also lowered the levels of IL-6 and TNF-α and reduced cell pyroptosis. Furthermore, it was observed that dapagliflozin elevated AMPK and SIRT1 expressions, while decreasing NLRP3, ASC, GSDMD, IL-1β, and caspase-1 expressions. Notably, these effects of dapagliflozin were diminished in the presence of AMPK siRNA. Taken together, dapagliflozin exhibits a significant protective effect against kidney injury resulting from limb I/R. This protective effect operates through the inhibition of pyroptosis by activating the AMPK/SIRT1/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Qiuxiao Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyao Hao
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zibo Liu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Linyi Shu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qian Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lihui Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Lai W, Liu L, Wang S, Liu Y, Chai Y. Integrated Omics Insights into Dapagliflozin Effects in Sepsis-Induced Cardiomyopathy. Biomolecules 2025; 15:286. [PMID: 40001588 PMCID: PMC11853349 DOI: 10.3390/biom15020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is a life-threatening cardiac complication of sepsis with limited therapeutic options. Dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has demonstrated cardioprotective effects in heart failure, but its role in mitigating sepsis-related cardiac dysfunction remains unclear. METHODS A retrospective cohort analysis was conducted to assess the impact of pre-hospital dapagliflozin use on major adverse cardiovascular events (MACEs) and survival in patients with SIC. Additionally, a murine SIC model was established using cecal ligation and puncture (CLP) to evaluate the effects of dapagliflozin on cardiac function, histopathology, and biomarkers of myocardial injury. Transcriptomic and metabolomic profiling, combined with multi-omics integration, was employed to elucidate the molecular mechanisms underlying dapagliflozin's cardioprotective effects. RESULTS In the clinical cohort, pre-hospital dapagliflozin use was associated with a significant reduction in the risk of MACE and improved survival outcomes. In the murine SIC model, dapagliflozin restored cardiac function, reduced biomarkers of myocardial injury, and alleviated histological damage. Multi-omics analysis revealed that dapagliflozin modulates inflammatory responses, enhances autophagy, and regulates metabolic pathways such as AMPK signaling and lipid metabolism. Key regulatory genes and metabolites were identified, providing mechanistic insights into the underlying actions of dapagliflozin. CONCLUSIONS Dapagliflozin significantly improves cardiac outcomes in sepsis-induced cardiomyopathy through the multi-level regulation of inflammation, energy metabolism, and cellular survival pathways. These findings establish dapagliflozin as a promising therapeutic strategy for SIC, offering translational insights into the treatment of sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
| | | | | | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
3
|
Abdelrahman AM, Awad AS, Abdel-Rahman EM. Sodium-Glucose Co-Transporter 2 Inhibitors: Mechanism of Action and Efficacy in Non-Diabetic Kidney Disease from Bench to Bed-Side. J Clin Med 2024; 13:956. [PMID: 38398269 PMCID: PMC10888733 DOI: 10.3390/jcm13040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are currently available for the management of type 2 diabetes mellitus. SGLT2i acts by inhibiting renal SGLT2, thereby increasing glucosuria and lowering serum glucose. Recent trials are emerging supporting a role for SGLT2i irrespective of the diabetic status pointing towards that SGLT2i have other mechanisms of actions beyond blood sugar control. In this review, we will shed light on the role of this group of medications that act as SGLT2i in non-diabetics focusing on pre-clinical and clinical data highlighting the mechanism of renoprotection and effects of SGLT2i in the non-diabetic kidneys.
Collapse
Affiliation(s)
- Aly M. Abdelrahman
- Department of Pharmacology & Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Alkhod 123, Oman;
| | - Alaa S. Awad
- Division of Nephrology, University of Florida, Jacksonville, FL 32209, USA;
| | | |
Collapse
|
4
|
Wang Y, Liu Y, Chen S, Li F, Wu Y, Xie X, Zhang N, Zeng C, Bai L, Dai M, Zhang L, Wang X. The protective mechanism of Dehydromiltirone in diabetic kidney disease is revealed through network pharmacology and experimental validation. Front Pharmacol 2023; 14:1201296. [PMID: 37680723 PMCID: PMC10482231 DOI: 10.3389/fphar.2023.1201296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Background: Salvia miltiorrhiza (SM) is an effective traditional Chinese medicine for treating DKD, but the exact mechanism is elusive. In this study, we aimed to investigate and confirm the method underlying the action of the active components of SM in the treatment of DKD. Methods: Renal tissue transcriptomics and network pharmacology of DKD patients was performed to identify the active components of SM and the disease targets of DKD. Next, the point of convergence among these three groups was studied. Potential candidate genes were identified and analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The component-target networks were modelled and visualized with Cytoscape. In addition, docking studies were performed to validate our potential target predictions. Lastly, in vitro and in vivo experiments were performed to understand the role of Dehydromiltirone (DHT), the active component of SM, in the phenotypic switching of mesangial cells. Results: Transcriptomics of DKD patients' renal tissues screened 4,864 differentially expressed genes. Eighty-nine active components of SM and 161 common targets were found. Functional enrichment analysis indicated that 161 genes were enriched in apoptosis, the PI3K-AKT signaling pathway, and the AGE-RAGE signaling pathway in diabetes complications. Molecular docking and molecular dynamic simulations show that DHT can bind to functional PIK3CA pockets, thereby becoming a possible inhibitor of PIK3CA. In vitro study demonstrated that DHT reduced the expression of phenotypic switching markers α-SMA, Col-I, and FN in HMCs by downregulating the over-activation of the PI3K-AKT signaling pathway through the inhibition of PIK3CA. Furthermore, the DKD mouse model confirmed that DHT could reduce proteinuria and improve glomerular hypertrophy in vivo. Conclusion: DHT was identified as the key active component of SM, and its therapeutic effect on DKD was achieved by inhibiting the phenotypic switching of mesangial cells via the PIK3CA signaling pathway.
Collapse
Affiliation(s)
- Yanzhe Wang
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyuan Liu
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Nephrology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Sijia Chen
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fengqin Li
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Wu
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinmiao Xie
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Zhang
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuchu Zeng
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linnan Bai
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengshi Dai
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoxia Wang
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
6
|
Liu Y, Wang Y, Chen S, Bai L, Li F, Wu Y, Zhang L, Wang X. Glutamate ionotropic receptor NMDA type subunit 1: A novel potential protein target of dapagliflozin against renal interstitial fibrosis. Eur J Pharmacol 2023; 943:175556. [PMID: 36736528 DOI: 10.1016/j.ejphar.2023.175556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Renal interstitial fibrosis (RIF) is the final pathway for chronic kidney diseases (CKD) to end-stage renal disease, with no ideal therapy at present. Previous studies indicated that sodium glucose co-transporter-2 inhibitor (SGLT2i) dapagliflozin had the effect of anti-RIF, but the mechanism remains elusive and the renal protective effect could not be fully explained by singly targeting SGLT2. In this study, we aimed to explore the mechanism of dapagliflozin against RIF and identify novel potential targets. Firstly, dapagliflozin treatment improved pro-fibrotic indicators in unilateral ureteral obstruction mice and transforming growth factor beta 1 induced human proximal tubular epithelial cells. Then, transcriptomics and bioinformatics analysis were performed, and results revealed that dapagliflozin against RIF by regulating inflammation and oxidative stress related signals. Subsequently, targets prediction and analysis demonstrated that glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) was a novel potential target of dapagliflozin, which was related to inflammation and oxidative stress related signals. Moreover, molecular dynamics simulation revealed that dapagliflozin could stably bind to GRIN1 protein and change its spatial conformation. Furthermore, human renal samples and Nephroseq data were used for GRIN1 expression evaluation, and the results showed that GRIN1 expression were increased in renal tissues of CKD and RIF patients than controls. Additionally, further studies demonstrated that dapagliflozin could reduce intracellular calcium influx in renal tubular cells, which depended on regulating GRIN1 protein but not gene. In conclusion, GRIN1 is probably a novel target of dapagliflozin against RIF.
Collapse
Affiliation(s)
- Yuyuan Liu
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215002, China
| | - Yanzhe Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijia Chen
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linnan Bai
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqin Li
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wu
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610073, China.
| | - Xiaoxia Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Zeng J, Huang H, Zhang Y, Lv X, Cheng J, Zou SJ, Han Y, Wang S, Gong L, Peng Z. Dapagliflozin alleviates renal fibrosis in a mouse model of adenine-induced renal injury by inhibiting TGF-β1/MAPK mediated mitochondrial damage. Front Pharmacol 2023; 14:1095487. [PMID: 36959860 PMCID: PMC10028454 DOI: 10.3389/fphar.2023.1095487] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Renal fibrosis is a common pathological outcome of various chronic kidney diseases, and as yet, there is no specific treatment. Dapagliflozin has shown renal protection in some clinical trials as a glucose-lowering drug, but its role and mechanism on renal fibrosis remain unclear. In this study, we used a 0.2% adenine diet-induced renal fibrosis mouse model to investigate whether dapagliflozin could protect renal function and alleviate renal fibrosis in this animal model. In vivo, we found that dapagliflozin's protective effect on renal fibrosis was associated with 1) sustaining mitochondrial integrity and respiratory chain complex expression, maintained the amount of mitochondria; 2) improving fatty acid oxidation level with increased expression of CPT1-α, PPAR-α, ACOX1, and ACOX2; 3) reducing inflammation and oxidative stress, likely via regulation of IL-1β, IL-6, TNF-α, MCP-1, cxcl-1 expression, and glutathione (GSH) activity, superoxide dismutase (SOD) and malondialdehyde (MDA) levels; and 4) inhibiting the activation of the TGF-β1/MAPK pathway. In HK2 cells treated with TGF-β1, dapagliflozin reduced the expression of FN and α-SMA, improved mitochondrial respiratory chain complex expression, and inhibited activation of the TGF-β1/MAPK pathway.
Collapse
Affiliation(s)
- Jianhua Zeng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiawei Cheng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Si Jue Zou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Han
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Songkai Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Gong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhangzhe Peng,
| |
Collapse
|