1
|
Wang SY, Chen YS, Jin BY, Bilal A. The cGAS-STING pathway in atherosclerosis. Front Cardiovasc Med 2025; 12:1550930. [PMID: 40351606 PMCID: PMC12062000 DOI: 10.3389/fcvm.2025.1550930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Atherosclerosis (AS), a chronic inflammatory disease, remains a leading contributor to cardiovascular morbidity and mortality. Recent studies highlight the critical role of the cGAS-STING pathway-a key innate immune signaling cascade-in driving AS progression. This pathway is activated by cytoplasmic DNA from damaged cells, thereby triggering inflammation and accelerating plaque formation. While risk factors such as aging, obesity, smoking, hypertension, and diabetes are known to exacerbate AS, emerging evidence suggests that these factors may also enhance cGAS-STING pathway, which amplifies inflammatory responses. Targeting this pathway offers a promising therapeutic strategy to reduce the burden of cardiovascular diseases (CVD). In this review, we summarize the mechanisms of the cGAS-STING pathway, explore its role in AS, and evaluate potential inhibitors as future therapeutic candidates. By integrating current knowledge, we aim to provide insights for developing novel treatments to mitigate AS and CVD burden.
Collapse
Affiliation(s)
- Si-yu Wang
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yu-shan Chen
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Bo-yuan Jin
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ahmad Bilal
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Moss CG, Dilworth MR, Harris LK, Freeman S, Heazell AEP. Understanding a Potential Role for the NLRP3 Inflammasome in Placenta-Mediated Pregnancy Complications. Am J Reprod Immunol 2025; 93:e70077. [PMID: 40260875 PMCID: PMC12013246 DOI: 10.1111/aji.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Stillbirth affects approximately 2 million pregnancies annually and is closely linked to placental dysfunction, which may also present clinically as foetal growth restriction (FGR) or pre-eclampsia (PE). Placental dysfunction can arise from a range of insults, including the inflammatory conditions villitis of unknown aetiology (VUE) and chronic histiocytic intervillositis (CHI). Despite ample research regarding the pathophysiology of placental dysfunction, the literature surrounding placental inflammation is more limited, with no currently established treatments. In the absence of infection, placental inflammation is hypothesised to be stimulated by damage-associated molecular patterns (DAMPs), known as sterile inflammation. The NLRP3 inflammasome, a protein scaffold that unites within the cytosol of cells, is a proposed contributor. The NLRP3 inflammasome is dysregulated in numerous diseases and has shown evidence of activation through the sterile inflammatory pathway via DAMPs. Studies have demonstrated the upregulation of the NLRP3 inflammasome and its components in placentally-mediated pregnancy pathologies. However, the link between placental dysfunction seen in these disorders and the NLRP3 inflammasome is not yet firmly established. This manuscript aims to review the evidence regarding placental inflammation seen with placental dysfunction, discuss its association with the NLRP3 inflammasome, and identify potential therapeutic interventions for this pathological inflammatory response.
Collapse
Affiliation(s)
- Chloe G. Moss
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and MedicineUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchester University NHS Foundation TrustManchesterUK
| | - Mark R. Dilworth
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and MedicineUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchester University NHS Foundation TrustManchesterUK
| | - Lynda K. Harris
- Department of Obstetrics and GynaecologyOlson Center for Women's HealthUniversity of Nebraska Medical CentreOmahaUSA
| | - Sally Freeman
- Division of Pharmacy and OptometryUniversity of ManchesterManchesterUK
| | - Alexander E. P. Heazell
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and MedicineUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchester University NHS Foundation TrustManchesterUK
| |
Collapse
|
3
|
Ge P, Guo Y, Che B, Jin H, Chen L, Chen Z, Tang K. Modulation of NLRP3 Inflammasome Activation by QYHT Decoction: Implications for the Treatment of Erectile Dysfunction in Hyperuricemia. Am J Mens Health 2025; 19:15579883251318307. [PMID: 40007058 PMCID: PMC11863226 DOI: 10.1177/15579883251318307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Hyperuricemia (HUA) causes vascular endothelial dysfunction and oxidative stress, and simultaneously activates the NLRP3 inflammasome, leading to inflammatory reactions and erectile dysfunction (ED). This study aimed to investigate the effects of QYHT (Quyuhuatanerxian decoction) decoction on the NLRP3 inflammasome and explore its potential in treating HUA-induced ED. This study employed four treatment methods: (a) treating HUA-induced ED patients with QYHT and analyzing changes in gut microbiota abundance and fecal metabolites through 16S sequencing; (b) establishing an HUA-induced ED rat model, treating with different doses of QYHT, and examining changes in serum metabolites; (c) conducting fecal microbiota transplantation (FMT) therapy; evaluating erectile function, oxidative stress, inflammatory response, and NLRP3 inflammasome activation levels; and (d) exploring key monomeric compounds and potential targets in QYHT through network pharmacology and molecular docking. The treatment with QYHT and FMT increased testosterone levels, reduced oxidative stress and inflammatory marker levels, and inhibited the expressions of NLRP3-related factors. QYHT affected the gut microbiota structure and metabolite levels. The key components were linoleoyl acetate and mandanol, and the target was JAK2. QYHT decoction regulates the distribution of gut microbiota, improves amino acid metabolism, and effectively inhibits the activation of NLRP3 inflammasomes. This, in turn, enhances erectile function and reduces oxidative stress and inflammatory response levels, leading to successful treatment of HUA-induced ED.
Collapse
Affiliation(s)
- Pingyu Ge
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yinxue Guo
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bangwei Che
- Department of Urology Surgery, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hang Jin
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lan Chen
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhichao Chen
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kaifa Tang
- Department of Urology Surgery, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Carrasco-Wong I, Sanchez JM, Gutierrez JA, Chiarello DI. Trained innate immunity as a potential link between preeclampsia and future cardiovascular disease. Front Endocrinol (Lausanne) 2024; 15:1500772. [PMID: 39741876 PMCID: PMC11685753 DOI: 10.3389/fendo.2024.1500772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Preeclampsia (PE) is a complex pregnancy syndrome characterized by hypertension with or without proteinuria, affecting 2-6% of pregnancies globally. PE is characterized by excessive release of damage-associated molecular patterns (DAMPs) into the maternal circulation. This DAMP-rich milieu acts on innate immune cells, inducing a proinflammatory state characterized by elevated cytokines such as IL-1β and IL-18. This proinflammatory state in the mother and placenta results in the endothelial dysfunction strongly associated with cardiovascular disorders. While the immediate maternal and fetal risks of PE are well-documented, accumulating evidence indicates that PE also confers long-term cardiovascular risks to the mother, including hypertension, coronary heart disease, stroke, and heart failure. The underlying mechanisms connecting PE to these chronic cardiovascular conditions remain unclear. This article explores the potential role of trained innate immunity (TRIM) as a mechanistic link between PE and increased long-term cardiovascular risk. We propose that the persistent exposure to DAMPs during PE may epigenetically reprogram maternal innate immune cells and their progenitors, leading to TRIM. This reprogramming enhances the inflammatory response to subsequent stimuli, potentially contributing to endothelial dysfunction and chronic inflammation that predispose women to cardiovascular diseases later in life. Understanding the role of TRIM in PE could provide novel insights into the pathophysiology of PE-related cardiovascular complications and identify potential targets for therapeutic intervention. Further research is warranted to investigate the epigenetic and metabolic alterations in innate immune cells induced by PE and to determine how these changes may influence long-term maternal cardiovascular health.
Collapse
Affiliation(s)
| | | | - Jaime A. Gutierrez
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia,
Universidad San Sebastián, Santiago, Chile
| | - Delia I. Chiarello
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia,
Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
5
|
Luo X, Guo X, Chen N, Peng R, Pan C, Li Z, Zhao B, Ji R, Li S. miR-155 mediated regulation of PKG1 and its implications on cell invasion, migration, and apoptosis in preeclampsia through NF-κB pathway. Biol Direct 2024; 19:121. [PMID: 39587640 PMCID: PMC11590512 DOI: 10.1186/s13062-024-00526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Preeclampsia (PE) is a severe pregnancy complication characterized by complex molecular interactions. Understanding these interactions is crucial for developing effective therapeutic strategies. METHODS This study applies a pharmacometabolomics approach to explore the roles of miR-155 and PKG1 in PE, focusing on the regulatory influence of the NF-κB signaling pathway. Blood metabolomic profiles were analyzed, and bioinformatics tools, IHC staining, Western blot (WB) analysis, and immunofluorescence (IF) localization were employed to determine the expression and function of miR-155 and PKG1. Cell invasion, migration, proliferation, and apoptosis assays were conducted to assess miR-155's modulation of PKG1. Additionally, RT-qPCR and WB analysis elucidated NF-κB-mediated regulation mechanisms. RESULTS Our findings indicate significant metabolic alterations associated with miR-155 modulation of PKG1, with NF-κB acting as a critical upstream regulator. The study demonstrates that miR-155 affects cellular functions such as invasion, migration, proliferation, and apoptosis through PKG1 modulation. Furthermore, the NF-κB signaling pathway regulates miR-155 expression, contributing to the pathological processes of PE. CONCLUSION This study provides a proof of concept for using pharmacometabolomics to understand the molecular mechanisms of PE, suggesting new therapeutic targets and advancing personalized medicine approaches. These insights highlight the potential of pharmacometabolomics to complement genomic and transcriptional data in disease characterization and treatment strategies, offering new avenues for therapeutic intervention in PE.
Collapse
Affiliation(s)
- Xiaohua Luo
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Xiaopei Guo
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Ningning Chen
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Rui Peng
- Scientific Research Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ci Pan
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Zhuyin Li
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Bing Zhao
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Ruonan Ji
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Siyu Li
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
6
|
Prajapat SK, Maharana KC, Singh S. Mitochondrial dysfunction in the pathogenesis of endothelial dysfunction. Mol Cell Biochem 2024; 479:1999-2016. [PMID: 37642880 DOI: 10.1007/s11010-023-04835-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Cardiovascular diseases (CVDs) are a matter of concern worldwide, and mitochondrial dysfunction is one of the major contributing factors. Vascular endothelial dysfunction has a major role in the development of atherosclerosis because of the abnormal chemokine secretion, inflammatory mediators, enhancement of LDL oxidation, cytokine elevation, and smooth muscle cell proliferation. Endothelial cells transfer oxygen from the pulmonary circulatory system to the tissue surrounding the blood vessels, and a majority of oxygen is transferred to the myocardium by endothelial cells, which utilise a small amount of oxygen to generate ATP. Free radicals of oxide are produced by mitochondria, which are responsible for cellular oxygen uptake. Increased mitochondrial ROS generation and reduction in agonist-stimulated eNOS activation and nitric oxide bioavailability were directly linked to the observed change in mitochondrial dynamics, resulting in various CVDs and endothelial dysfunction. Presently, the manuscript mainly focuses on endothelial dysfunction, providing a deep understanding of the various features of mitochondrial mechanisms that are used to modulate endothelial dysfunction. We talk about recent findings and approaches that may make it possible to detect mitochondrial dysfunction as a potential biomarker for risk assessment and diagnosis of endothelial dysfunction. In the end, we cover several targets that may reduce mitochondrial dysfunction through both direct and indirect processes and assess the impact of several different classes of drugs in the context of endothelial dysfunction.
Collapse
Affiliation(s)
- Suresh Kumar Prajapat
- National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, Hajipur, Bihar, India
| | - Krushna Ch Maharana
- National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Dist: Vaishali, Hajipur, Bihar, 844102, India.
| |
Collapse
|
7
|
Ding W, Chen J, Zhao L, Wu S, Chen X, Chen H. Mitochondrial DNA leakage triggers inflammation in age-related cardiovascular diseases. Front Cell Dev Biol 2024; 12:1287447. [PMID: 38425502 PMCID: PMC10902119 DOI: 10.3389/fcell.2024.1287447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Mitochondrial dysfunction is one of the hallmarks of cardiovascular aging. The leakage of mitochondrial DNA (mtDNA) is increased in senescent cells, which are resistant to programmed cell death such as apoptosis. Due to its similarity to prokaryotic DNA, mtDNA could be recognized by cellular DNA sensors and trigger innate immune responses, resulting in chronic inflammatory conditions during aging. The mechanisms include cGAS-STING signaling, TLR-9 and inflammasomes activation. Mitochondrial quality controls such as mitophagy could prevent mitochondria from triggering harmful inflammatory responses, but when this homeostasis is out of balance, mtDNA-induced inflammation could become pathogenic and contribute to age-related cardiovascular diseases. Here, we summarize recent studies on mechanisms by which mtDNA promotes inflammation and aging-related cardiovascular diseases, and discuss the potential value of mtDNA in early screening and as therapeutic targets.
Collapse
Affiliation(s)
- Wanyue Ding
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Zhao
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shuang Wu
- Southern Medical University Affiliated Qiqihar Hospital, The First Hospital of Qiqihar, Qiqihaer, Heilongjiang, China
| | - Xiaomei Chen
- Integrated Traditional Chinese and Western Medicine Syndrome Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Chen
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Zhu L, Chen S, Dai X. CTRP9 alleviates hypoxia/reoxygenation-induced human placental vascular endothelial cells impairment and mitochondrial dysfunction through activating AMPK/Nrf2 signaling. Tissue Cell 2023; 85:102217. [PMID: 37774521 DOI: 10.1016/j.tice.2023.102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Pregnancy-induced hypertension (PIH) is associated with significant maternal and fetal mortality. The present study is aimed at exploring the molecular mechanism of C1q/TNF-related protein 9 (CTRP9) in PIH. METHODS Human placental vascular endothelial cells (HPVECs) underwent hypoxia/reoxygenation (H/R) to construct an in vitro PIH cellular model. Cell transfection was conducted to over-express CTRP9. The expression level of CTRP9 was determined by western blot and quantitative real-time PCR. CCK-8, flow cytometry, wound-healing and tube formation assays were conducted to assess cell viability, apoptosis, migration and angiogenesis, respectively. Mitochondrial membrane potential (∆ψm) was evaluated adopting JC-1 staining. Mitochondrial ROS and copy number (mtDNA) were examined using superoxide indicator and real-time PCR, respectively. Then, HPVECs were pre-treated with Compound C (CC), the inhibitor of AMPK, for regulatory mechanism research. RESULTS CTRP9 was downregulated in HPVECs exposed to H/R induction. CTRP9 overexpression retards H/R-mediated cell viability loss and apoptosis, impaired migration and angiogenesis of HPVECs. Meanwhile, CTRP9 overexpression alleviates H/R-mediated mitochondrial dysfunction in HPVECs by enhancing mitochondrial ∆ψm, reducing mitochondrial ROS generation and increasing mtDNA copies. In addition, CTRP9 activated AMPK/Nrf2 signaling in H/R-mediated HPVECs, and additional treatment of CC greatly weakened the functional effects of CTRP9 in H/R-mediated HPVECs. CONCLUSION Our results suggested that CTRP9 protected against H/R-mediated HPVECs injuries dependent on AMPK/Nrf2 signaling and could be applied as a potential therapy for PIH.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong 264199, China
| | - Shaolei Chen
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong 264199, China
| | - Xulei Dai
- Department of Medical Technology, Xingtai Medical College, Xingtai, Hebei 054000, China.
| |
Collapse
|