1
|
Singh PA, Pandey RP, Awasthi R. Unveiling the role of nanoparticle-based therapeutic strategies for pulmonary drug delivery. J Drug Deliv Sci Technol 2025; 104:106558. [DOI: 10.1016/j.jddst.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
2
|
Bakhtiari R, Shiri M, Reza Mohammadi M, Reza Pourmand M, Mirzaie A, Taghiabadi Z. Enhanced antimicrobial effects of carvacrol against methicillin-resistant Staphylococcus aureus strains using niosome formulations. Rev Argent Microbiol 2025; 57:39-48. [PMID: 39843290 DOI: 10.1016/j.ram.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 01/24/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes a wide range of infections and contributes to elevated morbidity, mortality, and healthcare costs. Herbal compounds combined with drug delivery systems could be an effective alternative option for treating resistant bacteria. This study evaluates the antimicrobial prowess of carvacrol-loaded niosomes against MRSA strains. In this study, six carvacrol-niosome formulations with different ratios of Span and Tween were prepared. The physicochemical attributes of the optimized synthesized niosomes were assessed using Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) as well as DLS Zetasizer. Encapsulation efficiency (EE) and in vitro drug release were studied. The antibacterial activity of the synthesized carvacrol-niosomes, in concentrations varying between 7.8 and 1000μg/ml, was evaluated using microdilution broth methods. The optimized niosomes, with a size of 207.3nm and an impressive EE of 91%, exhibited a spherical structure as confirmed by the electron microscopy analysis. Impressively, these carvacrol-niosomes demonstrated superior antimicrobial effectiveness against S. aureus, reducing MIC levels 4-fold to 62.5±0.0μg/ml and MBC to 125±0.0μg/ml, a significant improvement over the 250±0.0μg/ml MIC and 500±0.0μg/ml MBC of free carvacrol. Additionally, while empty niosomes showed minimal cytotoxicity with 88.32±1.32% cell viability at 100μg/ml, free carvacrol led to a marked reduction in viability to 39.46±1.26%. However, niosomes encapsulating carvacrol notably increased cell survival to 59.67±1.62% at this concentration. These findings underscore the enhanced antimicrobial potency of carvacrol when enclosed within niosomes, suggesting its potential as a potent herbal remedy for combating methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Ronak Bakhtiari
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Shiri
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghiabadi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Habibah T, Matonohová J, Kulhánek J, Fitzgerald U, Ingr M, Pravda M, Pandit A, Velebný V. In situ formed aldehyde-modified hyaluronic acid hydrogel with polyelectrolyte complexes of aldehyde-modified chondroitin sulfate and gelatin: An approach for minocycline delivery. Carbohydr Polym 2024; 343:122455. [PMID: 39174092 DOI: 10.1016/j.carbpol.2024.122455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy. PECs with CSOX enable covalent crosslinking to HAOX, creating immobilized PECs (HAOX_PECOX), while those with CS remain unbound (HAOX_PECS). The in situ forming DDS can be administered via a 20 G needle, with rapid gelation preventing premature leakage. The system integrates into an implanted device for minocycline release through either Fickian or anomalous diffusion, depending on PEC immobilization. HAOX_PECOX reduced burst release by 88 %, with a duration of 127 h for 50 % release. The DDS exhibited an elastic modulus of 3800 Pa and a low swelling ratio (0-1 %), enabling precise control of minocycline release kinetics. Released minocycline reduced IL-6 secretion in the Whole Blood Monocytes Activation Test, suggesting that DDS formation may not alter the biological activity of the loaded drug.
Collapse
Affiliation(s)
- Tutut Habibah
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia; Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova, 5669, Czechia
| | - Jana Matonohová
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia
| | | | - Una Fitzgerald
- CURAM, SFI Centre for Research on Biomedical Devices, Biomedical Engineering, University of Galway, Upper Newcastle, H91 W2TY, Ireland
| | - Marek Ingr
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova, 5669, Czechia
| | - Martin Pravda
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia.
| | - Abhay Pandit
- CURAM, SFI Centre for Research on Biomedical Devices, Biomedical Engineering, University of Galway, Upper Newcastle, H91 W2TY, Ireland
| | | |
Collapse
|
4
|
Hemmati J, Chiani M, Asghari B, Roshanaei G, Soleimani Asl S, Shafiei M, Arabestani MR. Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections. BMC Biotechnol 2024; 24:47. [PMID: 38978013 PMCID: PMC11229259 DOI: 10.1186/s12896-024-00874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Roostaee M, Derakhshani A, Mirhosseini H, Banaee Mofakham E, Fathi-Karkan S, Mirinejad S, Sargazi S, Barani M. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: a review of emerging therapies with emphasis on cancer. NANOSCALE 2024; 16:2713-2746. [PMID: 38213285 DOI: 10.1039/d3nr03495j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nanoniosome-based drug codelivery systems have become popular therapeutic instruments, demonstrating tremendous promise in cancer therapy, infection treatment, and other therapeutic domains. An emerging form of vesicular nanocarriers, niosomes are self-assembling vesicles composed of nonionic surfactants, along with cholesterol or other amphiphilic molecules. This comprehensive review focuses on how nanosystems may aid in making anticancer and antibacterial pharmaceuticals more stable and soluble. As malleable nanodelivery instruments, the composition, types, preparation procedures, and variables affecting the structure and stability of niosomes are extensively investigated. In addition, the advantages of dual niosomes for combination therapy and the administration of multiple medications simultaneously are highlighted. Along with categorizing niosomal drug delivery systems, a comprehensive analysis of various preparation techniques, including thin-layer injection, ether injection, and microfluidization, is provided. Dual niosomes for cancer treatment are discussed in detail regarding the codelivery of two medications and the codelivery of a drug with organic, plant-based bioactive compounds or gene agents. In addition, niogelosomes and metallic niosomal carriers for targeted distribution are discussed. The review also investigates the simultaneous delivery of bioactive substances and gene agents, including siRNA, microRNA, shRNA, lncRNA, and DNA. Additional sections discuss the use of dual niosomes for cutaneous drug delivery and treating leishmanial infections, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The study concludes by delineating the challenges and potential routes for nanoniosome-based pharmaceutical codelivery systems, which will be useful for nanomedicine practitioners and researchers.
Collapse
Affiliation(s)
- Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Atefeh Derakhshani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadiseh Mirhosseini
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Elmira Banaee Mofakham
- Department of Nanotechnology and Advanced Materials Research, Materials & Energy Research Center, Karaj, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| |
Collapse
|
6
|
Liu S, Ji Y, Zhu H, Shi Z, Li M, Yu Q. Gallium-based metal-organic frameworks loaded with antimicrobial peptides for synergistic killing of drug-resistant bacteria. J Mater Chem B 2023; 11:10446-10454. [PMID: 37888956 DOI: 10.1039/d3tb01754k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Increased antibiotic resistance has made bacterial infections a global concern, which requires novel non-antibiotic-dependent antibacterial strategies to address the menace. Antimicrobial peptides (AMPs) are a promising antibiotic alternative, whose antibacterial mechanism is mainly to destroy the membrane of bacteria. Gallium ions exhibit an antibacterial effect by interfering with the iron metabolism of bacteria. With the rapid development of nanotechnology, it is worth studying the potential of gallium-AMP-based nanocomposites for treating bacterial infections. Herein, novel gallium-based metal-organic frameworks (MOFs) were synthesized at room temperature, followed by in situ loading of the model AMP melittin. The obtained nanocomposites exhibited stronger antibacterial activity than pure MEL and gallium ions, achieving the effects of "one plus one is greater than two". Moreover, the nanocomposites showed favorable biocompatibility and accelerated healing of a wound infected by methicillin-resistant Staphylococcus aureus by down-regulation of inflammatory cytokines IL-6 and TNF-α. This work presents an innovative antibacterial strategy to overcome the antibiotic resistance crisis and expand the application of AMPs.
Collapse
Affiliation(s)
- Shuo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| | - Yuxin Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hangqi Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhishang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| |
Collapse
|