1
|
Yang H, Yang Y, Cui G, Xu Y, Zhao R, Le G, Xie Y, Li P. Dietary methionine restriction ameliorates atherosclerosis by remodeling the gut microbiota in apolipoprotein E-knockout mice. Food Funct 2025. [PMID: 40421996 DOI: 10.1039/d5fo00841g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Dietary methionine restriction (MR) has been shown to reduce the risk of atherosclerosis, but the specific regulatory effects and mechanisms remain unclear. This research intends to investigate the effects of MR on atherosclerosis in apolipoprotein E-knockout (ApoE-/-) mice fed a high-fat, high-cholesterol, high-choline diet and their mechanisms. ApoE-/- mice were fed a normal diet (0.86% methionine + 4.5% fat + 0% cholesterol + 0.2% choline), a high-fat, high-cholesterol, high-choline diet (0.86% methionine + 20% fat + 1% cholesterol + 1% choline), or a high-fat, high-cholesterol, high-choline + MR diet (0.17% methionine + 20% fat + 1% cholesterol + 1% choline) for 8 consecutive weeks. The results show that MR reduced body weight, fat mass, fat deposition in the liver and adipocytes, and plasma lipid levels; improved the morphological structure of the aorta; and reduced the aortic lesion area and lipid levels. In addition, MR downregulated aortic pro-inflammatory cytokine levels, upregulated aortic anti-inflammatory cytokine levels, and improved aortic oxidative stress. Moreover, metagenomic sequencing results suggested that MR improved the gut microbiota composition, particularly through increased relative abundance of short-chain fatty acid (SCFA)-producing bacteria, and changed the relative abundance of inflammation-, lipid metabolism-, and bile acid metabolism-related bacteria at the species level. Furthermore, MR promoted SCFA production and bile acid metabolism, and reduced cell adhesion molecules and foam cell formation in the aorta. Thus, our findings indicated that MR improved the gut microbiota composition, especially increased SCFA production, and ameliorated oxidative stress and inflammation in the aorta, thereby preventing atherosclerosis.
Collapse
Affiliation(s)
- Hao Yang
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Yuhui Yang
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Guifang Cui
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Yuncong Xu
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Renyong Zhao
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Guowei Le
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
2
|
Zhao T, Zhang Y, Li X, Ge Z, Shi J, Wang T, Zhang J, Zhang X, Jiang H, Zhou L, Ye L. PM 2.5 Induces the Instability of Atherosclerotic Plaques by Activating the Notch Signaling Pathway In Vivo and In Vitro. ENVIRONMENTAL TOXICOLOGY 2025; 40:683-693. [PMID: 39671242 DOI: 10.1002/tox.24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Fine particulate matter (PM2.5) can exacerbate the instability of atherosclerotic plaques although the exact chemical process driving atherosclerosis remains unknown. In order to create atherosclerotic models, a high-fat diet and vitamin D3 injections were given to 56 Wistar rats in this investigation. The atherosclerotic rats were split into four groups at random and given different doses of PM2.5 (0, 1.5, 7.5, and 37.5 mg/kg) for 4 weeks. To investigate the mechanism, foam cells were exposed to PM2.5 (0, 25, 50, and 100 μg/mL) for 24 h. The results showed that PM2.5 exposure caused collagen fibers thinner and muscle fibers were disorganized. PM2.5 exposure significantly affected the expression of MMP2, MMP9, TIMP2, and vimentin in aortas of atherosclerotic rats. Moreover, PM2.5 exposure increased the expression of the Notch signaling pathways which was correlated with the expression of atherosclerotic plaque stability-related genes. PM2.5 exposure also increased the apoptosis rate of foam cells. The expression of MMP2, MMP9, and vimentin was increased and TIMP2 was decreased with the increasing PM2.5 dose in foam cells. The inhibition of the Notch signaling pathway can alleviate the alteration of atherosclerotic plaque stability-related genes. The findings demonstrated that PM2.5 exposure can cause atherosclerotic plaques to become unstable, aggravating the progression of atherosclerosis, a process in which the Notch signaling pathway is crucial.
Collapse
Affiliation(s)
- Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyou Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiaxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xinyu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Huibin Jiang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
3
|
Xie B, Tian L, Liu C, Li J, Tian X, Zhang R, Zhang F, Liu Z, Cheng Y. Disruption of the eEF1A1/ARID3A/PKC-δ Complex by Neferine Inhibits Macrophage Glycolytic Reprogramming in Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416158. [PMID: 39973763 PMCID: PMC12005739 DOI: 10.1002/advs.202416158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Indexed: 02/21/2025]
Abstract
Glycolytic reprogramming of macrophages is a decisive factor in atherosclerosis (AS) plaque formation. Eukaryotic elongation factor 1A1 (eEF1A1) plays an important role in protein synthesis, ubiquitination degradation, and nuclear translocation. However, the potential function of eEF1A1 in AS has not yet been fully understood. Here, the natural small molecule neferine (Nef), which targets eEF1A1 to suppress macrophage glycolytic reprogramming is discovered. In this work, chemical genetics and non-modified target confirmation assays are used to confirm that eEF1A1 is a direct target of Nef. Mechanically, Nef disrupted the formation of the eEF1A1/ARID3A/PKC-δ complex, inhibits phosphorylation of ARID3A at Thr491, and consequently prevents its nuclear translocation. Meanwhile, it is verified that ARID3A is a transcriptional regulator of enolase 2 (ENO2), an important enzyme in the glycolytic process. Nef suppresses ENO2 transcription activation by affecting ARID3A binding to the promoter region of ENO2, which results in macrophage glycolytic reprogramming inhibition and transformation of macrophages from M1 to M2. Collectively, these findings provide an attractive future direction for AS therapy by inhibiting ARID3A/ENO2-mediated macrophage glycolytic reprogramming by targeting eEF1A1.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxi341000China
| | - Li‐Wen Tian
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Chenxu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Xiaoyu Tian
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Fan Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacau999078China
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| |
Collapse
|
4
|
Liu X, Pang S, Jiang Y, Wang L, Liu Y. The Role of Macrophages in Atherosclerosis: Participants and Therapists. Cardiovasc Drugs Ther 2025; 39:459-472. [PMID: 37864633 DOI: 10.1007/s10557-023-07513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Currently, atherosclerosis, characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel, is considered to be a metabolic disease. As the most abundant innate immune cells in the body, macrophages play a key role in the onset, progression, or regression of atherosclerosis. For example, macrophages exhibit several polarization states in response to microenvironmental stimuli; an increasing proportion of macrophages, polarized toward M2, can suppress inflammation, scavenge cell debris and apoptotic cells, and contribute to tissue repair and fibrosis. Additionally, specific exosomes, generated by macrophages containing certain miRNAs and effective efferocytosis of macrophages, are crucial for atherosclerosis. Therefore, macrophages have emerged as a novel potential target for anti-atherosclerosis therapy. This article reviews the role of macrophages in atherosclerosis from different aspects: origin, phenotype, exosomes, and efferocytosis, and discusses new approaches for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
5
|
Fan B, Hong J, Wu Q, Shen W, Hu N, Xing Y, Zhang J, Cai W, Zhang R. Matrix metalloproteinase-responsive melanin nanoparticles utilize live neutrophils for targeted high-risk plaque detection and atherosclerosis regression. Acta Biomater 2025; 195:496-508. [PMID: 39956306 DOI: 10.1016/j.actbio.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Abrupt rupture of atherosclerotic plaque is the predominant contributor to acute cardiovascular events. It is of clinical importance to effectively identify and inhibit high-risk plaque progression. However, this remains a major challenge due to the inadequate targeting of theranostic agents to atherosclerotic lesions. Herein, we utilize live neutrophils to encapsulate melanin-based theranostics (termed MNPpep-Gd) to enhance their plaque targeting, leveraging the inherent inflammatory tropism of neutrophils in atherosclerosis progression. The MNPpep-Gd are fabricated using the water-insoluble gadolinium-chelated melanin nanoparticle modified with a detachable polyethylene glycol (PEG) segment via a matrix metalloproteinase (MMP)-cleavable peptide linker. Our work demonstrated that overexpressed MMP in high-risk plaques can induce an increase in particle size and prolonged retention time of the MNPpep-Gd nanoprobe in lesions, making it a highly efficient contrast agent for magnetic resonance (MR) and photoacoustic (PA) dual-modal imaging atherosclerotic plaque. Concurrently, the melanin nanoparticles function as a therapeutic agent by scavenging multiple toxic reactive oxygen species (ROS), inhibiting the pro-inflammatory cytokines expression, and significantly reducing the foam cell formation. As a result, NE/MNPpep remarkably alleviates atherosclerosis progression by a 24.7 % reduction for plaque area in ApoE-/- mice. Immunohistochemical analysis confirmed that NE/MNPpep treatment significantly reduced the macrophage content by 21.3 % and lipid burden by 15.6 % in plaques. In conclusion, our innovative nanoagent actively targets atherosclerotic sites, offers a noninvasive approach for identifying high-risk atherosclerotic plaques, and significantly contributes to the alleviation of lesion development in ApoE-/- mice. STATEMENT OF SIGNIFICANCE: Effective identification and inhibition of high-risk plaque progression hold clinical importance. However, it remains a major challenge due to the insufficient targeting of theranostic agents to plaques. Herein, a biomimetic nanoplatform is developed to actively target atherosclerosis plaque with the assistance of neutrophils, thereby minimizing off-target effects. Then, overexpressed MMP2 in high-risk plaques trigger the aggregation of hydrophobic Gd3+-labeled melanin nanoparticles, enhancing both MRI/PAI intensities for precise diagnosis. Additionally, the native antioxidant activity of melanin reduces inflammatory level, alleviates oxidative damage, and inhibits plaque progression in ApoE-/- mice. This study offers valuable insights for accurate plaque assessment and provides effective guidance for subsequent management strategies.
Collapse
Affiliation(s)
- Bo Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China; School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Jie Hong
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qian Wu
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Weiguang Shen
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Nan Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yang Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Juan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenwen Cai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
6
|
Euler G, Parahuleva M. Monocytic microRNAs-Novel targets in atherosclerosis therapy. Br J Pharmacol 2025; 182:206-219. [PMID: 38575391 DOI: 10.1111/bph.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Atherosclerosis is a chronic proinflammatory disease of the vascular wall resulting in narrowing of arteries due to plaque formation, thereby causing reduced blood supply that is the leading cause for diverse end-organ damage with high mortality rates. Monocytes/macrophages, activated by elevated circulating lipoproteins, are significantly involved in the formation and development of atherosclerotic plaques. The imbalance between proinflammatory and anti-inflammatory macrophages, arising from dysregulated macrophage polarization, appears to be a driving force in this process. Proatherosclerotic processes acting on monocytes/macrophages include accumulation of cholesterol in macrophages leading to foam cell formation, as well as dysfunctional efferocytosis, all of which contribute to the formation of unstable plaques. In recent years, microRNAs (miRs) were identified as factors that could modulate monocyte/macrophage function and may therefore interfere with the atherosclerotic process. In this review, we present effects of monocyte/macrophage-derived miRs on atherosclerotic processes in order to reveal new treatment options using miRmimics or antagomiRs. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Gerhild Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Mariana Parahuleva
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, Marburg, Germany
| |
Collapse
|
7
|
Gao H, Li J, Huang J, Jiang X. Screening and regulatory mechanism exploration of M1 macrophage polarization and efferocytosis-related biomarkers in coronary heart disease. Front Cardiovasc Med 2024; 11:1478827. [PMID: 39723414 PMCID: PMC11669322 DOI: 10.3389/fcvm.2024.1478827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Background Macrophage polarization and efferocytosis have been implicated in CHD. However, the underlying mechanisms remain elusive. This study aimed to identify CHD-associated biomarkers using transcriptomic data. Methods This study examined 74 efferocytosis-related genes (ERGs) and 17 M1 macrophage polarization-related genes (MRGs) across two CHD-relevant datasets, GSE113079 and GSE42148. Differential expression analysis was performed separately on each dataset to identify differentially expressed genes (DEGs1 and DEGs2). The intersection of upregulated and downregulated genes from both sets was then used to define the final DEGs. Subsequently, MRG and ERG scores were calculated within the GSE113079 dataset, followed by weighted gene co-expression network analysis (WGCNA) to identify key module genes. The overlap between these module genes and the DEGs yielded candidate biomarkers, which were further evaluated through machine learning, receiver operating characteristic (ROC) curve analysis, and expression profiling. These biomarkers were subsequently leveraged to explore immune infiltration patterns and to construct a molecular regulatory network. To further validate their expression, quantitative reverse transcriptase PCR (qRT-PCR) was performed on clinical CHD samples, confirming the relevance and expression patterns of these biomarkers in the disease. Results A total of 93 DEGs were identified by intersecting the upregulated and downregulated genes from DEGs1 and DEGs2. WGCNA of the MRG and ERG scores identified 15,936 key module genes in the GSE113079 dataset. Machine learning and ROC analysis highlighted four biomarkers: C5orf58, CTAG1A, ZNF180, and IL13RA1. Among these, C5orf58, and ZNF180 were downregulated in CHD cases, while CTAG1A and IL13RA1 was upregulated. qRT-PCR results validated these findings for C5orf58, CTAG1A, ZNF180, and IL13RA1 showed inconsistent expression trends. Immune infiltration analysis indicated IL13RA1 all had a positive correlation with M0 macrophage, while had a negative correlation with. NK cells activated. The molecular regulatory network displayed that GATA2 and YY1 could regulate CTAG1A and ZNF180. Conclusions These results suggest that C5orf58, CTAG1A, ZNF180, and IL13RA1 serve as biomarkers linking M1 macrophage polarization and efferocytosis to CHD, providing valuable insights for CHD diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Xiaojie Jiang
- Department of Cardiology, The First Hospital of Nanchang, Nanchang, China
| |
Collapse
|
8
|
Liu WT, Li CQ, Fu AN, Yang HT, Xie YX, Yao H, Yi GH. Therapeutic implication of targeting mitochondrial drugs designed for efferocytosis dysfunction. J Drug Target 2024; 32:1169-1185. [PMID: 39099434 DOI: 10.1080/1061186x.2024.2386620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Chao-Quan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Ao-Ni Fu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hao-Tian Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| |
Collapse
|
9
|
Park HJ, Kim MK, Kim Y, Kim HJ, Park HR, Bae SK, Bae MK. Gastrin-releasing peptide receptor antagonist RC-3095 inhibits Porphyromonas gingivalis lipopolysaccharide-accelerated atherosclerosis by suppressing inflammatory responses in endothelial cells and macrophages. Inflamm Res 2024; 73:1833-1846. [PMID: 39164592 DOI: 10.1007/s00011-024-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE Porphyromonas gingivalis (P. gingivalis), one of the major periodontopathogens, is associated with the progression and exacerbation of atherosclerosis. In this study, we aimed to investigate whether the gastrin-releasing peptide receptor antagonist, RC-3095, could attenuate P. gingivalis LPS-induced inflammatory responses in endothelial cells and macrophages, as well as atherosclerosis in an ApoE-/- mouse model treated with P. gingivalis LPS. METHODS The effect of RC-3095 on P. gingivalis LPS-induced endothelial inflammation was examined using HUVECs and rat aortic endothelium. THP-1 cells were polarized into M1 macrophages by exposure to P. gingivalis LPS, with or without RC-3095. The effect of RC-3095 on atherosclerosis progression was assessed in high-fat-fed male ApoE-/- mice through injections of P. gingivalis LPS, RC-3095, or a combination of both. RESULTS RC-3095 significantly reduced P. gingivalis LPS-induced leukocyte adhesion to endothelial cells and aortic endothelium by suppressing NF-κB-dependent expressions of ICAM-1 and VCAM-1. In addition, RC-3095 inhibited the P. gingivalis LPS-induced polarization of M1 macrophages by blocking the MAPK and NF-κB signaling pathways. Moreover, RC-3095 decreased the area of atherosclerotic lesions in ApoE-/- mice, which was accelerated by P. gingivalis LPS injection, and lowered the expressions of ICAM-1 and VCAM-1 in the aortic tissue of mice with atherosclerosis. CONCLUSIONS RC-3095 can alleviate P. gingivalis LPS-induced endothelial inflammation, macrophage polarization, and atherosclerosis progression, suggesting its potential as a therapeutic approach for periodontal pathogen-associated atherosclerosis.
Collapse
Affiliation(s)
- Hyun-Joo Park
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Mi-Kyoung Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Hae Ryoun Park
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, 50610, Korea
| | - Soo-Kyung Bae
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea.
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea.
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea.
| |
Collapse
|
10
|
Yang W, Li Q, Wang F, Zhang X, Zhang X, Wang M, Xue D, Zhao Y, Tang L. Exosomal miR-155-5p promote the occurrence of carotid atherosclerosis. J Cell Mol Med 2024; 28:e70187. [PMID: 39495676 PMCID: PMC11534067 DOI: 10.1111/jcmm.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Periodontitis is a significant independent risk factor for atherosclerosis. Yet, the exact mechanism of action is still not fully understood. In this study, we investigated the effect of exosomes-miR-155-5p derived from periodontal endothelial cells on atherosclerosis in vitro and in vivo. Higher expression of miR-155-5p was detected in the plasma exosomes of patients with chronic periodontitis (CP) and carotid atherosclerosis (CAS) compared to patients with CP. Also, the expression level of miR-155-5p was associated with the severity of CP. miR-155-5p-enriched exosomes from HUVECs increased the angiogenesis and permeability of HAECs and promoted the expression of angiogenesis, permeability, and inflammation genes. Along with the overexpression or inhibition of miR-155-5p, the biological effect of HUVECs-derived exosomes on HAECs changed correspondingly. In ApoE-/- mouse models, miR-155-5p-enriched exosomes promoted the occurrence of carotid atherosclerosis by increasing permeable and angiogenic activity. Collectively, these findings highlight a molecular mechanism of periodontitis in CAS, uncovering exosomal miR-155-5p derived periodontitis affecting carotid endothelial cells in an 'exosomecrine' manner. Exosomal miR-155-5p may be used as a biomarker and target for clinical intervention to control this intractable disease in future, and the graphic abstract was shown in Figure S1.
Collapse
Affiliation(s)
- Wen‐Wen Yang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing‐Xiang Li
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Fei Wang
- Department of Vascular Surgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xin‐Ran Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xian‐Li Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Meng Wang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dong Xue
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ying Zhao
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Lu Tang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Yu J, Ma Y, Zhang X, Wang S, Zhou L, Liu X, Li L, Liu L, Song H, Luo Y, Wen S, Li W, Niu X. β-Cyclodextrin and Hyaluronic Acid-Modified Targeted Nanodelivery System for Atherosclerosis Prevention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35421-35437. [PMID: 38940349 DOI: 10.1021/acsami.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural products have been widely recognized in clinical treatment because of their low toxicity and high activity. It is worth paying attention to modifying the biopolymer into nanostructures to give natural active ingredients additional targeting effects. In this study, based on the multifunctional modification of β-cyclodextrin (β-CD), a nanoplatform encapsulating the unstable drug (-)-epicatechin gallate (ECG) was designed to deliver to atherosclerotic plaques. Acetalization cyclodextrin (PH-CD), which responds to low-pH environments, and hyaluronic acid cyclodextrin, which targets the CD44 receptor on macrophage membranes, were synthesized from β-CD and hyaluronic acid using acetalization and transesterification, respectively. The resulting dual-carrier nanoparticles (Double-NPs) loaded with ECG were prepared using a solvent evaporation method. The Double-NPs effectively scavenged reactive oxygen species, promoted macrophage migration, inhibited macrophage apoptosis, and suppressed abnormal proliferation and migration of vascular smooth muscle cells. Furthermore, the Double-NPs actively accumulated in atherosclerotic plaques in ApoE-/- mice fed with a high-fat diet, leading to a reduced plaque area, inflammatory infiltration, and plaque instability. Our findings demonstrate that the newly developed ECG nanopreparation represents an effective and safe nanotherapy for diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Yajing Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Lingli Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Lingyi Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Yuzhi Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Sha Wen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| |
Collapse
|
12
|
Shu LX, Cao LL, Guo X, Wang ZB, Wang SZ. Mechanism of efferocytosis in atherosclerosis. J Mol Med (Berl) 2024; 102:831-840. [PMID: 38727748 DOI: 10.1007/s00109-024-02439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 06/29/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease that occurs in the intima of large and medium-sized arteries with the immune system's involvement. It is a common pathological basis for high morbidity and mortality of cardiovascular diseases. Abnormal proliferation of apoptotic cells and necrotic cells leads to AS plaque expansion, necrotic core formation, and rupture. In the early stage of AS, macrophages exert an efferocytosis effect to engulf and degrade apoptotic, dead, damaged, or senescent cells by efferocytosis, thus enabling the regulation of the organism. In the early stage of AS, macrophages rely on this effect to slow down the process of AS. However, in the advanced stage of AS, the efferocytosis of macrophages within the plaque is impaired, which leads to the inability of macrophages to promptly remove the apoptotic cells (ACs) from the organism promptly, causing exacerbation of AS. Moreover, upregulation of CD47 expression in AS plaques also protects ACs from phagocytosis by macrophages, resulting in a large amount of residual ACs in the plaque, further expanding the necrotic core. In this review, we discussed the molecular mechanisms involved in the process of efferocytosis and how efferocytosis is impaired and regulated during AS, hoping to provide new insights for treating AS.
Collapse
Affiliation(s)
- Li-Xia Shu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Liu-Li Cao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Xin Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
13
|
Kim J, Kim JY, Byeon HE, Kim JW, Kim HA, Suh CH, Choi S, Linton MF, Jung JY. Inhibition of Toll-like Receptors Alters Macrophage Cholesterol Efflux and Foam Cell Formation. Int J Mol Sci 2024; 25:6808. [PMID: 38928513 PMCID: PMC11203583 DOI: 10.3390/ijms25126808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Arterial macrophage cholesterol accumulation and impaired cholesterol efflux lead to foam cell formation and the development of atherosclerosis. Modified lipoproteins interact with toll-like receptors (TLR), causing an increased inflammatory response and altered cholesterol homeostasis. We aimed to determine the effects of TLR antagonists on cholesterol efflux and foam cell formation in human macrophages. Stimulated monocytes were treated with TLR antagonists (MIP2), and the cholesterol efflux transporter expression and foam cell formation were analyzed. The administration of MIP2 attenuated the foam cell formation induced by lipopolysaccharides (LPS) and oxidized low-density lipoproteins (ox-LDL) in stimulated THP-1 cells (p < 0.001). The expression of ATP-binding cassette transporters A (ABCA)-1, ABCG-1, scavenger receptor (SR)-B1, liver X receptor (LXR)-α, and peroxisome proliferator-activated receptor (PPAR)-γ mRNA and proteins were increased (p < 0.001) following MIP2 administration. A concentration-dependent decrease in the phosphorylation of p65, p38, and JNK was also observed following MIP2 administration. Moreover, an inhibition of p65 phosphorylation enhanced the expression of ABCA1, ABCG1, SR-B1, and LXR-α. TLR inhibition promoted the cholesterol efflux pathway by increasing the expression of ABCA-1, ABCG-1, and SR-B1, thereby reducing foam cell formation. Our results suggest a potential role of the p65/NF-kB/LXR-α/ABCA1 axis in TLR-mediated cholesterol homeostasis.
Collapse
Affiliation(s)
- Jaemi Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Ji-Yun Kim
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.-Y.K.)
| | - Hye-Eun Byeon
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.-Y.K.)
| | - Ji-Won Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Hyoun-Ah Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Chang-Hee Suh
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
| | - MacRae F. Linton
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Ju-Yang Jung
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| |
Collapse
|
14
|
Qi J, Zhou S, Wang G, Hua R, Wang X, He J, Wang Z, Zhu Y, Luo J, Shi W, Luo Y, Chen X. The Antioxidant Dendrobium officinale Polysaccharide Modulates Host Metabolism and Gut Microbiota to Alleviate High-Fat Diet-Induced Atherosclerosis in ApoE -/- Mice. Antioxidants (Basel) 2024; 13:599. [PMID: 38790704 PMCID: PMC11117934 DOI: 10.3390/antiox13050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The discovery of traditional plants' medicinal and nutritional properties has opened up new avenues for developing pharmaceutical and dietary strategies to prevent atherosclerosis. However, the effect of the antioxidant Dendrobium officinale polysaccharide (DOP) on atherosclerosis is still not elucidated. PURPOSE This study aims to investigate the inhibitory effect and the potential mechanism of DOP on high-fat diet-induced atherosclerosis in Apolipoprotein E knockout (ApoE-/-) mice. STUDY DESIGN AND METHODS The identification of DOP was measured by high-performance gel permeation chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR). We used high-fat diet (HFD)-induced atherosclerosis in ApoE-/- mice as an animal model. In the DOP intervention stage, the DOP group was treated by gavage with 200 μL of 200 mg/kg DOP at regular times each day and continued for eight weeks. We detected changes in serum lipid profiles, inflammatory factors, anti-inflammatory factors, and antioxidant capacity to investigate the effect of the DOP on host metabolism. We also determined microbial composition using 16S rRNA gene sequencing to investigate whether the DOP could improve the structure of the gut microbiota in atherosclerotic mice. RESULTS DOP effectively inhibited histopathological deterioration in atherosclerotic mice and significantly reduced serum lipid levels, inflammatory factors, and malondialdehyde (F/B) production. Additionally, the levels of anti-inflammatory factors and the activity of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were significantly increased after DOP intervention. Furthermore, we found that DOP restructures the gut microbiota composition by decreasing the Firmicutes/Bacteroidota (F/B) ratio. The Spearman's correlation analysis indicated that serum lipid profiles, antioxidant activity, and pro-/anti-inflammatory factors were associated with Firmicutes, Bacteroidota, Allobaculum, and Coriobacteriaceae_UCG-002. CONCLUSIONS This study suggests that DOP has the potential to be developed as a food prebiotic for the treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Shuaishuai Zhou
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Guisheng Wang
- Department of Radiology, The Third Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; (G.W.); (R.H.)
| | - Rongrong Hua
- Department of Radiology, The Third Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; (G.W.); (R.H.)
| | - Xiaoping Wang
- Zhejiang Medicine Co., Ltd., Shaoxing 312366, China;
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China;
| | - Zi Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Yinhua Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Wenbiao Shi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Xiaoxia Chen
- Department of Radiology, The Third Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; (G.W.); (R.H.)
| |
Collapse
|
15
|
Zhang Y, Yang Y, Feng Y, Gao X, Pei L, Li X, Gao B, Liu L, Wang C, Gao S. Sonodynamic therapy for the treatment of atherosclerosis. J Pharm Anal 2024; 14:100909. [PMID: 38799235 PMCID: PMC11127226 DOI: 10.1016/j.jpha.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 05/29/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease, stroke, and peripheral vascular disease. Despite the current treatments, mortality and disability still remain high. Sonodynamic therapy (SDT), a non-invasive and localized methodology, has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques. Promising progress has been made through cell and animal assays, as well as clinical trials. For example, the effect of SDT on apoptosis and autophagy of cells in AS, especially macrophages, and the concept of non-lethal SDT has also been proposed. In this review, we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS; we elaborate on SDT's therapeutic effects and mechanisms in terms of macrophages, T lymphocytes, neovascularization, smooth muscle cells, lipid, extracellular matrix and efferocytosis within plaques; additionally, we discuss the safety of SDT. A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.
Collapse
Affiliation(s)
- Yan Zhang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Yang
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yudi Feng
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyan Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liping Pei
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaopan Li
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bingxin Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Liu
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chengzeng Wang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuochen Gao
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
16
|
Xu X, Qiu F, Yang M, Liu X, Tao S, Zheng B. Unveiling Atherosclerotic Plaque Heterogeneity and SPP1 +/VCAN + Macrophage Subtype Prognostic Significance Through Integrative Single-Cell and Bulk-Seq Analysis. J Inflamm Res 2024; 17:2399-2426. [PMID: 38681071 PMCID: PMC11055562 DOI: 10.2147/jir.s454505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Background Dysregulated macrophages are important causes of Atherosclerosis (AS) formation and increased plaque instability, but the heterogeneity of these plaques and the role of macrophage subtypes in plaque instability have yet to be clarified. Methods This study integrates single-cell and bulk-seq data to analyze atherosclerotic plaques. Unsupervised clustering was used to reveal distinct plaque subtypes, while survival analysis and gene set variation analysis (GSVA) methods helped in understanding their clinical outcomes. Enrichment of differential expression of macrophage genes (DEMGs) score and pseudo-trajectory analysis were utilized to explore the biological functions and differentiation stages of macrophage subtypes in AS progression. Additionally, CellChat and the BayesPrism deconvolution method were used to elucidate macrophage subtype interaction and their prognostic significance at single-cell resolution. Finally, the expression of biomarkers was validated in mouse experiments. Results Three distinct AS plaque subtypes were identified, with cluster 3 plaque subtype being particularly associated with higher immune infiltration and poorer prognosis. The DEMGs score exhibited a significant elevation in three macrophage subtypes (SPP1+/VCAN+ macrophages, IL1B+ macrophages, and FLT3LG+ macrophages), associated with cluster 3 plaque subtype and highlighted the prognostic significance of these subtypes. Activation trajectory of the macrophage subtypes is divided into three states (Pre-branch, Cell fate 1, and Cell fate 2), and Cell fate 2 (SPP1+/VCAN+ macrophages, IL1B+ macrophages, and FLT3LG+ macrophages dominant) exhibiting the highest DEMGs score, distinct interactions with other cell components, and relating to poorer prognosis of ischemic events. This study also uncovered a unique SPP1+/VCAN+ macrophage subtype, rare in quantity but significant in influencing AS progression. Machine learning algorithms identified 10 biomarkers crucial for AS diagnosis. The validation of these biomarkers was performed using Mendelian Randomization analysis and in vitro methods, supporting their relevance in AS pathology. Conclusion Our study provides a comprehensive view of AS plaque heterogeneity and the prognostic significance of macrophage subtypes in plaque instability.
Collapse
Affiliation(s)
- Xiang Xu
- School of Medicine, Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Fuling Qiu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Man Yang
- School of Medicine, Dali University, Dali City, Yunnan Province, People’s Republic of China
| | - Xiaoyong Liu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Siming Tao
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
| | - Bingrong Zheng
- School of Medicine, Yunnan University, Kunming City, Yunnan Province, People’s Republic of China
| |
Collapse
|
17
|
Xiao Y, Huang X, Xia Y, Ding M, Li A, Yang B, She Q. Role of dysregulated macrophage subpopulation ratios and functional changes in the development of coronary atherosclerosis. J Gene Med 2024; 26:e3626. [PMID: 37974510 DOI: 10.1002/jgm.3626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Coronary heart disease is one of the most significant risk factors affecting human health worldwide. Its pathogenesis is intricate, with atherosclerosis being widely regarded as the leading cause. Aberrant lipid metabolism in macrophages is recognized as one of the triggering factors in atherosclerosis development. To investigate the role of macrophages in the formation of coronary artery atherosclerosis, we utilized single-cell data from wild-type mice obtained from the aortic roots and ascending aortas after long-term high-fat diet feeding, as deposited in GSE131776. Seurat software was employed to refine the single-cell data in terms of scale and cell types, facilitating the identification of differentially expressed genes. Through the application of differential expression genes, we conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses at 0, 8 and 16 weeks, aiming to uncover pathways with the most pronounced functional alterations as the high-fat diet progressed. The AddModuleScore function was employed to score the expression of these pathways across different cell types. Subsequently, macrophages were isolated and further subdivided into subtypes, followed by an investigation into intercellular communication within these subtypes. Subsequent to this, we induced THP-1 cells to generate foam cells, validating critical genes identified in prior studies. The results revealed that macrophages underwent the most substantial functional changes as the high-fat diet progressed. Furthermore, two clusters were identified as potentially playing pivotal roles in macrophage functional regulation during high-fat diet progression. Additionally, macrophage subtypes displayed intricate functionalities, with mutual functional counterbalances observed among these subtypes. The proportions of macrophage subtypes and the modulation of anti-inflammatory and pro-inflammatory functions played significant roles in the development of coronary artery atherosclerosis.
Collapse
Affiliation(s)
- Yingjie Xiao
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xin Huang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Minjun Ding
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Anqi Li
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Qian She
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Huang F, Mu J, Liu Z, Lin Q, Fang Y, Liang Y. The Nutritional Intervention of Ingredients from Food Medicine Homology Regulating Macrophage Polarization on Atherosclerosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20441-20452. [PMID: 38108290 DOI: 10.1021/acs.jafc.3c06375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The polarization of macrophages plays a crucial regulatory role in a range of physiological and pathological processes involving macrophages. There are numerous concerns with macrophage polarization in atherosclerosis; however, most focus on modulating macrophage polarization to improve the microenvironment, and the mechanism of action remains unknown. In recent years, the advantages of natural and low-toxicity side effects of food medicine homology-derived substances have been widely explored. Few reports have started from ingredients from food medicine homology to regulate the polarization of macrophages so that early intervention can reduce or delay the process of atherosclerosis. This review summarizes the classification of macrophage polarization and related markers in the process of atherosclerosis. It summarizes the regulatory role of ingredients from food medicine homology in macrophage polarization and their possible mechanisms to provide ideas and inspiration for the nutritional intervention in vascular health.
Collapse
Affiliation(s)
- Fang Huang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zihan Liu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu 210023, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
19
|
Teng D, Chen H, Jia W, Ren Q, Ding X, Zhang L, Gong L, Wang H, Zhong L, Yang J. Identification and validation of hub genes involved in foam cell formation and atherosclerosis development via bioinformatics. PeerJ 2023; 11:e16122. [PMID: 37810795 PMCID: PMC10557941 DOI: 10.7717/peerj.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023] Open
Abstract
Background Foam cells play crucial roles in all phases of atherosclerosis. However, until now, the specific mechanisms by which these foam cells contribute to atherosclerosis remain unclear. We aimed to identify novel foam cell biomarkers and interventional targets for atherosclerosis, characterizing their potential mechanisms in the progression of atherosclerosis. Methods Microarray data of atherosclerosis and foam cells were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expression genes (DEGs) were screened using the "LIMMA" package in R software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Ontology (GO) annotation were both carried out. Hub genes were found in Cytoscape after a protein-protein interaction (PPI) enrichment analysis was carried out. Validation of important genes in the GSE41571 dataset, cellular assays, and tissue samples. Results A total of 407 DEGs in atherosclerosis and 219 DEGs in foam cells were identified, and the DEGs in atherosclerosis were mainly involved in cell proliferation and differentiation. CSF1R and PLAUR were identified as common hub genes and validated in GSE41571. In addition, we also found that the expression of CSF1R and PLAUR gradually increased with the accumulation of lipids and disease progression in cell and tissue experiments. Conclusion CSF1R and PLAUR are key hub genes of foam cells and may play an important role in the biological process of atherosclerosis. These results advance our understanding of the mechanism behind atherosclerosis and potential therapeutic targets for future development.
Collapse
Affiliation(s)
- Da Teng
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- Qingdao University, Qingdao, China
| | - Hongping Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenjuan Jia
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- Qingdao University, Qingdao, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoning Ding
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Lihui Zhang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- Qingdao University, Qingdao, China
| | - Lei Gong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Hua Wang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Lin Zhong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Jun Yang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
21
|
Yousaf H, Khan MIU, Ali I, Munir MU, Lee KY. Emerging role of macrophages in non-infectious diseases: An update. Biomed Pharmacother 2023; 161:114426. [PMID: 36822022 DOI: 10.1016/j.biopha.2023.114426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
In the past three decades, a huge body of evidence through various research studies conducted on animal models, has demonstrated that the macrophages are centralized of all the leukocytes involved in diseases and, particularly, their role in non-infectious diseases has been studied extensively for which they have also been referred to as the "double-edged swords". The most versatile of all immunocytes, macrophages play a key role in health and diseases. Various experimental models have demonstrated the conventional paradigms such as the M1/M2 dichotomy, which is not as obvious and presents a complex characterization of the macrophages in the disease immunology. In human diseases, this M1-M2 continuum shows a complex web of mechanisms, which are majorly divided into the pro-inflammatory roles (derived mainly by the cytokines: IL-1, IL-6, IL-12, IL-23, and tumor necrosis factor) and anti-inflammatory roles (CCl-17, CCl-22, CCL-2, transforming growth factor (TGF), and interleukin-10), which are involved in the wound healing and pathogen-suppression. The conventional division of these macrophages as M1 and M2 is derived from the opposing functions of these macrophages; where M1 is involved in the tissue damage and pro-inflammatory roles and M2 promotes cell proliferation and the resolution of inflammation. Both these pathways down-regulate each other in diseases through a plethora of enzymatic and cytokine mediators.
Collapse
Affiliation(s)
- Hassan Yousaf
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan.
| | - Iftikhar Ali
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka, Aljouf 72388, Saudi Arabia
| | - Ka Yiu Lee
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Ostersund, Sweden.
| |
Collapse
|
22
|
Piccoli M, Cirillo F, Ghiroldi A, Rota P, Coviello S, Tarantino A, La Rocca P, Lavota I, Creo P, Signorelli P, Pappone C, Anastasia L. Sphingolipids and Atherosclerosis: The Dual Role of Ceramide and Sphingosine-1-Phosphate. Antioxidants (Basel) 2023; 12:antiox12010143. [PMID: 36671005 PMCID: PMC9855164 DOI: 10.3390/antiox12010143] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sphingolipids are bioactive molecules that play either pro- and anti-atherogenic roles in the formation and maturation of atherosclerotic plaques. Among SLs, ceramide and sphingosine-1-phosphate showed antithetic properties in regulating various molecular mechanisms and have emerged as novel potential targets for regulating the development of atherosclerosis. In particular, maintaining the balance of the so-called ceramide/S1P rheostat is important to prevent the occurrence of endothelial dysfunction, which is the trigger for the entire atherosclerotic process and is strongly associated with increased oxidative stress. In addition, these two sphingolipids, together with many other sphingolipid mediators, are directly involved in the progression of atherogenesis and the formation of atherosclerotic plaques by promoting the oxidation of low-density lipoproteins (LDL) and influencing the vascular smooth muscle cell phenotype. The modulation of ceramide and S1P levels may therefore allow the development of new antioxidant therapies that can prevent or at least impair the onset of atherogenesis, which would ultimately improve the quality of life of patients with coronary artery disease and significantly reduce their mortality.
Collapse
Affiliation(s)
- Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Paola Rota
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy
| | - Simona Coviello
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Paolo La Rocca
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | - Ivana Lavota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Pasquale Creo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Paola Signorelli
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-0226437765
| |
Collapse
|
23
|
Wu J, He S, Song Z, Chen S, Lin X, Sun H, Zhou P, Peng Q, Du S, Zheng S, Liu X. Macrophage polarization states in atherosclerosis. Front Immunol 2023; 14:1185587. [PMID: 37207214 PMCID: PMC10189114 DOI: 10.3389/fimmu.2023.1185587] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory condition primarily affecting large and medium arteries, is the main cause of cardiovascular diseases. Macrophages are key mediators of inflammatory responses. They are involved in all stages of atherosclerosis development and progression, from plaque formation to transition into vulnerable plaques, and are considered important therapeutic targets. Increasing evidence suggests that the modulation of macrophage polarization can effectively control the progression of atherosclerosis. Herein, we explore the role of macrophage polarization in the progression of atherosclerosis and summarize emerging therapies for the regulation of macrophage polarization. Thus, the aim is to inspire new avenues of research in disease mechanisms and clinical prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiu Liu
- *Correspondence: Xiu Liu, ; Shaoyi Zheng,
| |
Collapse
|