1
|
Liu D, Sai N, Zhou Y, Yu N, Jiang QQ, Sun W, Han WJ, Guo W. CD38 Coordinates with NF-κB to Promote Cochlear Inflammation in Noise-Induced Hearing Loss: the Protective Effect of Apigenin. Mol Neurobiol 2025; 62:6166-6178. [PMID: 39725836 PMCID: PMC11953141 DOI: 10.1007/s12035-024-04675-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Noise exposure is one of the most common causes of sensorineural hearing loss. Although many studies considered inflammation to be a major contributor to noise-induced hearing loss, the process of cochlear inflammation is still unclear. Studies have found that activation of the NF-κB signaling pathway results in the accumulation of macrophages in the inner ear plays an important role in hair cell damage. In this study, tandem mass tag (TMT) technique was used to analyze the changes in basilar membrane proteome expression before and after acoustic injury. After noise exposure, the nicotinamide adenine dinucleotide (NAD) metabolism level was decreased, and the NF-κB signaling pathway was activated. The expression of CD38, the main NAD hydrolase in mammals, may directly lead to inflammation onset. Then, anakinra, an IL-1 receptor blocker, and apigenin, a CD38 inhibitor, were administered to animals to protect against noise-induced hearing loss. Our results showed that anakinra had little influence on the hearing threshold shift, while apigenin significantly reduce the threshold shift of hearing by inhibiting the expression of NF-κB and CD38 can be a promising target for protecting against noise-induced hearing loss.
Collapse
Affiliation(s)
- Da Liu
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Na Sai
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Ying Zhou
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Ning Yu
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Qing-Qing Jiang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, the State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei-Ju Han
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.
- National Key Laboratory of Hearing and Balance Science, Beijing, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.
- Key Lab of Hearing Science, Ministry of Education, Beijing, China.
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China.
| | - Weiwei Guo
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.
- National Key Laboratory of Hearing and Balance Science, Beijing, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.
- Key Lab of Hearing Science, Ministry of Education, Beijing, China.
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China.
| |
Collapse
|
2
|
Yaşar NG, Yiğman Z, Billur D, Tufan A, Gündüz B, Kamişli GIŞ, Karamert R. Comparison of IL-1 Receptor Antagonist and Dexamethasone in Noise-Induced Hearing Loss: Animal Model. Otolaryngol Head Neck Surg 2025; 172:1364-1373. [PMID: 39709545 DOI: 10.1002/ohn.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE This study aimed to attenuate cochlear inflammation following noise-induced hearing loss by targeting IL-1. We evaluated the effectiveness of IL-1 inhibition through auditory and histological assessments in an animal model. STUDY DESIGN Experimental animal study. SETTING Gazi University Faculty of Medicine, Ankara, Turkey. METHODS Twenty-four rats were randomly assigned into 3 groups: Anakinra, dexamethasone, and control groups. All animals were exposed to broadband noise (110 dB SPL, 8 hours), auditory brainstem response (ABR) tests were conducted before noise exposure, immediately after, and on Day 14. Anakinra, dexamethasone, and saline were administered intraperitoneally, cochlear tissues were harvested for histological and immunohistochemical evaluation. RESULTS On Day 14, ABR thresholds in Anakinra group were better than the control group across all frequencies, with a significant difference observed at 8 kHz (P = .036). The mean number of OHC was significantly higher in Anakinra group compared to the control group (P < .05). The mean number of IHC in the Anakinra group was greater than in the dexamethasone group. IL-1β immunopositivity in the stria vascularis and spiral ganglia was significantly higher in Anakinra group compared to dexamethasone group (P = .022 and P = .013, respectively). TNF-α immunopositivity in the stria vascularis and spiral ganglia was significantly greater in control group than in Anakinra group (P = .037 and P = .01, respectively). CONCLUSION The comparable efficacy of Anakinra and dexamethasone in both histological and auditory assessments suggests that Anakinra may serve as a promising therapeutic option for noise-induced hearing loss.
Collapse
Affiliation(s)
- Nagihan G Yaşar
- Department of Otolaryngology-Head and Neck Surgery, Ankara City Hospital, Ankara, Turkey
| | - Zeynep Yiğman
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
- Neuroscience and Neurotechnology Center of Excellence NOROM, Gazi University, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Abdurrahman Tufan
- Department of Internal Medicine, Division of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Bülent Gündüz
- Department of Audiology, Gazi University Faculty of Health Sciences, Ankara, Turkey
| | - Gurbet I Ş Kamişli
- Department of Audiology, Gazi University Faculty of Health Sciences, Ankara, Turkey
| | - Recep Karamert
- Department of Otorhinolaryngology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Dang J, Bian P, Chen C, Chen C, Shan W, Cai L, Li Y, Tan H, Xu B, Guan M, Guo Y. Impact of POU3F4 mutation on cochlear development and auditory function. Cell Commun Signal 2025; 23:121. [PMID: 40045370 PMCID: PMC11884022 DOI: 10.1186/s12964-025-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Hearing loss, a major public health issue, affects 1.33 per 1,000 live births worldwide. Genetic factors contribute to over half of congenital cases, with X-linked inheritance accounting for 1-5%. POU3F4 mutations are associated with approximately 50% of X-linked non-syndrome hearing loss cases. POU3F4 plays a critical role in cochlear development by regulating otic mesenchyme cell differentiation. The study investigates the impact of a novel POU3F4 p.E294G mutation on cochlear structure and function using cellular and animal model. METHODS The study utilized immortalized lymphoblastoid cell lines, POU3F4 overexpressed HEK293 cells and generated Pou3f4 knock-in (Pou3f4KI) mice via CRISPR/Cas9 to introduce the p.E294G mutation. Alterations in expression and subcellular localization of POU3F4 were detected at the cellular level. Auditory function was assessed using auditory brainstem response testing. Cochlear structure was analyzed through histology, immunohistochemistry, scanning electron microscopy, and transmission electron microscopy. RNA sequencing, qPCR and Western blot were conducted to evaluate gene expression and mitochondrial function. RESULTS The transcription of POU3F4 was abnormal and the expression was normal in lymphoblastoid cell lines. Abnormal nuclear localization of POU3F4 p.E294G was found in overexpressed HEK293 cells. Pou3f4KI mice exhibited cochlear malformations, including modiolus hypoplasia and reduced stria vascularis cell populations. Auditory testing revealed progressive hearing loss. Pou3f4 affect mitochondrial protein expression by affecting the expression of TFAM. Mitochondrial dysfunction was evident, with reduced oxidative phosphorylation (OXPHOS) complex assembly and activity, decreased ATP levels. The level of reactive oxygen species, mitochondrial fission and apoptosis in cochlea were elevated. CONCLUSIONS The POU3F4 p.E294G resulted in abnormal nuclear localization. Pou3f4 mutant disrupts cochlear development and function, impairs mitochondrial integrity, induces oxidative stress, and promotes apoptosis, leading to progressive hearing loss. The findings enhance the understanding of POU3F4-related hearing loss mechanisms and highlight the importance of early genetic screening and audiological monitoring.
Collapse
Affiliation(s)
- Jiong Dang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Panpan Bian
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Chao Chen
- Center for Mitochondrial Biomedicine, Department of Ophthalmology, Zhejiang University School of Medicine, Yiwu, China
| | - Chi Chen
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Wenqi Shan
- Center for Mitochondrial Biomedicine, Department of Ophthalmology, Zhejiang University School of Medicine, Yiwu, China
| | - Luhang Cai
- Center for Mitochondrial Biomedicine, Department of Ophthalmology, Zhejiang University School of Medicine, Yiwu, China
| | - Yong Li
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Huan Tan
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China.
| | - Minxin Guan
- Center for Mitochondrial Biomedicine, Department of Ophthalmology, Zhejiang University School of Medicine, Yiwu, China.
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China.
| |
Collapse
|
4
|
Gu X, Chen C, Chen Y, Zeng C, Lin Y, Guo R, Xu S, Lin C. Bioinformatics approach reveals the critical role of inflammation-related genes in age-related hearing loss. Sci Rep 2025; 15:2687. [PMID: 39837906 PMCID: PMC11751394 DOI: 10.1038/s41598-024-83428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory impairment in the elderly. However, the pathogenesis of ARHL remains unclear. This study was aimed to explore the potential inflammation-related genes of ARHL and suggest novel therapeutic targets for this condition. Initially, a total of 105 Inflammatory related differentially expressed genes (IRDEGs) were obtained by overlapping the differentially expressed genes from the GSE49522 and GSE49543 datasets with Inflammatory related genes. The IRDEGs were mainly enriched in MAPK, PI3K-Akt, Hippo and JAK-STAT pathways by analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. We then identified 10 key IRDEGs including Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, etc. using Least absolute shrinkage and selection operator regression analysis and converted them into human genes. The ROC curve indicated that Alox5ap expression presented a high accuracy in distinguishing between different groups. By CIBERSORT algorithm, 8 humanized key IRDEGs were correlated with the infiltration abundance of 3 immune cells. Finally, it showed that the Alox5ap expression was significantly more effective compared to other variables in the diagnostic model of ARHL. This study suggests that inflammation might play a role in the development of ARHL, providing a deeper understanding of the underlying causes of this disease.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chenyu Chen
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Yuqing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chaojun Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanchun Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruosi Guo
- Fujian Medical University, Fuzhou, China
| | - Shujin Xu
- Fujian Medical University, Fuzhou, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Dong R, Ji Z, Wang M, Ma G. Role of macrophages in vascular calcification: From the perspective of homeostasis. Int Immunopharmacol 2025; 144:113635. [PMID: 39566391 DOI: 10.1016/j.intimp.2024.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Vascular calcification (VC) is a crucial risk factor for the high morbidity and mortality associated with cardiovascular and cerebrovascular diseases. With the global population aging, the incidence of VC is escalating annually. However, due to its silent clinical process, VC often results in irreversible clinical outcomes. Inflammation is a core element in the VC process, and macrophages are the major inflammatory cells. Due to their diverse origins, microenvironments, and polarization states, macrophages exhibit significant heterogeneity, exerting strong effects on the occurrence, development, and even the regression of VC. In this review, we summarize the origin, distribution, classification, and surface markers of macrophages. Simultaneously, we explore the mechanisms by which macrophages maintain homeostasis or regulate inflammation, including the macrophage-mediated regulation of VC through the release of inflammatory factors, osteogenic genes, extracellular vesicles, and alterations in efferocytosis. Finally, we discuss research targeting inflammation and macrophages to develop novel therapeutic regimens for preventing and treating VC.
Collapse
Affiliation(s)
- Rong Dong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China; Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Mi Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
6
|
Zhang X, Wu J, Wang M, Chen L, Wang P, Jiang Q, Yang C. The role of gene mutations and immune responses in sensorineural hearing loss. Int Immunopharmacol 2024; 143:113515. [PMID: 39486181 DOI: 10.1016/j.intimp.2024.113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Sensorineural hearing loss (SNHL) is a prevalent clinical condition primarily attributed to dysfunction within various components of the auditory pathway, spanning from the inner ear to the auditory cortex. Recent research has illuminated immune and inflammation-mediated disorders of the inner ear as critical contributors to SNHL. Disruptions in the equilibrium of inflammatory mediators, chemokines, the complement system, and inflammatory vesicles within the cochlea provoke aberrations in immune cell activity, fostering a chronic pro-inflammatory milieu that detrimentally affects the structural and functional integrity of the inner ear, culminating in hearing impairment. Specific genetic mutations, especially those affecting auditory structures, play an important role in SNHL. These mutations regulate inflammatory mediators and cellular responses, thereby altering the inflammatory dynamics within the cochlea. This review delves into the pathogenesis of sensorineural hearing loss, emphasizing the impact of genetic alterations, immune responses within the inner ear, and inflammatory mediators on auditory function. It highlights the significance of Transmembrane Serine Protease 3 (TMPRSS3) and connexin gene mutations as pivotal genetic elements in SNHL, underscoring the central role of inflammatory responses in cochlear damage. Furthermore, the paper discusses the promise of gene therapy and targeted molecular interventions, underscoring the necessity for continued exploration into the specific actions of various inflammatory agents to refine personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Junyi Wu
- Department of Otolaryngology-Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Yibin City, Sichuan Province, 644000, China
| | - Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, 225200, China
| | - Qiao Jiang
- Department of Neurology, Deyang Fifth Hospital, Sichuan Province, 618000, China.
| | - Chunping Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
7
|
Zhang J, Guo T, Chen Y, Wang X, Wu L, Xie H. Investigating the causal relationship between inflammation and multiple types of hearing loss: a multi-omics approach combining Mendelian randomization and molecular docking. Front Neurol 2024; 15:1422241. [PMID: 39677857 PMCID: PMC11638537 DOI: 10.3389/fneur.2024.1422241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Background Hearing loss affects over 10% of the global population. Inflammation is a key factor in hearing loss caused by noise, infection, and aging, damaging various hearing-related tissues (e.g., spiral ligament, stria vascularis). Mendelian randomization (MR) can help identify potential causal relationships and therapeutic targets. Methods We conducted MR analyses on 91 inflammatory proteins (n = 14,824) and genome-wide association study results for various hearing loss types in European ancestry populations, including sensorineural hearing loss (SNHL; ncases = 15,952, ncontrols = 196,592), sudden idiopathic hearing loss (SIHL; ncases = 1,491, ncontrols = 196,592), and other hearing loss (OHL; ncases = 4,157, ncontrols = 196,592). Additionally, hearing loss with difficulty in hearing (ncases = 14,654, ncontrols = 474,839) served as a validation set. To predict inflammatory protein-enriched pathways and tissues, we performed enrichment analysis, functional annotation, and tissue analyses using "OmicsNet2.0" and "FUMA" platforms. We also combined "CoreMine" and molecular docking to explore potential drugs targeting inflammatory proteins and investigate binding efficacy. Results CCL19 was identified as a common risk factor for SNHL and OHL, which was validated in the hearing loss with difficulty in hearing dataset. Tissue analysis revealed that SIHL-related inflammatory proteins were enriched in the amygdala. Multi-omics research indicated associations between inflammatory proteins and neurodegenerative diseases. Molecular docking studies suggested that Chuanxiong Rhizoma and Uncariae Ramulus Cumuncis are potential drugs for targeting CCL19. Conclusion This study identified CCL19 as a common risk factor for various types of hearing loss through MR analysis, highlighting the crucial role of inflammatory proteins in hearing loss. The enrichment of related inflammatory proteins in the amygdala and their association with neurodegenerative diseases provide new insights into the mechanisms of hearing loss.
Collapse
Affiliation(s)
- Jingqi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaxin Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lijiao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Wang Y, Nie J, Yan K, Wang J, Wang X, Zhao Y. Inflammatory diet, gut microbiota and sensorineural hearing loss: a cross-sectional and Mendelian randomization study. Front Nutr 2024; 11:1458484. [PMID: 39221159 PMCID: PMC11363541 DOI: 10.3389/fnut.2024.1458484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Aims Inflammatory diets can trigger chronic inflammation and affect gut microbiota. However, the relationship between dietary preferences and sensorineural hearing loss (SNHL) remains unclear. This study aims to elucidate the relationship between different dietary preferences and sensorineural deafness. Methods The Dietary Inflammation Index (DII) and SNHL were defined by data from the National Health and Nutrition Examination Survey (NHANES), and exploring their relationship. Using Mendelian randomization (MR) to analyze the relationship between 34 dietary preferences, 211 gut microbiota, and SNHL. Results Smooth curve fitting indicated that the risk of SNHL increased with increasing DII score when the DII score was greater than 5.15. MR results suggest that a diet including both oily and non-oily fish can substantially reduce the risk of SNHL. Additionally, six specific gut microbiota were found to have significant causal relationship with SNHL. Conclusion An inflammatory diet may increase the risk of developing SNHL. The observed relationship between fish consumption, gut microbiota, and SNHL suggests the existence of a gut-inner ear axis.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jiayi Nie
- Xi’an University of Technology, Xi’an, China
| | - Kaige Yan
- Northwest A&F University, Yangling, China
| | - Jing Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xin Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yuxiang Zhao
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
9
|
do Amaral JB, Peron KA, Soeiro TLT, Scott MCP, Hortense FTP, da Silva MD, França CN, Nali LHDS, Bachi ALL, de Oliveira Penido N. The inflammatory and metabolic status of patients with sudden-onset sensorineural hearing loss. Front Neurol 2024; 15:1382096. [PMID: 39015324 PMCID: PMC11250376 DOI: 10.3389/fneur.2024.1382096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Sudden sensorineural hearing loss (SSNHL) is a common emergency symptom in otolaryngology that requires immediate diagnosis and treatment. SSNHL has a multifactorial etiology, and its pathophysiologic mechanisms may be associated with inflammatory and metabolic changes that may affect the cochlear microenvironment or its nervous component, thus triggering the process or hindering hearing recovery. Therefore, the aim of this study was to assess metabolic and inflammatory changes to identify systemic parameters that could serve as prognostic factors for hearing recovery in patients with SSNHL. Materials and methods Thirty patients with a sudden hearing loss of at least 30 dB in three contiguous frequencies were enrolled in this study. Patients were followed up for 4 months and peripheral blood samples were collected at 7 days (V1), 30 days (V2) and 120 days (V3). Interleukins (IL)-1F7, IL-2, IL-4, IL-5, IL-6, IL-10, interferon γ (IFN-γ), tumor necrosis factor α (TNF-α) and adiponectin were quantified in serum. In addition, lipid and glycemic profiles as well as concentration of creatinine, uric acid, fructosamine, peroxide, total proteins and albumin were analyzed. Patients underwent weekly ear-specific hearing tests with standard pure tone thresholds for frequencies of 250-8,000 Hz, speech recognition threshold and word recognition score. Results Patients with SSNHL were divided into a group of patients who did not achieve hearing recovery (n = 14) and another group who achieved complete and significant recovery (n = 16). Most serologic parameters showed no significant changes or values indicating clinical changes. However, IFN-γ levels decreased by 36.3% between V1 and V2. The cytokine TNF-α showed a statistically significant decrease from V1 to V3 (from 22.91 to 10.34 pg./mL). Adiponectin showed a decrease from 553.7 ng/mL in V1 to 454.4 ng/mL in V3. Discussion Our results show that serologic cytokine levels change in the acute phase of manifestation of SSNHL and establish a parallel between systemic changes and improvements in hearing, especially TNF-α, which showed differences in hearing recovery. The use of IFN-γ, TNF-α and adiponectin may elucidate the clinical improvement in these patients.
Collapse
Affiliation(s)
- Jônatas Bussador do Amaral
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Kelly Abdo Peron
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Tracy Lima Tavares Soeiro
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marina Cançado Passarelli Scott
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Flávia Tatiana Pedrolo Hortense
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Carolina Nunes França
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
| | | | | | - Norma de Oliveira Penido
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
10
|
Qi J, Tan F, Zhang L, Lu L, Zhang S, Zhai Y, Lu Y, Qian X, Dong W, Zhou Y, Zhang Z, Yang X, Jiang L, Yu C, Liu J, Chen T, Wu L, Tan C, Sun S, Song H, Shu Y, Xu L, Gao X, Li H, Chai R. AAV-Mediated Gene Therapy Restores Hearing in Patients with DFNB9 Deafness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306788. [PMID: 38189623 PMCID: PMC10953563 DOI: 10.1002/advs.202306788] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/18/2023] [Indexed: 01/09/2024]
Abstract
Mutations in OTOFERLIN (OTOF) lead to the autosomal recessive deafness 9 (DFNB9). The efficacy of adeno-associated virus (AAV)-mediated OTOF gene replacement therapy is extensively validated in Otof-deficient mice. However, the clinical safety and efficacy of AAV-OTOF is not reported. Here, AAV-OTOF is generated using good manufacturing practice and validated its efficacy and safety in mouse and non-human primates in order to determine the optimal injection dose, volume, and administration route for clinical trials. Subsequently, AAV-OTOF is delivered into one cochlea of a 5-year-old deaf patient and into the bilateral cochleae of an 8-year-old deaf patient with OTOF mutations. Obvious hearing improvement is detected by the auditory brainstem response (ABR) and the pure-tone audiometry (PTA) in these two patients. Hearing in the injected ear of the 5-year-old patient can be restored to the normal range at 1 month after AAV-OTOF injection, while the 8-year-old patient can hear the conversational sounds. Most importantly, the 5-year-old patient can hear and recognize speech only through the AAV-OTOF-injected ear. This study is the first to demonstrate the safety and efficacy of AAV-OTOF in patients, expands and optimizes current OTOF-related gene therapy and provides valuable information for further application of gene therapies for deafness.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of Neurology, Aerospace Center Hospital, School of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Liyan Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Ling Lu
- Department of Otolaryngology‐Head and Neck Surgerythe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical Discipline (Laboratory)Nanjing210008China
| | | | - Yabo Zhai
- School of MedicineSoutheast UniversityNanjing210009China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xiaoyun Qian
- Department of Otolaryngology‐Head and Neck Surgerythe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical Discipline (Laboratory)Nanjing210008China
| | | | - Yinyi Zhou
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Lulu Jiang
- Otovia Therapeutics IncSuzhou215101China
| | | | | | - Tian Chen
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Lianqiu Wu
- Otovia Therapeutics IncSuzhou215101China
| | - Chang Tan
- Otovia Therapeutics IncSuzhou215101China
| | - Sijie Sun
- Otovia Therapeutics IncSuzhou215101China
- Fosun Health CapitalShanghai200233China
| | | | - Yilai Shu
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institute of Biomedical ScienceFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200032China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinanShandong250022China
| | - Xia Gao
- Department of Otolaryngology‐Head and Neck Surgerythe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical Discipline (Laboratory)Nanjing210008China
| | - Huawei Li
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institute of Biomedical ScienceFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200032China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghai200032China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of Neurology, Aerospace Center Hospital, School of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| |
Collapse
|
11
|
Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci 2023; 24:16545. [PMID: 38003734 PMCID: PMC10671929 DOI: 10.3390/ijms242216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.
Collapse
Affiliation(s)
- Winston J. T. Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
12
|
Tan WJT, Santos-Sacchi J, Tonello J, Shanker A, Ivanova AV. Pharmacological Modulation of Energy and Metabolic Pathways Protects Hearing in the Fus1/Tusc2 Knockout Model of Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2023; 12:1225. [PMID: 37371955 DOI: 10.3390/antiox12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Tightly regulated and robust mitochondrial activities are critical for normal hearing. Previously, we demonstrated that Fus1/Tusc2 KO mice with mitochondrial dysfunction exhibit premature hearing loss. Molecular analysis of the cochlea revealed hyperactivation of the mTOR pathway, oxidative stress, and altered mitochondrial morphology and quantity, suggesting compromised energy sensing and production. Here, we investigated whether the pharmacological modulation of metabolic pathways using rapamycin (RAPA) or 2-deoxy-D-glucose (2-DG) supplementation can protect against hearing loss in female Fus1 KO mice. Additionally, we aimed to identify mitochondria- and Fus1/Tusc2-dependent molecular pathways and processes critical for hearing. We found that inhibiting mTOR or activating alternative mitochondrial energetic pathways to glycolysis protected hearing in the mice. Comparative gene expression analysis revealed the dysregulation of critical biological processes in the KO cochlea, including mitochondrial metabolism, neural and immune responses, and the cochlear hypothalamic-pituitary-adrenal axis signaling system. RAPA and 2-DG mostly normalized these processes, although some genes showed a drug-specific response or no response at all. Interestingly, both drugs resulted in a pronounced upregulation of critical hearing-related genes not altered in the non-treated KO cochlea, including cytoskeletal and motor proteins and calcium-linked transporters and voltage-gated channels. These findings suggest that the pharmacological modulation of mitochondrial metabolism and bioenergetics may restore and activate processes critical for hearing, thereby protecting against hearing loss.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jane Tonello
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anil Shanker
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|